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1 Decision Trees

Linear regression is a global model, where there is a single predictive formula
holding over the entire data space. With a linear model we therefore make
some assumptions about how our target variable relates to the covariates.
These may often hold, however, it is models that allow one the flexibility of
modelling non-linearity that are increasingly popular in the DSM community.
One of these model structures are classification and regression trees (CART).
These models are a non-parametric decision tree learning techniques that
produces either classification or regression trees. In this section we will
concentrate on regression trees because our target variable is numeric i.e. a
continuous variable. Later we will look at classification trees for categorical
variables. Decision trees (either regression or classification) are formed by a
collection of rules based on variables in the modeling data set:

• Rules based on variables’ values are selected to get the best split to
differentiate observations based on the dependent variable.

• Once a rule is selected and splits a node into two, the same process is
applied to each subsequent node (i.e. it is a recursive procedure).

• Splitting stops when CART detects no further gain can be made, or
some pre-set stopping rules are met. Alternatively, the data are split as
much as possible and then the tree is later pruned.

Each branch of the tree ends in a terminal node. Each observation falls into
one and exactly one terminal node, and each terminal node is uniquely defined
by a set of rules. For a regression tree, the terminal node is a single value, or
could be a regression model (which is the case for Cubist models which we will
look at later). Implementation of regression trees in R is provided both
through the rpart and party packages. We will use the rpart package and its
rpart function. However, the party package through the ctree function offers
more functionality, and implements the partitioning in a more statistical
robust fashion. Both functions however can handle both continuous and
categorical predictor variables.

First lets get the data.
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library(ithir)

library(raster)

library(rgdal)

library(sp)

# point data

data(HV_subsoilpH)

# Start afresh round pH data to 2 decimal places

HV_subsoilpH$pH60_100cm <- round(HV_subsoilpH$pH60_100cm, 2)

# remove already intersected data

HV_subsoilpH <- HV_subsoilpH[, 1:3]

# add an id column

HV_subsoilpH$id <- seq(1, nrow(HV_subsoilpH), by = 1)

# re-arrange order of columns

HV_subsoilpH <- HV_subsoilpH[, c(4, 1, 2, 3)]

# Change names of coordinate columns

names(HV_subsoilpH)[2:3] <- c("x", "y")

# grids (covariate raster)

data(hunterCovariates_sub)

Perform the covariate intersection.

coordinates(HV_subsoilpH) <- ~x + y

# extract

DSM_data <- extract(hunterCovariates_sub, HV_subsoilpH, sp = 1, method = "simple")

DSM_data <- as.data.frame(DSM_data)

str(DSM_data)

## 'data.frame': 506 obs. of 15 variables:

## $ id : num 1 2 3 4 5 6 7 8 9 10 ...

## $ x : num 340386 340345 340559 340483 340734 ...

## $ y : num 6368690 6368491 6369168 6368740 6368964 ...

## $ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 7.28 4.95 5.61 5.39 3.44 ...

## $ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

## $ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

## $ Landsat_Band1 : num 57 47 59 52 62 53 47 52 53 63 ...

## $ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

## $ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

## $ Light_insolation : num 1689 1701 1722 1688 1735 ...

## $ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...

## $ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

## $ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...
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## $ TWI : num 17.5 18.2 18.8 18 17.8 ...

## $ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

Often it is handy to check to see whether there are missing values both in the
target variable and of the covariates. It is possible that a point location does
not fit within the extent of the available covariates. In these cases the data
should be excluded. A quick way to assess whether there are missing or NA
values in the data is to use the complete.cases function.

which(!complete.cases(DSM_data))

## integer(0)

DSM_data <- DSM_data[complete.cases(DSM_data), ]

Fitting a decision tree in R is quite similar to that for linear models:

library(rpart)

## Warning: package ’rpart’ was built under R version 3.2.5

set.seed(123)

training <- sample(nrow(DSM_data), 0.7 * nrow(DSM_data))

hv.RT.Exp <- rpart(pH60_100cm ~ AACN + Landsat_Band1 + Elevation + Hillshading +

Mid_Slope_Positon + MRVBF + NDVI + TWI, data = DSM_data[training, ],

control = rpart.control(minsplit = 50))

It is worthwhile to look at the help file for rpart particularly those aspects
regarding the rpart.control parameters which control the rpart fit. Often it
is helpful to just play around with the parameters to get a sense of what does
what. Here for the minsplit parameter within rpart.control we are
specifiying that we want at least 50 observations in a node in order for a split
to be attempted.

Detailed results of the model fit can be provided via the summary and
printcp functions.

summary(hv.RT.Exp)

The summary output provides detailed information of the data splitting as
well as information as to the relative importance of the covariates.

printcp(hv.RT.Exp)

The printcp function provides the useful output of indicating which
covariates were included in the final model. For the visually inclined, a plot of
the tree assists a lot to interpret the model diagnostics and assessing the
important covariates too(Figure 1 ).

plot(hv.RT.Exp)

text(hv.RT.Exp)

As before, we can use the goof function to test the performance of the model
fit both internally and externally.
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Figure 1: Decision tree of Hunter Valley soil pH (60-100cm).

# Internal validation

RT.pred.C <- predict(hv.RT.Exp, DSM_data[training, ])

goof(observed = DSM_data$pH60_100cm[training], predicted = RT.pred.C)

## R2 concordance MSE RMSE bias

## 1 0.3627782 0.5328417 1.154466 1.074461 -8.881784e-16

# External validation

RT.pred.V <- predict(hv.RT.Exp, DSM_data[-training, ])

goof(observed = DSM_data$pH60_100cm[-training], predicted = RT.pred.V)

## R2 concordance MSE RMSE bias

## 1 0.05587206 0.2131035 1.858148 1.363139 0.03135219

The decision tree model performance is not too dissimilar to the MLR model.
Looking at the xy-plot from the external validation (Figure 2) and the decision
tree (Figure 1), it becomes clear that a potential issue is apparent. This is:
there are only a finite number of possible outcomes in terms of the
predictions.

This finite property becomes obviously apparent once we make a map by
applying the fitted model to the covariates (using the raster predict function
and hunterCovariates sub object). (Figure 3).
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Figure 2: Decision tree xy-plot plot of predicted soil pH (60-100cm) (validation
data set).

map.RT.r1 <- predict(hunterCovariates_sub, hv.RT.Exp, "soilpH_60_100_RT.tif",

format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

plot(map.RT.r1, main = "Decision tree predicted Hunter Valley soil pH (60-100cm")
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Figure 3: Decision tree predicted Hunter Valley soil pH (60-100cm).
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