
Digital soil assessment: A simple enterprise

suitability example.

Soil Security Laboratory

2018

Digital soil assessment goes beyond the goals of digital soil mapping. Digital
soil assessment (DSA) can be defined (from McBratney et al. (2012)) as the
translation of digital soil mapping outputs into decision making aids that are
framed by the particular, contextual human-value system which addresses the
question/s at hand. The concept of DSA was first framed by Carre et al.
(2007) as a mechanism for assessing soil threats, assessing soil functions and
for soil mechanistic simulations to assess risk based scenarios to complement
policy development. Very simply DSA can be likened to the quantitative
modeling of difficult-to-measure soil and attributes. An obvious candidate
application for DSA is land suitability evaluation for a specified land use type,
which van Diepen et al. (1991) define as all methods to explain or predict the
use potential of land.

Land evaluation in some sense has been in practice at least since the earliest
known human civilizations. The shift to sedentary agriculture from nomadic
lifestyles is at least indicative of a concerted effort of human investment to
evaluate the potential and capacity of land and its soils to support some form
of agriculture like cropping (Brevik and Hartemink, 2010). In the modern
times there is a well-documented history of land evaluation practice and
programs throughout the world, many of which are described in Mueller et al.
(2010). Much of the current thinking around land evaluation for agriculture
are well documented within the land evaluation guidelines prepared by the
Food and Agriculture Organization of the United Nations (FAO) in 1976
(FAO, 1976). These guidelines have strongly influenced and continue to guide
land evaluation projects throughout the world. The FAO framework is a crop
specific LSA system with a 5-class ranking of suitability (FAO Land Suitability
Classes) from 1: Highly Suitable to 5: Permanently Not Suitable. Given a
suite of biophysical information from a site, each attribute is evaluated against
some expert-defined thresholds for each suitability class. The final evaluation
of suitability for the site is the one in which is most limiting.

Digital soil mapping complementing land evaluation assessment is being
more regularly observed. Examples (in Australia) include Kidd et al. (2012) in
Tasmania and Harms et al. (2015) in Queensland. Perhaps an obvious reason
is that one can derive with digital soil and climate modeling, very attribute
specific mapping which can be targeted specifically to a particular agricultural
land use or even to a specific enterprise (Kidd et al., 2012).

1

In this chapter, an example is given of a DSA where enterprise suitability is
assessed. The specific example is a digital land suitability assessment (LSA)
for hazelnuts across an area of northern Tasmania, Australia (Meander Valley)
which has been previously described in Malone et al. (2015). For context, the
digital soil assessment example has been one function of the Tasmanian
Wealth from Water project for developing detailed land suitability assessments
(20 specific agricultural enterprises) to support irrigated agricultural expansion
across the state ((Kidd et al., 2012); (Kidd et al., 2015)). The project was
commissioned for a couple of targeted areas, but has since been rolled out
across the state (Kidd et al., 2015). Further general information about the
project can be found at http://dpipwe.tas.gov.au/agriculture/
investing-in-irrigation/enterprise-suitability-toolkit.

The example considered in this chapter is just to give an overview of how to
perform a DSA in what could be considered as a relatively simple example.
Using the most-limiting factor approach of land suitability assessment, the
procedure requires a pixel-by-pixel assessment of a number of input variables
which have been expertly defined as being important for the establishment
and growth of hazelnuts. Malone et al. (2015) describes the digital mapping
processes that went into creating the input variables for this example. The
approach also assumes that the predicted maps of the input variables are also
error free. Figure 1 shows an example of the input variable requirements and
the suitability thresholds for hazelnuts. You will notice the biophysical
variables include both soil and climatic variables, and the suitability
classification has four levels of grading.

Probably the first thing to consider for enabling the DSA in this example is
to codify the information in Figure 1 into an R function. It would look like
something similar to the following script.

