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At the start of this book, some of the history and theoretical underpinnings
of DSM was discussed. Now with a solid foundation in R, it is time to put this
all into practice i.e. do DSM with R.

In this chapter some common methods for soil data preparation and
exploration are covered. Soil point databases are inherently heterogeneous
because soils are measured non uniformly from site to site. However one
more-or-less commonality is that soil point observations will generally have
some sort of label, together with some spatial coordinate information that
indicates where the sample was collected from. Then things begin to vary from
site to site. Probably the biggest difference is that all soils are not measured
universally at the same depths. Some soils are sampled per horizon or at
regular depths. Some soil studies examine only the topsoil, while others sample
to the bedrock depth. Then different soil attributes are measured at some
locations and depths, but not at others. Overall, it becomes quickly apparent
when one begins working with soil data that a number of preprocessing steps
are needed to fulfill the requirements of a particular analysis.

In order to prepare a collection of data for use in a DSM project as described
in Minasny and McBratney (2010) one needs to examine what data are
available, what is the soil attribute or class to be modeled? What is the
support of the data? This includes whether observations represent soil point
observations or some integral over a defined area (for now we just consider
observations to be point observations). However, we may also assume the
support to be also a function of depth in that we may be interested in only
mapping soil for the top 10cm, or to 1m, or any depth in between or to the
depth to bedrock. The depth interval could be a single value (such as one
value for the 0-1m depth interval as an example), or we may wish to map
simultaneously the depth variation of the target soil attribute with the lateral
or spatial variation. These questions add complexity to the soil mapping
project, but are an important consideration when planning a project and
assessing what the objectives are.

More recent digital soil mapping research has examined the the combination
of soil depths functions with spatial mapping in order to create soil maps with
a near 3-D support. In the following section some approaches for doing this
are discussed with emphasis and instruction on a particular method, namely
the use of a mass-preserving soil depth function. This will be followed by a
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section that will examine the important DSM step of linking observed soil
information with available environmental covariates and the subsequent
preparation of covariates for spatial modelling.

1 Soil depth functions

The traditional method of sampling soil involves dividing a soil profile into
horizons. The number of horizons and the position of each are generally based
on attributes easily observed in the field, such as morphological soil properties
(Bishop et al., 1999). From each horizon, a bulk sample is taken and it is
assumed to represent the average value for a soil attribute over the depth
interval from which it is sampled. There are some issues with this approach,
particularly from a pedological perspective and secondly from the difficulty in
using this legacy data within a Digital Soil Mapping (DSM) framework where
we wish to know the continuous variability of a soil both in the lateral and
vertical dimensions. From the pedological perspective soil generally varies
continuously with depth; however, representing the soil attribute value as the
average over the depth interval of horizons leads to discontinuous or stepped
profile representations. Difficulties can arise in situations where one wants to
know the value of an attribute at a specified depth. The second issue is
regarding DSM and is where we use a database of soil profiles to generate a
model of soil variability in the area in which they exist. Because observations
at each horizon for each profile will rarely be the same between any two
profiles, it then becomes difficult to build a model where predictions are made
at a set depth or at standardized depth intervals.

Legacy soil data is too valuable to do away with and thus needs to be molded
to suit the purposes of the map producer, such that one needs to be able to
derive a continuous function using the available horizon data as some input.
This can be done with many methods including polynomials and exponential
decay type depth functions. A more general continuous depth function is the
equal-area quadratic spline function. The usage and mathematical expression
of this function have been detailed in Ponce-Hernandez et al. (1986); Bishop
et al. (1999), and Malone et al. (2009). A useful feature of the spline function
is that it is mass preserving, or in other words the original data is preserved
and can be retrieved again via integration of the continuous spline. Compared
to exponential decay functions where the goal is in defining the actual
parameters of the decay function, the spline parameters are the values of the
soil attribute at the standard depths that are specified by the user. This is a
useful feature, because firstly, one can harmonize a whole collection of soil
profile data and then explicitly model the soil for a specified depth. For
example the GlobalSoilMap.net project (Arrouays et al., 2014) has a
specification that digital soil maps be created for each target soil variable for
the 0-5cm, 5-15cm, 15-30cm, 30-60cm, 60-100cm, and 100-200cm depth
intervals. In this case, the mass-preserving splines can be fitted to the
observed data, then values can be extracted from them at the required depths,
and are then ready for exploratory analysis and spatial modelling.

