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1 Homosoil: a procedure for identifying areas
with similar soil forming factors.

In many places in the world, soil information is difficult to obtain and can be
non-existent. When no detailed maps or soil observations are available in a
region of interest, we have to interpolate or extrapolate from other parts of the
world. When dealing with global modeling at a coarse resolution, we can
interpolate or extrapolate soil observations available from other similar areas
(that are geographically close) or by using spatial interpolation or a spatial
soil prediction function.

Homosoil, is a concept proposed by Mallavan et al. (2010) which assumes the
homology of predictive soil-forming factors between a reference area and the
region of interest. These include: climate, parent materials, and physiography
of the area. We created the homosoil function to illustrate the concept. It is
relatively simple whereby, given any location (latitude, longitude) in the world,
the function will determine other areas in the world that share similar climate,
lithology and topography. Shortly we will unpack the function into its
elemental components. First we will describe the data and how to measure
similarity between sites.

1.1 Global climate, lithology and topography data.

The basis is a global 0.5◦ × 0.5◦ grid data of climate, topography, and
lithology.

For climate, this consists of variables representing long-term mean monthly
and seasonal temperature, rainfall, solar radiation and evapotranspiration
data. We also use the DEM representing topography, and lithology, which
gives broad information on the parent material. The climate data come from
the ERA-40 reanalysis and Climate Research Unit (CRU) dataset. More
details on the datasets are available on the website
http://www.ipcc-data.org/obs/get_30yr_means.html. For each of the 4
climatic variables (rainfall, temperature, solar radiation and
evapotranspiration), we calculated 13 indicators: annual mean, mean for the
driest month, mean at the wettest month, annual range, driest quarter mean,
wettest quarter mean, coldest quarter mean, hottest quarter mean, lowest ET
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quarter mean, highest ET quarter mean, darkest quarter mean, lightest
quarter mean, and seasonality. From this analysis and including the acquired
data, 52 global climatic variables were composed.

The DEM is from the Hydro1k dataset supplied from the USGS
(https://lta.cr.usgs.gov/HYDRO1K), which includes the mean elevation,
slope, and compound topgraphic index (CTI).

The lithology is from a global digital map (Durr et al., 2005) with 7 values
which represent the different broad groups of parent materials. The lithology
classes are: non- or semi-consolidated sediments, mixed consolidated
sediments, silic-clastic sediments, acid volcanic rocks, basic volcanic rocks,
complex of metamorphic and igneous rocks, and complex lithology.

This global data is available as a data.frame from the ithir package.

library(ithir)

data(homosoil_globeDat)

1.2 Estimation of similarity.

The climatic and topographic similarity between two points of the grid is
calculated by a Gower similarity measure (Gower, 1971). The Gower distance
measures the similarity Sij between sites i and j, each with p number of
variables, standardized by the range of each variable:

Sij =
1

p

p∑
k=1

(
1− | xik − xjk |

rangek

)
(1)

Where p denotes the number of climatic variables, | xik − xjk | represents the
absolute difference of climate variables between site i and j. The similarity
index has a value between 0 and 1 and is applicable for continuous variables.
For categorical variables such as those for lithology, we simply just want to
match category for category between sites i and j.

Considering the scale and the resolution of this study and the available
global data (0.5◦ × 0.5◦), the climatic factor is probably the most important
and reliable soil forming factor. This is inspired by the study of Bui et al.
(2006) who showed at continental extent, the state factors of soil formation
form a hierarchy of interacting variables, with climate being the most
important factor, and different climatic variables dominate in different regions.
This is not to say that climate to be the most important factor at all scales.
Their results also show that lithology is almost equally important in defining
broad scale spatial patterns of soil properties, and shorter-range variability in
soil properties appears to be driven more by terrain variables.

In the homosoil function, we first is to identify homoclimes around the
world, and within the homoclime, we find areas with similar lithology
(homolith), within which we then find similar topography (homotop). For
climate and topography, we arbitrarily select the top x% similarity index as
areas of homologue. In the following example we select the top 15%. So lets
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look at the internals of the function before running an example.

1.3 The homosoil function.

Essentially from below we are creating the homosoil function. This function
takes three inputs: grid.data, which is the global environmental dataset, and
recipient.lon and recipient.lat, which correspond the coordinates of the
sites to which we want to find soil homologues. For brevity we will call this the
recipient site. Inside the homosoil function, we first encounter another
function which is an encoding of the Gower’s similarity measure as defined
previously. This is followed by a number of indexation steps (to make the
following steps clearer to implement), where we explicitly make groupings of
the data, for example the object grid.climate is composed of all the global
climate information from the grid.data object. Finally make the object
world.grid which is a data.frame for putting outputs of the function into.
Ultimately this object will get returned at the end of the function
execution.

homosoil <- function (grid_data,recipient.lon,recipient.lat) {
#Gower's similarity function

gower <- function(c1, c2, r) 1-(abs(c1-c2)/r)

#index global data

grid.lon <-grid_data[,1] #longitude

grid.lat <-grid_data[,2] #latitude

grid.climate <-grid_data[,3:54] #climate data

grid.lith <-grid_data[,58] #lithology

grid.topo <-grid_data[,55:57] #topography

#data frame to put outputs of homosoil function

world.grid<- data.frame(grid_data[, c("X", "Y")],

fid = seq(1, nrow(grid_data), 1), homologue = 0, homoclim=0, homolith=0, homotop=0)

We then want to find which global grid point is the closest to the recipient
site based on the Euclidean distance of the coordinates. We then want to
extract the climate, lithological, and topographical data that is recorded for
the nearest grid point.