HAZELNUT SUITABILITY ASSESSMENT FUNCTION

hazelnutSuits <- function(samp.matrix) {
out.matrix <- matrix(NA, nrow = nrow(samp.matrix), ncol = 10)

Chill Hours

out.matrix[which(samp.matrix[, 1] > 1200), 1] <- 1

out.matrix[which(samp.matrix[, 1] > 600 & samp.matrix[, 1] <= 1200), 1] <- 2

out.matrix[which(samp.matrix[, 1] <= 600), 1] <- 4

Clay content

out.matrix[which(samp.matrix[, 2] > 10 & samp.matrix[, 2] <= 30), 2] <- 1

out.matrix[which(samp.matrix[, 2] > 30 & samp.matrix[, 2] <= 50), 2] <- 2

out.matrix[which(samp.matrix[, 2] > 50 | samp.matrix[, 2] <= 10), 2] <- 4

Soil Drainage

out.matrix[which(samp.matrix[, 3] > 3.5), 3] <- 1

out.matrix[which(samp.matrix[, 3] <= 3.5 & samp.matrix[, 3] > 2.5), 3] <- 2

out.matrix[which(samp.matrix[, 3] <= 2.5 & samp.matrix[, 3] > 1.5), 3] <- 3

out.matrix[which(samp.matrix[, 3] <= 1.5), 3] <- 1

EC (transformed variable)

c©2018, Soil Security Laboratory 2

Figure 1: Suitability parameters and thresholds for hazelnuts. Sourced from
DPIPWE (2015).