In the following, we will use legacy soil data and the spline function to
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prepare data to be used in a DSM framework. This will specifically entail
fitting splines to all the available soil profiles and then through a process of
harmonization, integrate the splines to generate harmonized depths of each
observation.

1.1 Fit mass preserving splines with R

We will demonstrate the mass-preserving spline fitting using a single soil
profile example for which there are measurements of soil carbon density to a
given maximum depth. We can fit a spline to the maximum soil depth, or
alternatively any depth that does not exceed the maximum soil depth. The
function used for fitting splines is called ea spline and is from the ithir

package. Look at the help file for further information on this function. For
example, there is further information about how the ea spline function can
also accept data of class SoilProfileCollection from the aqp package in
addition to data of the more generic data.frame class. In the example below
the input data is of class data.frame. The data we need (oneProfile) is in
the ithir package. Lets also load a few of the other important R packages
that will be encountered in this section too

# Load in libraries

library(ithir)

library(raster)

library(sp)

library(gstat)

library(nortest)

library(fBasics)

# ithir dataset

data(oneProfile)

str(oneProfile)

## 'data.frame': 8 obs. of 4 variables:

## $ Soil.ID : num 1 1 1 1 1 1 1 1

## $ Upper.Boundary: num 0 10 30 50 70 120 250 350

## $ Lower.Boundary: num 10 20 40 60 80 130 260 360

## $ C.kg.m3. : num 20.7 11.7 8.2 6.3 2.4 2 0.7 1.2

As you can see above, the data table shows the soil depth information and
carbon density values for a single soil profile. Note the discontinuity of the
observed depth intervals which can also be observed in Figure 1.

The ea spline function will predict a continuous function from the top of
the soil profile to the maximum soil depth, such that it will interpolate values
both within the observed depths and between the depths where there is no
observation.

To parametize the ea spline function, we could accept the defaults, however
it might be likely to change the lam and d parameters to suit the objective of
the analysis being undertaken. lam is the lambda parameter which controls
the smoothness or fidelity of the spline. Increasing this value will make the
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Figure 1: Soil profile plot of the oneProfile data. Note this figure was produced
using the plot soilProfile function from ithir.

spline more rigid. Decreasing it towards zero will make the spline more flexible
such that it will follow near directly the observed data. A sensitivity analysis
is generally recommended in order to optimize this parameter. From
experience a lam value of 0.1 works well generally for most soil properties, and
is the default value for the function. The d parameter represents the depth
intervals at which we want to get soil values for. This is a harmonization
process where regardless of which depths soil was observed at, we can derive
the soil values for regularized and standard depths. In practice, the continuous
spline function is first fitted to the data, then we get the integrals of this
function to determine the values of the soil at the standard depths. d is a
matrix, but on the basis of the default values, what it is indicating is that we
want the values of soil at the following depth intervals: 0-5cm, 5-15cm,
15-30cm, 30-60cm, 60-100cm, and 100-200cm. These depths are specified
depths determined for the GlobalSoilMap.net project (Arrouays et al., 2014).
Naturally, one can alter these values to suit there own particular requirements.
To fit a spline to the carbon density values of the oneProfile data, the
following script could be used:
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eaFit <- ea_spline(oneProfile, var.name = "C.kg.m3.",

d = t(c(0, 5, 15, 30, 60, 100, 200)), lam = 0.1, vlow = 0,

show.progress = FALSE)

## Fitting mass preserving splines per profile...

str(eaFit)

