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The implementation of some of the most commonly used model functions
used for digital soil mapping will be covered in this chapter. Before this is
done however, some general concepts of model validation are covered.

1 Model validation

Essentially, whenever we train or calibrate a model, we can then generate some
predictions. The question one needs to ask is how good are those predictions?
Generally, we confront this question by comparing observed values with their
corresponding predictions. Some of the more common “quality” measures are
the root mean square error (RMSE), bias, coefficient of determination or
commonly the R2 value, and concordance. You will also find in the digital soil
mapping and general statisitcal literature various other model assessment
statisitcs. The RMSE is defined as:

RMSE =
2

√
(

∑n
i=1(obsi − predi)2

n
) (1)

where obs is the observed soil property, pred is the predicted soil property
from a given model, and n is the number of observations i. Bias, also called
the mean error of prediction and is defined as:

bias =

∑n
i=1 predi − obsi

n
(2)

The R2 is evaluated as the square of the sample correlation coefficient
(Pearson’s) between the observations and their corresponding predictions.
Pearson’s correlation coefficient r when applied to observed and predicted
values is defined as:

r =

∑n
i=1(obsi − obs)(predi − pred)

2

√∑n
i=1(obsi − obs)2 2

√∑n
i=1(predi − pred)2

(3)

The R2 measures the precision of the relationship (between observed and
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predicted). Concordance, or more formally — Lin’s concordance correlation
coefficient (Lin, 1989), on the other hand is a single statistic that both
evaluates the accuracy and precision of the relationship. It is often referred to
as the goodness of fit along a 45 degreee line. Thus it is probably a more
useful statistic than the R2 alone. Concordance ρc is defined as:

ρc =
2ρσpredσobs

σ2
pred + σ2

obs + (µpred − µobs)2
(4)

where µpred and µobs are the means of the predicted and observed values
respectively. σ2

pred and σ2
obs are the corresponding variances. ρ is the

correlation coefficient between the predictions and observations.

1.1 Model goodness of fit

So lets fit a simple linear model. We will use the soil.data set used before in
the introductory to R chapter. First load the data in. We then want to regress
CEC content on clay (also be sure to remove as NAs).

library(ithir)

library(MASS)

## Warning: package ’MASS’ was built under R version 3.2.5

data(USYD_soil1)

soil.data <- USYD_soil1

mod.data <- na.omit(soil.data[, c("clay", "CEC")])

mod.1 <- lm(CEC ~ clay, data = mod.data, y = TRUE, x = TRUE)

mod.1

##

## Call:

## lm(formula = CEC ~ clay, data = mod.data, x = TRUE, y = TRUE)

##

## Coefficients:

## (Intercept) clay

## 3.7791 0.2053

You will recall that this is the same model that we fitted during the
introduction to R chapter. What we now want to do is evaluate some of the
model quality statistics that were just described. Conveniently, these are
available in the goof function in the ithir package. We will use this function
a lot during this chapter, so it might be useful to describe it. goof takes four
inputs. A vector of observed values, a vector of predicted values, a logical
choice of whether an output plot is required, and a character input of what
type of output is required. There are number of possible goodness of fit
statistics that can be requested, with only some being used frequently in
digital soil mapping projects. Therefore setting the type parameter to
‘‘DSM’’ will output only the R2, RMSE, MSE, bias and concordance
statistics as these are most most relevant to DSM. Additional statitistics can
be returned if ‘‘spec’’ is specified for the type parameter
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goof(observed = mod.data$CEC, predicted = mod.1$fitted.values, type = "DSM")

## R2 concordance MSE RMSE bias

## 1 0.4173582 0.5888521 14.11304 3.756733 0

You may wish to generate a plot in which case you would set the plot.it

logical to TRUE.

This model mod.1 does not seem to be too bad. On average the predictions
are 3.75 cmol (+)/kg off the true value. The model on average is neither over-
or under-predictive, but we can see that a few high CEC values are influencing
the concordance and R2. This outcome may mean that there are other factors
that influence the CEC, such as mineralogy type.

1.2 Model validation

Above we performed goodness of fit assessment of the mod.1 model. Usually it
is more appropriate however to validate a model using data that was not
included for model fitting. Model validation has a few different forms. For
completley unbiased assessments of model quality it is ideal to have an
additional data set that is completely independent of the model data. It is
recommended that a desgin based random sampling from the target area be
conducted, to which there are a few types such as simple random sampling
and stratified simple random sampling. Further information regarding
sampling, sampling desgings, their formulation and the relative advantages
and constraints of each are described in de Gruijter et al. (2006). Usually from
an operational perspective it is difficult to arrange the additional costs of
organising and implementing some sort of probability sampling for determinig
unbiased model quality assessment. The alternative is to perform some sort of
data sub-setting, such that with a data set we split it into a set for model
calibration and another set for validation. This type of procedure can take
different forms: the two main ones being random-hold back and
leave-one-out-cross-validation (LOCV). Random-hold back (or sometimes
k-fold validation) is where we may sample a data set of some pre-determined
proportion (say 70%) for which is used for model calibration. We then validate
the model using the other 30% of the data. For k-fold validation we divide the
data set into equal sized partitions or folds, with all but one of the folds being
used for the model calibration, the remaining fold is used for validation. We
could repeat this k-fold process a number of times, each time using a different
random sample from the data set for model calibration and validation. This
allows one to efficently derive distributions of the validation statisics as a
means of assessing the stability and sensitivity of the models and
parameters.