out.matrix[which(samp.matrix[, 4] <= 0.15), 4] <- 1

out.matrix[which(samp.matrix[, 4] > 0.15), 4] <- 4

Frost

c©2018, Soil Security Laboratory 3

out.matrix[which(samp.matrix[, 10] == 0), 5] <- 1

out.matrix[which(samp.matrix[, 10] != 0 & samp.matrix[, 5] >= 80), 5] <- 1

out.matrix[which(samp.matrix[, 10] != 0 & samp.matrix[, 5] < 80 & samp.matrix[,

5] >= 60), 5] <- 2

out.matrix[which(samp.matrix[, 10] != 0 & samp.matrix[, 5] < 60 & samp.matrix[,

5] >= 40), 5] <- 3

out.matrix[which(samp.matrix[, 10] != 0 & samp.matrix[, 5] < 40), 5] <- 3

pH

out.matrix[which(samp.matrix[, 6] <= 6.5 & samp.matrix[, 6] >= 5.5), 6] <- 1

out.matrix[which(samp.matrix[, 6] > 6.5 & samp.matrix[, 6] <= 7.1), 6] <- 3

out.matrix[which(samp.matrix[, 6] < 5.5 | samp.matrix[, 6] > 7.1), 6] <- 4

rainfall

out.matrix[which(samp.matrix[, 7] <= 50), 7] <- 1

out.matrix[which(samp.matrix[, 7] > 50), 7] <- 4

soil depth

out.matrix[which(samp.matrix[, 13] == 0), 8] <- 1

out.matrix[which(samp.matrix[, 13] != 0 & samp.matrix[, 8] > 50), 8] <- 1

out.matrix[which(samp.matrix[, 13] != 0 & samp.matrix[, 8] <= 50 & samp.matrix[,

8] > 40), 8] <- 2

out.matrix[which(samp.matrix[, 13] != 0 & samp.matrix[, 8] <= 40 & samp.matrix[,

8] > 30), 8] <- 3

out.matrix[which(samp.matrix[, 13] != 0 & samp.matrix[, 8] <= 30), 8] <- 4

temperature

out.matrix[which(samp.matrix[, 9] > 20 & samp.matrix[, 9] <= 30), 9] <- 1

out.matrix[which(samp.matrix[, 9] > 30 & samp.matrix[, 9] <= 33 | samp.matrix[,

9] <= 20 & samp.matrix[, 9] > 18), 9] <- 2

out.matrix[which(samp.matrix[, 9] > 33 & samp.matrix[, 9] <= 35), 9] <- 3

out.matrix[which(samp.matrix[, 9] > 35 | samp.matrix[, 9] <= 18), 9] <- 4

rocks

out.matrix[which(samp.matrix[, 11] == 0), 10] <- 1

out.matrix[which(samp.matrix[, 11] != 0 & samp.matrix[, 12] <= 2), 10] <- 1

out.matrix[which(samp.matrix[, 11] != 0 & samp.matrix[, 12] == 3), 10] <- 2

out.matrix[which(samp.matrix[, 11] != 0 & samp.matrix[, 12] == 4), 10] <- 3

out.matrix[which(samp.matrix[, 11] != 0 & samp.matrix[, 12] > 4), 10] <- 4

return(out.matrix)

}

Essentially the function takes in a matrix of (n) number of rows by 13
columns. The number of columns is fixed as each coincides with one of the
biophysical variables. There are some variables where there is relevant
information contained in two columns. For example, columns assigned to soil
depth information are contained in columns 8 and 13. The reason is such that
soil depth is modeled via a two-stage process (as is exemplified in the chapter

c©2018, Soil Security Laboratory 4

regarding two-stage modeling for DSM), such that a model is used to predict
the presence/absence of a certain condition —which for soil depth is whether
lithic contact is achieved less than 1.5 m from the soil surface — followed by a
secondary model that predicts soil depth (where soil is expected to be less
than 1.5m). Subsequently the secondary model is only invoked if there is a
positive condition found for the first model. As such the above R function
provides a good example of the use of sub-setting and applying conditional
queries within R. The function hazelnutSuits will return a new matrix with n
rows and 10 columns. The entries for each column and row will be the
suitability assessment for each biophysical variable. It is then just a matter of
determining what the maximum value is on each row in order to give an overall
suitability valuation (as this is the most limiting factor approach). This can be
achieved using the rowMaxs function from the matrixStats package.

rowMaxs(output from hazelnutSuits function)

Following is a workflow for implementing the hazelnutSuits function, with
special application of it in a spatial mapping context.

1 Mapping example of digital land suitability
assessment

Assuming there are digital soil and climate maps already created for use in the
hazelnut land suitability assessment, it is relatively straightforward to run the
LSA. Keep in mind that the creation of the biophysical variable maps were
created via a number of means which included continuous attribute modeling,
binomial and ordinal logistic regression, and a combination of both i.e.
through the two-stage mapping process. So let’s get some sense of the LSA
input variables.

LSA input variables

library(raster)

names(lsa.variables)

[1] "X1_chill_HAZEL_FINAL_meander"

[2] "X2_clay_FINAL_meander"

[3] "X3_drain_FINAL_meander"

[4] "X4_EC_cubist_meander"

[5] "X5_Frost_HAZEL_FINAL_meander"

[6] "X6_pH_FINAL_meander"

[7] "X7_rain_HAZEL_FINAL_meander"

[8] "X8_soilDepth_FINAL_meander"

[9] "X9_temp_HAZEL_FINAL_meander"

[10] "X5_Frost_HAZEL_binaryClass_meander"

[11] "X10_rocks_binaryClass_meander"

[12] "X11_rocks_ordinalClass_meander"

[13] "X8_soilDepth_binaryClass_meander"

class(lsa.variables)

c©2018, Soil Security Laboratory 5

[1] "RasterStack"

attr(,"package")

[1] "raster"

Raster stack dimensions

dim(lsa.variables)

[1] 1081 1685 13

Raster resolution

res(lsa.variables)

[1] 30 30

So there are 13 rasters of data, which you will note coincide with the inputs
required for the hazelnutSuits function. Now all that is required is to go
pixel by pixel and apply the LSA function. In R the implementation may take
the following form:

Retrieve values of from all rasters for a given row Here it is the 1st row

of the raster

cov.Frame <- getValues(lsa.variables, 1)

nrow(cov.Frame)

[1] 1685

Remove the pixels where there is NA or no data present

sub.frame <- cov.Frame[which(complete.cases(cov.Frame)),]

nrow(sub.frame)

[1] 27

names(sub.frame)

NULL

run hazelnutSuits function

hazel.lsa <- hazelnutSuits(sub.frame)

Assess for suitability

library(matrixStats)

rowMaxs(hazel.lsa)

[1] 2 4 4 4 4 4 4 4

The above script has just performed the hazelnut LSA upon the entire first
row of the input variable rasters. There were only 27 pixels where the full
suite of data was available in this case. To do the LSA for the entire mapping
extent we could effectively run the script above for each row of the input
rasters. Naturally, this would take an age to do manually, so it might be more
appropriate to use the script above inside a for loop where the row index
changes for each loop. Alternatively, the custom hazelnutSuits function
could be used as an input argument for the raster package calc function, or
better still using the clusterR function if there is a need to do the LSA in
parallel mode across multiple compute nodes. Given the available options, we
will demonstrate the mapping process using the looping approach. While it

c©2018, Soil Security Laboratory 6

may be computationally slower, it imprints the concept of applying the LSA
spatially with greater clarity.

From the above script and resulting output, we essentially returned a vector
of integers. We effectively lost all links to the fact that the inputs and
resulting outputs are spatial data. Subsequently there is a need to link the
suitability assessment back to the mapping. Fortunately we know the column
positions of the instances where there was the full suite of input data. So once
we have set up a raster object to which data can be written to (which has the
same raster properties of the input data), it is just a matter of placing the
LSA outputs into the row and column positions as those of the input data. A
full example is given below, but for the present purpose, the LSA output data
placement into a raster would look something like the following:

A one column matrix with number of rows equal to number of columns in

raser inputs

a.matrix <- matrix(NA, nrow = nrow(cov.Frame), ncol = 1)

Place LSA outputs into correct row positions

a.matrix[which(complete.cases(cov.Frame)), 1] <- rowMaxs(hazel.lsa)

Write LSA outputs to raster object (1st row)

LSA.raster <- writeValues(LSA.raster, a.matrix[, 1], 1)

Naturally the above few lines of script would also be embedded into the
looping process as described above. Below is an example of putting all these
operations together to ultimately produce a map of the suitability assessment.
To add a slight layer of complexity, we may also want to produce maps of the
suitability assessment for each of the input variables. This helps in
determining which factors are causing the greatest limitations and where they
occur. First, we need to create a number of rasters to which we can write the
outputs of the LSA to.

Create a suite of rasters of same raster properties is LSA input variables

Overall suitability classification

LSA.raster <- raster(lsa.variables[[1]])

Write outputs of LSA directly to file

LSA.raster <- writeStart(LSA.raster, filename = "meander_MLcat.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

Individual LSA input suitability rasters

mlf1 <- raster(lsa.variables[[1]])

mlf2 <- raster(lsa.variables[[1]])

mlf3 <- raster(lsa.variables[[1]])

mlf4 <- raster(lsa.variables[[1]])

mlf5 <- raster(lsa.variables[[1]])

mlf6 <- raster(lsa.variables[[1]])

mlf7 <- raster(lsa.variables[[1]])

mlf8 <- raster(lsa.variables[[1]])

c©2018, Soil Security Laboratory 7

mlf9 <- raster(lsa.variables[[1]])

mlf10 <- raster(lsa.variables[[1]])

Also write LSA outputs directly to file.