## List of 4

## $ harmonised:'data.frame': 1 obs. of 8 variables:

## ..$ id : num 1

## ..$ 0-5 cm : num 21

## ..$ 5-15 cm : num 15.8

## ..$ 15-30 cm : num 9.89

## ..$ 30-60 cm : num 7.18

## ..$ 60-100 cm : num 2.76

## ..$ 100-200 cm: num 1.73

## ..$ soil depth: num 360

## $ obs.preds :'data.frame': 8 obs. of 6 variables:

## ..$ Soil.ID : num [1:8] 1 1 1 1 1 1 1 1

## ..$ Upper.Boundary: num [1:8] 0 10 30 50 70 120 250 350

## ..$ Lower.Boundary: num [1:8] 10 20 40 60 80 130 260 360

## ..$ C.kg.m3. : num [1:8] 20.7 11.7 8.2 6.3 2.4 2 0.7 1.2

## ..$ predicted : num [1:8] 19.84 12.45 8.24 6.2 2.56 ...

## ..$ FID : num [1:8] 1 1 1 1 1 1 1 1

## $ var.1cm : num [1:200, 1] 21.6 21.4 21.1 20.8 20.3 ...

## $ tmse : num [1, 1] 0.263

The output of the function is a list, where the first element is a dataframe

(harmonized) which are the predicted spline estimates at the specified depth
intervals. The second element (obs.preds) is another dataframe but contains
the observed soil data together with spline predictions for the actual depths of
observation for each soil profile. The third element (var.1cm) is a matrix
which stores the spline predictions of the depth function at (in this case) 1cm
resolution. Each column represent a given soil profile and each row represents
an incremental 1cm depth increment to the maximum depth we wish to
extract values for, or to the maximum observed soil depth (which ever is
smallest). The last element (tmse) is another matrix but stores a single mean
square error estimate for each given soil profile. This value is an estimate of
the magnitude of difference between observed values and associated predicted
values with each profile. It is often more amenable to visualize the
performance of the spline fitting. Subsequently, plotting the outputs of
ea spline is made possible by the associated plot ea spline function (see
help file for use of this function):

par(mfrow = c(3, 1))

for (i in 1:3) {
plot_ea_spline(splineOuts = eaFit, d = t(c(0, 5, 15, 30, 60, 100, 200)),

maxd = 200, type = i, plot.which = 1, label = "carbon density")

}

The plot ea spline function is a basic function without too much control
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over the plotting parameters, except there are three possible themes of plot
output that one can select. This is controlled by the type parameter. Type =

1 is to return the observed soil data plus the continuous spline (default). Type
= 2 is to return the observed data plus the averages of the spline at the
specified depth intervals. Type = 3 is to return the observed data, spline
averages and continuous spline. The script above results in producing all three
possible plots, and is shown on Figure 2.

Figure 2: Soil profile plot of the three type variants from plot ea spline. Plot
1 is type 1, plot 2 is type 2 and plot 3 is type 3.
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2 Intersecting soil point observations with
environmental covariates

In order to carry out digital soil mapping in terms of evaluating the
significance of environmental variables in explaining the spatial variation of
the target soil variable under investigation, we need to link both sets of data
together and extract the values of the covariates at the locations of the soil
point data. The first task is to bring in to our working environment some soil
point data. We will be using a data set of soil samples collected from the
Hunter Valley, NSW Australia. The area in question is an approximately
22km2 sub-area of the Hunter Wine Country Private Irrigation District
(HWCPID), situated in the Lower Hunter Valley, NSW (32.83S 151.35E). The
HWCPID is approximately 140 km north of Sydney, NSW, Australia. The
target variable is soil pH. The data was preprocessed such that the predicted
values are outputs of the mass-preserving depth function. In the following
examples we will just focus on the values of soil pH at the 60-100cm depth
interval. The data is loaded in from the ithir package with the following
script:

data(HV_subsoilpH)

str(HV_subsoilpH)

