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1 Random Forests

An increasingly popular data mining algorithm in DSM and the soil sciences,
and even in applied sciences in general is the Random Forests model. This
algorithm is provided in the randomForest package and can be used for both
regression and classification purposes. Random Forests are a boosted decision
tree model. Further, Random Forests are an ensemble learning method for
classification (and regression) that operate by constructing a multitude of
decision trees at training time, which are later aggregated to give one single
prediction for each observation in a data set.For regression the prediction is
the average of the individual tree outputs, whereas in classification the trees
vote by majority on the correct classification (mode). For further information
regarding Random Forest and their underlying theory it is worth consulting
Breiman (2001) and Grimm et al. (2008) as an example of its application in
DSM studies.

Fitting a Random Forest model in R is relatively straightforward. It is worth
consulting the the richly populated help files regarding the randomForest

package and its functions. We will be using the randomForest function and a
couple of extractor functions to tease out some of the model fitting
diagnostics. Familiar will be the formula structure of the model. As for the
Cubist model, there are many model fitting parameters to consider such as the
number of trees to build (ntree) and the number of variables (covariates) that
are randomly sampled as candidates at each decision tree split (mtry), plus
many others. The print function allows one to quickly assess the model fit.
The importance parameter (logical variable) used within the randomForest

function specifies that we want to also assess the importance of the covariates
used.

First get the data and perform the covariate data intersection

library(ithir)

library(raster)

library(rgdal)

library(sp)

# point data
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data(HV_subsoilpH)

# Start afresh round pH data to 2 decimal places

HV_subsoilpH$pH60_100cm <- round(HV_subsoilpH$pH60_100cm, 2)

# remove already intersected data

HV_subsoilpH <- HV_subsoilpH[, 1:3]

# add an id column

HV_subsoilpH$id <- seq(1, nrow(HV_subsoilpH), by = 1)

# re-arrange order of columns

HV_subsoilpH <- HV_subsoilpH[, c(4, 1, 2, 3)]

# Change names of coordinate columns

names(HV_subsoilpH)[2:3] <- c("x", "y")

# grids (covariate raster)

data(hunterCovariates_sub)

Perform the covariate intersection.

coordinates(HV_subsoilpH) <- ~x + y

# extract

DSM_data <- extract(hunterCovariates_sub, HV_subsoilpH, sp = 1, method = "simple")

DSM_data <- as.data.frame(DSM_data)

str(DSM_data)

## 'data.frame': 506 obs. of 15 variables:

## $ id : num 1 2 3 4 5 6 7 8 9 10 ...

## $ x : num 340386 340345 340559 340483 340734 ...

## $ y : num 6368690 6368491 6369168 6368740 6368964 ...

## $ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 7.28 4.95 5.61 5.39 3.44 ...

## $ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

## $ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

## $ Landsat_Band1 : num 57 47 59 52 62 53 47 52 53 63 ...

## $ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

## $ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

## $ Light_insolation : num 1689 1701 1722 1688 1735 ...

## $ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...

## $ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

## $ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...

## $ TWI : num 17.5 18.2 18.8 18 17.8 ...

## $ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

Often it is handy to check to see whether there are missing values both in the
target variable and of the covariates. It is possible that a point location does
not fit within the extent of the available covariates. In these cases the data
should be excluded. A quick way to assess whether there are missing or NA

c©2018, Soil Security Laboratory 2



values in the data is to use the complete.cases function.

which(!complete.cases(DSM_data))

## integer(0)

DSM_data <- DSM_data[complete.cases(DSM_data), ]

Now lets begin the Random Forest model fitting

library(randomForest)

set.seed(123)

training <- sample(nrow(DSM_data), 0.7 * nrow(DSM_data))

# fit the model

hv.RF.Exp <- randomForest(pH60_100cm ~ AACN + Landsat_Band1 + Elevation + Hillshading +

Mid_Slope_Positon + MRVBF + NDVI + TWI, data = DSM_data[training, ],

importance = TRUE, ntree = 1000)

print(hv.RF.Exp)

##

## Call:

## randomForest(formula = pH60_100cm ~ AACN + Landsat_Band1 + Elevation +

## Hillshading + Mid_Slope_Positon + MRVBF + NDVI + TWI,

## data = DSM_data[training, ],

## importance = TRUE, ntree = 1000)

## Type of random forest: regression

## Number of trees: 1000

## No. of variables tried at each split: 2

##

## Mean of squared residuals: 1.433532

## % Var explained: 21.1

Using the varImpPlot function allows one to visualize which covariates are of
most importance to the prediction of our soil variable (Figure 1).

varImpPlot(hv.RF.Exp)

There is a lot of talk about how the variable importance is measured in
Random Forest models. So it is probably best to quote from the source:

“Here are the definitions of the variable importance measures. For
each tree, the prediction accuracy on the out-of-bag portion of the
data is recorded. Then the same is done after permuting each
predictor variable. The difference between the two accuracy
measurements are then averaged over all trees, and normalized by
the standard error. For regression, the MSE is computed on the
out-of-bag data for each tree, and then the same computed after
permuting a variable. The differences are averaged and normalized
by the standard error. If the standard error is equal to 0 for a
variable, the division is not done (but the measure is almost always
equal to 0 in that case). For the node purity, it is the total decrease
in node impurities from splitting on the variable, averaged over all
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Figure 1: Covariate importance (ranking of predictors) from Random Forest
model fitting.

trees. For classification, the node impurity is measured by the Gini
index. For regression, it is measured by residual sum of squares.”

The important detail in the quotation above is the the variable importance is
measured based on “out-of-bag” samples. Which means observation not
included in the model. Another detail is that they are based on an MSE
accuracy measure; in this case the difference, when a covariate is included and
excluded in a tree model. The value is averaged over all trees.

So lets validate the hv.RF.Exp model both internally and externally.

# Internal validation

RF.pred.C <- predict(hv.RF.Exp, newdata = DSM_data[training, ])

goof(observed = DSM_data$pH60_100cm[training], predicted = RF.pred.C)

## R2 concordance MSE RMSE bias

## 1 0.9087286 0.8847666 0.2998826 0.5476153 0.003947595

# External validation

RF.pred.V <- predict(hv.RF.Exp, newdata = DSM_data[-training, ])

goof(observed = DSM_data$pH60_100cm[-training], predicted = RF.pred.V)
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## R2 concordance MSE RMSE bias

## 1 0.1408058 0.2876967 1.534712 1.238835 0.04706017

Essentially these results are quite similar to those of the validations from the
other models. One needs to be careful about accepting very good model fit
results without a proper external validation. This is particularly poignant for
Random Forest models which have a tendency to provide excellent calibration
results which can often give the wrong impression about its suitability for a
given application. Therefore when using random forest models it pays to look
at the validation on the out-of-bag samples when evaluating the goodness of fit
of the model.

So lets look at the map resulting from applying the hv.RF.Exp models to the
covariates (Figure 2).

map.RF.r1 <- predict(hunterCovariates_sub, hv.RF.Exp, "soilpH_60_100_RF.tif",

format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

plot(map.RF.r1, main = "Random Forest model predicted Hunter Valley soil pH (60-100cm)")

Figure 2: Random Forest model predicted Hunter Valley soil pH (60-100cm).
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