mlf1 <- writeStart(mlf1, filename = "meander_Haz_mlf1_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf2 <- writeStart(mlf2, filename = "meander_Haz_mlf2_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf3 <- writeStart(mlf3, filename = "meander_Haz_mlf3_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf4 <- writeStart(mlf4, filename = "meander_Haz_mlf4_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf5 <- writeStart(mlf5, filename = "meander_Haz_mlf5_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf6 <- writeStart(mlf6, filename = "meander_Haz_mlf6_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf7 <- writeStart(mlf7, filename = "meander_Haz_mlf7_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf8 <- writeStart(mlf8, filename = "meander_Haz_mlf8_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf9 <- writeStart(mlf9, filename = "meander_Haz_mlf9_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

mlf10 <- writeStart(mlf10, filename = "meander_Haz_mlf10_CAT.tif", format = "GTiff",

dataType = "INT1S", overwrite = TRUE)

Now we can implement the for loop procedure and do the LSA for the entire
mapping extent.

Run the suitability model: Open loop:for each row of each input raster get

raster values

for (i in 1:dim(LSA.raster)[1]) {
cov.Frame <- getValues(lsa.variables, i)

get the complete cases

sub.frame <- cov.Frame[which(complete.cases(cov.Frame)),]

Run hazelnut LSA function

t1 <- hazelnutSuits(sub.frame)

Save results to raster

a.matrix <- matrix(NA, nrow = nrow(cov.Frame), ncol = 1)

a.matrix[which(complete.cases(cov.Frame)), 1] <- rowMaxs(t1)

LSA.raster <- writeValues(LSA.raster, a.matrix[, 1], i)

Also save the single input variable assessment outputs

mlf.out <- matrix(NA, nrow = nrow(cov.Frame), ncol = 10)

mlf.out[which(complete.cases(cov.Frame)), 1] <- t1[, 1]

mlf.out[which(complete.cases(cov.Frame)), 2] <- t1[, 2]

mlf.out[which(complete.cases(cov.Frame)), 3] <- t1[, 3]

mlf.out[which(complete.cases(cov.Frame)), 4] <- t1[, 4]

c©2018, Soil Security Laboratory 8

mlf.out[which(complete.cases(cov.Frame)), 5] <- t1[, 5]

mlf.out[which(complete.cases(cov.Frame)), 6] <- t1[, 6]

mlf.out[which(complete.cases(cov.Frame)), 7] <- t1[, 7]

mlf.out[which(complete.cases(cov.Frame)), 8] <- t1[, 8]

mlf.out[which(complete.cases(cov.Frame)), 9] <- t1[, 9]

mlf.out[which(complete.cases(cov.Frame)), 10] <- t1[, 10]

mlf1 <- writeValues(mlf1, mlf.out[, 1], i)

mlf2 <- writeValues(mlf2, mlf.out[, 2], i)

mlf3 <- writeValues(mlf3, mlf.out[, 3], i)

mlf4 <- writeValues(mlf4, mlf.out[, 4], i)

mlf5 <- writeValues(mlf5, mlf.out[, 5], i)

mlf6 <- writeValues(mlf6, mlf.out[, 6], i)

mlf7 <- writeValues(mlf7, mlf.out[, 7], i)

mlf8 <- writeValues(mlf8, mlf.out[, 8], i)

mlf9 <- writeValues(mlf9, mlf.out[, 9], i)

mlf10 <- writeValues(mlf10, mlf.out[, 10], i)

print((dim(LSA.raster)[1]) - i)

} #END OF LOOP

complete writing rasters to file

LSA.raster <- writeStop(LSA.raster)

mlf1 <- writeStop(mlf1)

mlf2 <- writeStop(mlf2)

mlf3 <- writeStop(mlf3)

mlf4 <- writeStop(mlf4)

mlf5 <- writeStop(mlf5)

mlf6 <- writeStop(mlf6)

mlf7 <- writeStop(mlf7)

mlf8 <- writeStop(mlf8)

mlf9 <- writeStop(mlf9)

mlf10 <- writeStop(mlf10)

As you may encounter, the above script can take quite a while to complete,
but ultimately you should be able to produce a number of mapping products.
Figure 2 shows the map of the overall suitability classification and the script
to produce it is below.