## 'data.frame': 506 obs. of 14 variables:

## $ X : num 340386 340345 340559 340483 340734 ...

## $ Y : num 6368690 6368491 6369168 6368740 6368964 ...

## $ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 ...

## $ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

## $ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

## $ Landsat_Band1 : int 57 47 59 52 62 53 47 52 53 63 ...

## $ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

## $ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

## $ Light_insolation : num 1689 1701 1722 1688 1735 ...

## $ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...

## $ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

## $ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...

## $ TWI : num 17.5 18.2 18.8 18 17.8 ...

## $ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

As you will note, there are 506 observations of soil pH. These data are
assocaited with a spatial coordinate and also have associated environmental
covariate data that have been intersected with the point data. The
environmental covariates have been sourced from a digital elevation model and
Landsat 7 satelite data. For the demonstration purposes of the exercise, we
will firstly remove this already intersected data and start fresh - essentially
this is an opportunity to recall earlier work on data frame manipulation and
indexing.

# round pH data to 2 decimal places

HV_subsoilpH$pH60_100cm <- round(HV_subsoilpH$pH60_100cm, 2)
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# remove already intersected data

HV_subsoilpH <- HV_subsoilpH[, 1:3]

# add an id column

HV_subsoilpH$id <- seq(1, nrow(HV_subsoilpH), by = 1)

# re-arrange order of columns

HV_subsoilpH <- HV_subsoilpH[, c(4, 1, 2, 3)]

# Change names of coordinate columns

names(HV_subsoilpH)[2:3] <- c("x", "y")

Also in the ithir package are a collection of rasters that correspond to
environmental covariates that cover the extent of the just loaded soil point
data. These can be loaded using the script:

data(hunterCovariates_sub)

hunterCovariates_sub

## class : RasterStack

## dimensions : 249, 210, 52290, 11 (nrow, ncol, ncell, nlayers)

## resolution : 25, 25 (x, y)

## extent : 338422.3, 343672.3, 6364203, 6370428 (xmin, xmax, ymin, ymax)

## coord. ref. : +proj=utm +zone=56 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs

## names : Terrain_Ruggedness_Index, AACN, Landsat_Band1, Elevation, Hillshading, Light_insolation, Mid_Slope_Positon, MRVBF, NDVI, TWI, Slope

## min values : 0.194371, 0.000000, 26.000000, 72.217499, 0.000677, 1236.662840, 0.000009, 0.000002, -0.573034, 8.224325, 0.001708

## max values : 15.945321, 106.665482, 140.000000, 212.632507, 32.440960, 1934.199950, 0.956529, 4.581594, 0.466667, 20.393652, 21.809752

This data set is a stack of 11 rasterLayers which correspond to mainly
indices derived from a digital elevation model: elevation(elevation), terrain
wetness index (TWI), altitude above channel network (AACN), terrain
ruggedness index (Terrain Ruggedness Index), hillshading (Hillshading),
incoming solar radiation (Light insolation), mid-slope position
(Mid Slope Positon), multi-resolution valley bottom flatness index (MRVBF),
and slope gradient (Slope). Landsat 7 satelite spectral data, specifically band
1 (Landsat Band1 and normalised difference vegetation index (NDVI) are
provided too, and give some indication of the spatial variation of vegetation
patterns across the study area.

You may notice that there is a commonality between these rasterlayers in
terms of their CRS, dimensions and resolution. When you have multiple
rasterlayers as individual rasters, but they are common to each other in
terms of resolution and extent, rather than working with each raster
independently it is much more efficient to stack them all into a single object.
The stack function from raster is ready-made for this, of which the
hunterCovariates sub stack is an output. This harmony is an ideal situation
for DSM where there may often be instances where rasters from the some area
under investigation may have different resolutions, extents and even CRSs. It
these situations it is common to reproject and or resample to a common
projection and resolution. The functions from the raster package which may
be of use in these situations are projectRaster and resample.
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While the example is a little contrived, it is useful to always determine
whether or not the available covariates have complete coverage of the soil
point data. This might be done with the following script which will produce a
map like in Figure 3:

# plot raster

plot(hunterCovariates_sub[["Elevation"]],

main = "Hunter Valley elevation map with overlayed point locations")

## plot points

coordinates(HV_subsoilpH) <- ~x + y

plot(HV_subsoilpH, add = T)

Figure 3: Hunter Valley elevation map with the soil point locations overlayed
upon it.