LOCV involves a little more computation such that if we had n number of
data, we would subset n-1 of these data, and fit a model. Using this model we
would make a prediction for the single data that was left out of the model
(and save the residual). This is repeated for all n. LOCV would be undertaken
when there are very few data to work with. When we can sacrifice a few data
points, the random-hold back or k-fold cross-validation procedure would be
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acceptable.

When we are validating trained models with some sort of data sub-setting
mechanism, always keep in mind that the validation statitsics will be biased.
As Brus et al. (2011) explains, the sampling from the target mapping area to
be used for DSM is more often than not from legacy soil survey, to which
would not have been based on a probability sampling design. Therefore, that
sample will be biased i.e not a true representation of the total population.
Even though we may randomly select observations from the legacy soil survey
sites, those vlidation points do not become a probaility sample of the target
area, and consequently will only provide biased estimates of model quality.
Thus an independent probaility sample is required. Further ideas on the
statisical valdation of models can be found in Hastie et al. (2001).

So lets implement some of the validation techniques in R. We will use the
same data as before i.e regressing CEC with clay content. First we will do the
random-back validation using 70% of the data for calibration. A random
sample of the data will be performed using the sample function.

set.seed(123)

training <- sample(nrow(mod.data), 0.7 * nrow(mod.data))

training

## [1] 42 115 59 127 134 7 74 125 77 63 131 62 91 138 14 118 32

## [18] 6 146 122 113 87 80 123 124 86 66 71 35 18 112 104 79 90

## [35] 3 54 84 24 136 25 16 44 105 38 106 15 109 47 27 110 5

## [52] 43 76 12 52 19 93 68 114 33 58 9 139 23 67 37 65 143

## [69] 135 34 121 48 53 1 108 102 98 95 100 8 17 145 70 50 141

## [86] 64 60 140 92 10 82 36 142 72 120 57 40 96 83 107 28 101

These values correspond to row numbers which will correspond to the row
which we will use for the calibration data. We subset these rows out of
mod.data and fit a new linear model.

mod.rh <- lm(CEC ~ clay, data = mod.data[training, ], y = TRUE, x = TRUE)

So lets evaluate the calibration model with goof:

goof(predicted = mod.rh$fitted.values, observed = mod.data$CEC[training])

## R2 concordance MSE RMSE bias

## 1 0.4457907 0.6158071 12.31952 3.509917 0

But we are more interested in how this model performs when we use the
validation data. Here we use the predict function to predict upon this
data.

mod.rh.V <- predict(mod.rh, mod.data[-training, ])

goof(predicted = mod.rh.V, observed = mod.data$CEC[-training])

## R2 concordance MSE RMSE bias

## 1 0.3591283 0.5208349 18.35828 4.284656 -0.5355242

So the model is not as good as we first imagined.When we validate a model
with an external data set, it is quite normal that the model will not perform
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nearly as well as when using calibration data. Set the plot.it parameter to
TRUE and re-run the script above and you will see a plot like Figure 1.

Figure 1: Observed vs. predicted plot of CEC model (validation data set) with
line of concordance (red line).

In fact the mod.rh model does not appear to perform too bad after all. A few
of the high observed values contribute greatly to the validation diagnostics. A
couple of methods are available to assess the sensitivity of these results. The
first is to remove what could potentially be outliers from the data. The second
is to perform a sensitivity analysis such as bootstrapping where we iterate the
data sub-setting procedure and evaluate the validation statistics each time to
get a sense how much they vary.

At the most basic level, LOCV involves the use of a looping function or for
loop. We have not really covered for loops yet, but essentially they can be
used to great effect when we want to perform a particular analysis
over-and-over. For example with LOCV, for each iteration or loop we take a
subset of n-1 rows and fit a model to them, then use that model to predict for
the point left out of the calibration. Computationally it will look something
like this:

looPred <- numeric(nrow(mod.data))

for (i in 1:nrow(mod.data)) {
looModel <- lm(CEC ~ clay, data = mod.data[-i, ], y = TRUE, x = TRUE)

looPred[i] <- predict(looModel, newdata = mod.data[i, ])

}

The i here is the counter, so for each loop it increases by 1 until we get to
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the end of the data set. As you can see, we can index the mod.data using the
i, meaning that for each loop we will have selected a different calibration set.
On each loop, the prediction on the point left out of the calibration is made
onto the corresponding row position of the looPred object. Again we can
assess the performance of the LOCV using the goof function.

goof(predicted = looPred, observed = mod.data$CEC)

## R2 concordance MSE RMSE bias

## 1 0.4025255 0.5790589 14.47653 3.804804 0.005758669

LOCV will generally be less sensitive to outliers, so overall these external
validation results are not too different to those when we performed the
internal validation. Make a plot of the LOCV results to visually compare
against the internal validation.
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