# find the closest recipient point

dist = sqrt((recipient.lat - grid.lat)^2 + (recipient.lon - grid.lon)^2)

imin = which.min(dist)

# climate, lithology and topography for recipient site

recipient.climate <- grid.climate[imin, ]

recipient.lith <- grid.lith[imin]

recipient.topo <- grid.topo[imin, ]

Starting with climate, we want to estimate Gower’s similarity measure.
Firstly we estimate the range of values for each variable. Note the use of the
apply function, which facilitates an efficient way to estimate ranges for each
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variable. Then using our gower function, we perform the similarity
calculation. This is done for each variable. The mapply function allows us to
do this without the need to use a for loop. We then take the mean of these
values, to which corresponds to the Gower’s similarity measure and which is
saved to the object Sr.

# range of climate variables

rv <- apply(grid.climate, 2, range)

rr <- rv[2, ] - rv[1, ]

# calculate similarity to all variables in the grid

S <- (mapply(gower, c1 = grid.climate, c2 = recipient.climate, r = rr))

Sr <- apply(S, 1, mean) # take the average

We can then determine which grid points are most similar to the recipient
site. Here we use an arbitrarily selected cutoff of 0.85 which corresponds to
the top 15% of grid data similar to the recipient site. Lastly, we save the
results of the homocline analysis to the world.grid object.

# row index for homoclime with top X% similarity.

iclim = which(Sr >= quantile(Sr, 0.85), arr.ind = TRUE)

# save homocline result

world.grid$homologue[iclim] <- 1

world.grid$homoclim[iclim] <- 1

Now we want to find within the areas we have defined as homocline, areas
that are homolith. We simply want to find the lithology match between the
recipient site and global lithology. We can do this for the entire globe, and
then index those sites that also correspond to homoclines. Again, we save the
results of the homolith analysis to the world.grid object.

# find within homoclime, areas with homolith

ilith = which(grid.lith == recipient.lith, arr.ind = TRUE) #global comparison

# homolith in areas of homocline

clim.match <- which(world.grid$homologue == 1)

climlith.match <- clim.match[clim.match %in% ilith]

# save homolith result

world.grid$homologue[climlith.match] <- 2

world.grid$homolith[climlith.match] <- 1

Now we want to find within the areas we have defined as homolith, areas that
are homotop. This analysis can be initiated by doing estimating the Gower’s
similarity measure for the whole globe. These steps below are just the same as
before for the climate date, except now we are using the topographic data.
Again we are also using the arbitrarily selected threshold value of 15%.

# range of topographic variables

rv <- apply(grid.topo, 2, range)
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rt <- rv[2, ] - rv[1, ]

# calculate similarity of topographic variables

Sa <- (mapply(gower, c1 = grid.topo, c2 = recipient.topo, r = rt))

St <- apply(Sa, 1, mean) # take the average

# row index for homotop

itopo = which(St >= quantile(St, 0.85), arr.ind = TRUE)

Now we want to determine those areas that are homotop within the areas
that are homolith.

top.match <- which(world.grid$homologue == 2)

lithtop.match <- top.match[top.match %in% itopo]

# save homotop result

world.grid$homologue[lithtop.match] <- 3

world.grid$homotop[lithtop.match] <- 1

That more-or-less completes the homosoil analysis. The last few tasks are to
create a raster object of the soil homologues.

# homologue raster object

r1 <- rasterFromXYZ(world.grid[, c(1, 2, 4)])

r1 <- as.factor(r1)

rat <- levels(r1)[[1]]

rat[["homologue"]] <- c("", "homocline", "homolith", "homotop")

levels(r1) <- rat

Followed by directing the homosoil function to save the relevant outputs
which here are the world.grid object and the raster object of the soil
homologues. Then finally we close the function.

retval <- list(r1, world.grid)

return(retval)}

1.4 Example of finding soil homologues.

With the homosoil function now established, lets put it to use. The
coordinates below correspond to a location in Jakarta in Indonesia.

recipient.lat = -(6 + 10/60)

recipient.lon = 106 + 49/60

Now we run the homosoil function.

result <- homosoil(grid_data = homosoil_globeDat, recipient.lon = recipient.lon,

recipient.lat = recipient.lat)

Then we plot the result. Here we want to use the map object that was
created inside the homosoil function. We also specify colors to correspond the
non-homologue areas, homoclines, homoliths, and homotops. Because of the
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hierarchical nature of the homosoil analysis, essentially the homotops are the
soil homologues to the recipient site (Figure 1.

# plot

area_colors <- c("#EFEFEF", "#666666", "#FFDAD4", "#FF0000")

levelplot(result[[1]], col.regions = area_colors, xlab = "", ylab = "")

+ layer(sp.points(dats,

col = "green", pch = 20, cex = 2))

Figure 1: Soil homologues to an area of Jakarta, Indonesia (green dot on map).

Using the other object that is returned from the homosoil function (which
was the world.grid data frame used to put the analysis outputs into) we can
also map out the homologues individually, for example, we may just want to
map the homoclines. That you can work out to do in your own time.
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