With the soil point data and covariates prepared, it is time to perform the
intersection between the soil observations and covariate layers using the
script:

DSM_data <- extract(hunterCovariates_sub, HV_subsoilpH, sp = 1, method = "simple")

The extract function is quite useful. Essentially the function ingests the
rasterStack object, together with the SpatialPointsDataFrame object
HV subsoilpH. The sp parameter set to 1 means that the extracted covariate
data gets appended to the existing SpatialPointsDataFrame object. While
the method object specifies the extraction method which in our case is
“simple” which likened to get the covariate value nearest to the points i.e it is
likened to “drilling down”.
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A good practice is to then export the soil and covariate data intersect object
to file for later use. First we convert the spatial object to a dataframe, then
export as a comma separated text file.

DSM_data <- as.data.frame(DSM_data)

write.table(DSM_data, "hunterValley_SoilCovariates_pH.TXT",

col.names = T, row.names = FALSE, sep = ",")

2.1 Using rasters from file

In the previous example the rasters we wanted to use are available data from
the ithir package. More generally we will have the raster data we need sitting
on our computer or disk somewhere. The steps for intersecting the soil
observation data with the covariates are the same as before, except we now
need to specify the location where our raster covariate data is located. We
need not even have to load in the rasters to memory, just point R to where they
are, and then run the raster extract function. This utility is obviously a very
handy feature when we are dealing with an inordinately large or large number
of rasters. The work function we need is list.files. For example:

list.files(path = "C:/~~",

pattern = "\\.tif$", full.names = TRUE)

## [1] "C:/~~/AACN.tif"

## [2] "C:/~~/Elevation.tif"

## [3] "C:/~~/Hillshading.tif"

## [4] "C:/~~/Landsat_Band1.tif"

## [5] "C:/~~/Light_insolation.tif"

## [6] "C:/~~/Mid_Slope_Positon.tif"

## [7] "C:/~~/MRVBF.tif"

## [8] "C:/~~/NDVI.tif"

## [9] "C:/~~/Slope.tif"

## [10] "C:/~~/Terrain_Ruggedness_Index.tif"

## [11] "C:/~~/TWI.tif"

The parameter path is essentially the directory location where the raster files
are sitting. If needed, we may also want to do recursive listing into directories
that are within that path directory. We want list.files() to return all the
files (in our case) that have the .tif extension. This criteria is set via the
pattern parameter, such that $ at the end means that this is end of string,
and but adding \\. ensures that you match only files with extension .tif,
otherwise it may list (if they exist), files that end in .atif as an example. You
may guess that any other type of pattern matching criteria could be used to
suit your own specific data. The full.names logical parameter is just a
question of whether we want to return the full pathway address of the raster
file, in which case, we do.

All we then need to do is perform a raster stack of these individual rasters,
then perform the intersection. This is really the handy feature where to
perform the stack, we still need not require the loading of the rasters into the
R memory — they are still on file!.
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files <- list.files(path = "C:~~",

pattern = "\\.tif$", full.names = TRUE)

# stack rasters

r1 <- raster(files[1])

for (i in 2:length(files)) {
r1 <- stack(r1, files[i])

}
r1

## class : RasterStack

## dimensions : 249, 210, 52290, 11 (nrow, ncol, ncell, nlayers)

## resolution : 25, 25 (x, y)

## extent : 338422.3, 343672.3, 6364203, 6370428 (xmin, xmax, ymin, ymax)

## coord. ref. : +proj=utm +zone=56 +south +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0

## names : AACN, Elevation, Hillshading, Landsat_Band1, Light_insolation, Mid_Slope_Positon, MRVBF, NDVI, Slope, Terrain_Ruggedness_Index, TWI

## min values : 0.000000, 72.217499, 0.000677, 26.000000, 1236.662840, 0.000009, 0.000002, -0.573034, 0.001708, 0.194371, 8.224325

## max values : 106.665482, 212.632507, 32.440960, 140.000000, 1934.199950, 0.956529, 4.581594, 0.466667, 21.809752, 15.945321, 20.393652

Note that the stacking of rasters can only be possible if they are all equivalent
in terms of resolution and extent. If they are not you will find the other raster
package functions resample and projectRaster as invaluable methods for
harmonizing all your different raster layers. With the stacked rasters, we can
perform the soil point data intersection as done previously.