library(rasterVis)

LSA.raster <- as.factor(LSA.raster)

rat <- levels(LSA.raster)[[1]]

rat[["suitability"]] <- c("Well Suited", "Suited", "Moderately Suited", "Unsuited")

levels(LSA.raster) <- rat

plot

area_colors <- c("#FFFF00", "#1D0BE0", "#1CEB15", "#C91601")

levelplot(LSA.raster, col.regions = area_colors, xlab = "", ylab = "")

Similarly the above plotting procedure can be repeated to look at single
input variable limitations too.

c©2018, Soil Security Laboratory 9

Figure 2: Digital suitability assessment for hazelnuts across the Meander Valley,
Tasmania (assuming all LSA input variables are error free).

The approaches detailed in this chapter are described in greater detail in
Malone et al. (2015) within the context of taking account of uncertainties
within LSA. Taking account of the input variable uncertainties adds an
additional level of complexity to what was achieved above, but is an important
consideration nonetheless, as the resulting outputs can be assessed for
reliability in an objective manner. However, that particular workflow for LSA
is not covered in this chapter as it is only meant to provide a general
perspective and relatively simple example of a real world digital soil
assessment.

References

Brevik, E. C. and A. E. Hartemink
2010. Early soil knowledge and the birth and development of soil science.
Catena, 83(1):23 – 33.

Carre, F., A. B. McBratney, T. Mayr, and L. Montanarella
2007. Digital soil assessments: Beyond dsm. Geoderma, 142(1-2):69 – 79.

DPIPWE
2015. Enterprise suitability toolkit [online] dpipwe.tas.gov.au.

FAO
1976. A Framework for Land Evaluation. Soils Bulletin 32. Rome: Food
and Agriculture Organisation of the United Nations.

Harms, B., D. Brough, S. Philip, R. Bartley, D. Clifford, M. Thomas,

c©2018, Soil Security Laboratory 10

R. Willis, and L. Gregory
2015. Digital soil assessment for regional agricultural land evaluation.
Global Food Security, 5:25 – 36. Special Section on 3rd.

Kidd, D., M. Webb, B. Malone, B. Minasny, and A. McBratney
2015. Digital soil assessment of agricultural suitability, versatility and
capital in tasmania, australia. Geoderma Regional, 6:7 – 21.

Kidd, D. B., M. A. Webb, C. J. Grose, R. M. Moreton, B. P. Malone, A. B.
McBratney, B. Minasny, R. Viscarra-Rossel, L. A. Sparrow, and R. Smith
2012. Digital soil assessment: Guiding irrigation expansion in tasmania,
australia. In Digital Soil Assessment and Beyond, B. Minasny, B. P.
Malone, and A. B. McBratney, eds., Pp. 3–9, Boca Raton. CRC.

Malone, B. P., D. B. Kidd, B. Minasny, and A. B. McBratney
2015. Taking account of uncertainties in digital land suitability assessment.
PeerJ, P. 3:e1366.

McBratney, A. B., B. Minasny, I. Wheeler, B. P. Malone, and D. V. D. Linden
2012. Frameworks for digital soil assessment. In Digital Soil Assessments
and Beyond, B. Minasny, B. P. Malone, and A. B. McBratney, eds.,
Pp. 9–15, London, UK. CRC Press.

Mueller, L., U. Schindler, W. Mirschel, T. Shepherd, B. Ball, K. Helming,
J. Rogasik, F. Eulenstein, and H. Wiggering
2010. Assessing the productivity function of soils. a review. Agronomy for
Sustainable Development, 30(3):601–614.

van Diepen, C., H. van Keulen, J. Wolf, and J. Berkhout
1991. Land evaluation: From intuition to quantification. In Advances in Soil
Science, B. Stewart, ed., volume 15 of Advances in Soil Science,
Pp. 139–204. Springer New York.

c©2018, Soil Security Laboratory 11