DSM_data <- extract(r1, HV_subsoilpH, sp = 1, method = "simple")

3 Some exploratory data analysis

We will continue using the DSM data object that was created in the previous
section. As the data set was saved to file you will also find it in your working
directory. Type getwd() in the console to indicate the specific file location. So
lets read the file in using the read.table function:

hv.dat <- read.table("hunterValley_SoilCovariates_pH.TXT", sep = ",", header = T)

str(hv.dat)

## 'data.frame': 506 obs. of 15 variables:

## $ id : int 1 2 3 4 5 6 7 8 9 10 ...

## $ x : num 340386 340345 340559 340483 340734 ...

## $ y : num 6368690 6368491 6369168 6368740 6368964 ...

## $ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 7.28 4.95 5.61 5.39 3.44 ...

## $ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

## $ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

## $ Landsat_Band1 : int 57 47 59 52 62 53 47 52 53 63 ...

## $ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

## $ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

## $ Light_insolation : num 1689 1701 1722 1688 1735 ...

## $ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...
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## $ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

## $ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...

## $ TWI : num 17.5 18.2 18.8 18 17.8 ...

## $ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

Now lets firstly look at some of the summary statistics of soil pH.

round(summary(hv.dat$pH60_100cm), 1)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 3.0 5.5 6.3 6.5 7.4 9.7

The observation that the mean and median are nearly equivalent indicates
the distribution of this data does not deviate to much from normal. To assess
this more formally, we can perform other analyses such as tests of skewness,
kurtosis and normality. Here we need to use functions from the fBasics and
nortest packages (If you do not have these already you should install
them.)

library(fBasics)

library(nortest)

# skewness

sampleSKEW(hv.dat$pH60_100cm)

## SKEW

## 0.1530612

# kurtosis

sampleKURT(hv.dat$pH60_100cm)

## KURT

## 1.202168

Here we see that the data is slightly positively skewed. A formal test for
normality of the Anderson-Darling Test statistic. There are others, so its
worth a look at the help files associated with the nortest package.

ad.test(hv.dat$pH60_100cm)

##

## Anderson-Darling normality test

##

## data: hv.dat$pH60_100cm

## A = 4.0401, p-value = 4.594e-10

For this data to be normally distributed the p value should be > than 0.05.
This is confirmed when we look at the histogram and qq-plot of this data in
Figure 4.

par(mfrow = c(1, 2))

hist(hv.dat$pH60_100cm)

qqnorm(hv.dat$pH60_100cm, plot.it = TRUE, pch = 4, cex = 0.7)

qqline(hv.dat$pH60_100cm, col = "red", lwd = 2)

The histogram on Figure 4 shows something that you would expect from a
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Figure 4: Histogram and qq-plot of soil pH in the 60-100cm depth interval.

normal distribution, but in practice fails the formal statistical test. Generally
for fitting most statistical models, we need to assume our data is normally
distributed. A way to make the data to be more normal is to transform it.
Common transformations include the square root, logarithmic, or power
transformations.

We could investigate other data transformations or even investigate the
possibility of removing outliers or some such extraneous data, but generally we
can be pretty satisfied with working with this data from a statistical
viewpoint.

Another useful exploratory test is to visualize the data in its spatial context.
Mapping the point locations with respect to the target variable by either
altering the size or color of the marker gives a quick way to examine the target
soil attribute spatial variability. Using the ggplot2 package, we could create
the plot as shown in Figure 5.

library(ggplot2)

ggplot(hv.dat, aes(x = x, y = y)) + geom_point(aes(size = hv.dat$pH60_100cm))

On Figure 5, there is a subtle north to south trend of low to high values, but
generally it is difficult to make specific observations without consideration of
the terrain and landscape these data are situated in.
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Figure 5: Spatial distribution of points in the Hunter Valley for the soil pH data
at the 60-100cm depth interval.

Ultimately we are interested in making maps. So, as a first exercise and to
get a clearer sense of the “spatial structure” of the data it is good to use some
interpolation method to estimate soil pH values onto a regular grid of the
study area extent. A couple of ways of doing this is the inverse distance
weighted (IDW) interpolation and kriging.

For IDW predictions, the values at unvisited locations are calculated as a
weighted average of the values available at the known points, where the
weights are based only by distance from the interpolation location. Kriging is
a similar distance weighted interpolation method based on values at observed
locations, except it has an underlying model of the spatial variation of the
data. This model is a variogram which describes the auto-correlation structure
of the data as a function of distances. Kriging is usually superior to other
means of interpolation because it provides an optimal interpolation estimate
for a given coordinate location, as well as a prediction variance estimate.
Kriging is very popular in soil science, and there are many variants of it. For
further information and theoretical underpinnings of kriging or other
associated geostatistical methods, with special emphasis for the soil sciences it
is worth consulting Webster and Oliver (2001).

Functions for IDW interpolation and kriging are found in the gstat package.
To initiate these interpolation methods, we first need to prepare a grid of
points upon which the interpolation will be made. This can be done by
extracting the coordinates from either of the 25m resolution rasters we have
for the Hunter Valley. As will be seen later, this step can be made redundant
because we can actually interpolate directly to raster. Nevertheless, to extract
the pixel point coordinates from a raster we do the following using the
hunterCovariates sub raster stack. (Make sure both raster and ithir

packages are loaded).
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data(hunterCovariates_sub)

tempD <- data.frame(cellNos = seq(1:ncell(hunterCovariates_sub)))

tempD$vals <- getValues(hunterCovariates_sub)

tempD <- tempD[complete.cases(tempD), ]

cellNos <- c(tempD$cellNos)

gXY <- data.frame(xyFromCell(hunterCovariates_sub, cellNos, spatial = FALSE))

The script above essentially gets the pixels which have values associated with
them (discards all NA occurrences), and then uses the cell numbers to extract
the associated spatial coordinate locations using the xyFromCell function.
The result is saved in the gXY object.

Using the idw function from gstat we fit the formula as below. We need to
specify the observed data, their spatial locations, and the spatial locations of
the points we want to interpolate onto. The idp parameter allows you to
specify the inverse distance weighting power. The default is 2, yet can be
adjusted if you want to give more weighting to points closer to the
interpolation point. As we can not evaluate the uncertainty of prediction with
IDW, we can not really optimize this parameter.

library(gstat)

IDW.pred <- idw(hv.dat$pH60_100cm ~ 1, locations = ~x + y,

data = hv.dat, newdata = gXY, idp = 2)

## [inverse distance weighted interpolation]

Plotting the resulting map (Figure 6) can be done using the following
script.

IDW.raster.p <- rasterFromXYZ(as.data.frame(IDW.pred[, 1:3]))

plot(IDW.raster.p)

For soil science it is more common to use kriging for the reasons that we are
able to formally define the spatial relationships in our data and get an
estimate of the prediction uncertainty. As mentioned before this is done using
a variogram. Variograms measure the spatial auto-correlation of phenomena
such as soil properties (Pringle and McBratney, 1999). The average variance
between any pair of sampling points (calculated as the semi-variance) for a soil
property S at any point of distance h apart can be estimated by the
formula:

γ(h) =
1

2m(h)

m(h)∑
i=1

{s(xi)− s(xi + h)}2 (1)

where γ(h) is the average semi-variance, m is the number of pairs of sampling
points, s is the value of the attribute under investigation, x are the coordinates
of the point, and h is the lag (separation distance of point pairs). Therefore, in
accordance with the “law of geography”, points closer together will show
smaller semi-variance (higher correlation), whereas pairs of points farther away
from each other will display larger semi-variance. A variogram is generated by
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Figure 6: Map of soil ph (60-100cm) predicted using IDW

plotting the average semi-variance against the lag distance. Various models
can be fitted to this empirical variogram where four of the more common ones
are the linear model, the spherical model, the exponential model, and the
Gaussian model. Once an appropriate variogram has been modeled it is then
used for distance weighted interpolation (kriging) at unvisited locations.

First, we calculate the empirical variogram i.e calculate the semivariances of
all point pairs in our data set. Then we fit a variogram model (in this case we
will use a spherical model). To do this we need to make some initial estimates
of this models parameters; namely, the nugget, sill, and range. The nugget is
the very short-range error (effectively zero distance) which is often attributed
to measurement errors. The sill is the limit of the variogram (effectively the
total variance of the data). The range is the distance at which the data are no
longer auto-correlated. Once we have made the first estimates of these
parameters, we use the fit.variogram function for their optimization. The
width parameter of the variogram function is the width of distance intervals
into which data point pairs are grouped or binned for semi variance estimates
as a function of distance. An automated way of estimating the variogram
parameters is to use the autofitVariogram function from the automap

package. For now we will stick with the gstat implementation.
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vgm1 <- variogram(pH60_100cm ~ 1, ~x + y, hv.dat, width = 100, cutoff = 3000)

mod <- vgm(psill = var(hv.dat$pH60_100cm), "Exp", range = 3000, nugget = 0)

model_1 <- fit.variogram(vgm1, mod)

model_1

## model psill range

## 1 Nug 0.3779266 0.0000

## 2 Exp 1.5337573 353.9732

The plot in Figure 7 shows both the empirical variogram together with the
fitted variogram model line.

plot(vgm1, model = model_1)

Figure 7: Empirical variogram and exponential variogram model of soil pH for
the 60-100cm depth interval

The variogram is indicating there shows there is some spatial structure in the
data up to around 500m. Using this fitted variogram model lets perform the
kriging to make a map, but more importantly look at the variances associated
with the predictions too. Here we use the krige function, which is not unlike
using idw function, except that we have the variogram model parameters as
additional information.

krig.pred <- krige(hv.dat$pH60_100cm ~ 1, locations = ~x + y,

data = hv.dat, newdata = gXY, model = model_1)

We can make the maps as we did before, but now we can also look at the
variances of the predictions too (Figure 8).
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par(mfrow = c(2, 1))

krig.raster.p <- rasterFromXYZ(as.data.frame(krig.pred[, 1:3]))

krig.raster.var <- rasterFromXYZ(as.data.frame(krig.pred[, c(1:2, 4)]))

plot(krig.raster.p, main = "ordinary kriging predictions")

plot(krig.raster.var, main = "ordinary kriging variance")

Figure 8: Kriging predictions and variances for log SOC (0-5cm).

Understanding the geostatisitcal properties of the target soil variable of
interest is useful in its own right. However, it is also important to determine
whether there is further spatial relationships in the data that can be modeled
with environmental covariate information. Better still is to combine both
spatial model approaches together (more of which will be discussed later on
about this).

Ideally when we want to predict soil variables using covariate information is
that there is a reasonable correlation between them. We can quickly assess
these using the base cor function, for which we have used previously.

cor(hv.dat[, c("Terrain_Ruggedness_Index", "AACN", "Landsat_Band1", "Elevation",

"Hillshading", "Light_insolation", "Mid_Slope_Positon", "MRVBF", "NDVI",

"TWI", "Slope")], hv.dat[, "pH60_100cm"])

## [,1]

## Terrain_Ruggedness_Index 0.146208599

## AACN 0.194606533

## Landsat_Band1 -0.002769968

## Elevation 0.148618926

## Hillshading 0.096981698

## Light_insolation -0.046166532

c©2017, Soil Security Laboratory 18



## Mid_Slope_Positon 0.258329094

## MRVBF 0.119674688

## NDVI 0.162873990

## TWI -0.005330312

## Slope 0.059593615

Progessing forwards later on, we will explore a range of models that will
leverage what correlation there is between the target variable and the available
covariates to create digital soil maps.
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