
Some methods for the quantification of prediction

uncertainties for digital soil mapping:

Bootstrapping

Soil Security Laboratory

2018

1 Bootstrapping

Bootstrapping is a popular non-parametric approach for quantifying prediction
uncertainties (Efron and Tibshirani, 1993). Bootstrapping involves repeated
random sampling with replacement of the available data. With the bootstrap
sample, a model is fitted, and can then be applied to generate a digital soil
map. By repeating the process of random sampling and applying the model,
we are able to generate probability distributions of the prediction realizations
from each model at each pixel. A robust estimate may be determined by
taking the average of all the simulated predictions at each pixel. By being able
to obtain probability distributions of the outcomes, one is also able to quantify
the uncertainty of the modeling by computing a prediction interval given a
specified level of confidence. While the bootstrapping approach is relatively
straightforward, there is a requirement to generate x number of maps, where x
is the number of bootstrap samples. This obviously could be prohibitive from
a computational and data storage point of view, but not altogether impossible
(given parallel processing capabilities etc.) as was demonstrated by both
Viscarra Rossel et al. (2015) and Liddicoat et al. (2015) whom both performed
bootstrapping for quantification of uncertainties across very large mapping
extents. In the case of Viscarra Rossel et al. (2015) this for for the entire
Australian continent at 100m resolution.

In the example below, the bootstrap method is demonstrated. We will be
using Cubist modeling for the model structure and perform 50 bootstrap
samples. We will use 70% of the available data to use for fitting models. The
remaining 30% as has been done for all previous DSM approaches is for
validation. Of the 70% of the available data for model fitting, 70% of these
data are to be used for each bootstrap sample i.e. a random sample with
replacement.

1.1 Defining the model parameters

For the first step, we do the random partitioning of the data into calibration
and validation data sets. Again we are using the HV subsoilpH data and the

1

associated hunterCovariates sub raster data stack.

DATA Point data

data(HV_subsoilpH)

str(HV_subsoilpH)

'data.frame': 506 obs. of 14 variables:

$ X : num 340386 340345 340559 340483 340734 ...

$ Y : num 6368690 6368491 6369168 6368740 6368964 ...

$ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 ...

$ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

$ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

$ Landsat_Band1 : int 57 47 59 52 62 53 47 52 53 63 ...

$ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

$ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

$ Light_insolation : num 1689 1701 1722 1688 1735 ...

$ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...

$ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

$ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...

$ TWI : num 17.5 18.2 18.8 18 17.8 ...

$ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

Raster data

data(hunterCovariates_sub)

hunterCovariates_sub

class : RasterStack

dimensions : 249, 210, 52290, 11 (nrow, ncol, ncell, nlayers)

resolution : 25, 25 (x, y)

extent : 338422.3, 343672.3, 6364203, 6370428 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=utm +zone=56 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs

subset data for modeling

set.seed(667)

training <- sample(nrow(HV_subsoilpH), 0.7 * nrow(HV_subsoilpH))

cDat <- HV_subsoilpH[training,]

vDat <- HV_subsoilpH[-training,]

The nbag variable below holds the value for the number of bootstrap models
we want to fit. Here it is 50. Essentially the bootstrap can can be contained
within a for loop, where upon each loop a sample of the available data is
taken (here 70%) then a model is fitted. Note below the use of the replace

parameter to indicate we want random sample with replacement. After a
model is fitted, we save the model to file and will come back to it later. The
modelFile variable shows the extensive use of the paste function in order to
provide the pathway and file name for the model that we want to save on each
loop iteration. The saveRDS function allows us to save each of the model
objects as rds files to the location specified. An alternative to save the models
individually to file is to save them to elements within a list. When dealing
with very large numbers of models and additionally are complex in terms of
their parameterizations, the save to list elements alternative could run into
computer memory limitation issues. The last section of the script below just

c©2018, Soil Security Laboratory 2

demonstrates the use of the list.files functions to confirm that we have
saved those models to file and they are ready to use.

Number of bootstraps

nbag <- 50

Fit cubist models for each bootstrap

library(Cubist)

for (i in 1:nbag) {
trainingREP <- sample.int(nrow(cDat), 0.7 * nrow(cDat), replace = TRUE)

fit_cubist <- cubist(x = cDat[trainingREP, c("Terrain_Ruggedness_Index",

"AACN", "Landsat_Band1", "Elevation", "Hillshading", "Light_insolation",

"Mid_Slope_Positon", "MRVBF", "NDVI", "TWI", "Slope")],

y = cDat$pH60_100cm[trainingREP],

cubistControl(rules = 5, extrapolation = 5), committees = 1)

Note you will likely have different file path names

modelFile <- paste(paste(paste(paste(getwd(), "/~/",

sep = ""), "bootMod_", sep = ""), i, sep = ""), ".rds", sep = "")

saveRDS(object = fit_cubist, file = modelFile)

}

list all files in directory Note you will likely have different file path

names

c.models <- list.files(path = paste(getwd(), "/~",

sep = ""), pattern = "\\.rds$", full.names = TRUE)

We can then assess the goodness of fit and validation statistics of the
bootstrap models. This is done using the goof function as in previous
examples. This time we incorporate that function within a for loop. For each
loop, we read in the model via the radRDS function and then save the
diagnostics to the cubiMat matrix object. After the iterations are completed,
we use the colMeans function to calculate the means of the diagnostics over
the 50 model iterations. You could also assess the variance of those means by
a command such as var(cubiDat[,1]), which would return the variance of
the R2 values.

calibration data

cubiMat <- matrix(NA, nrow = nbag, ncol = 5)

for (i in 1:nbag) {
fit_cubist <- readRDS(c.models[i])

cubiMat[i,] <- as.matrix(goof(observed = cDat$pH60_100cm,

predicted = predict(fit_cubist,

newdata = cDat)))

}
cubiDat <- as.data.frame(cubiMat)

names(cubiDat) <- c("R2", "concordance", "MSE", "RMSE", "bias")

colMeans(cubiDat)

c©2018, Soil Security Laboratory 3

R2 concordance MSE RMSE bias

0.25261147 0.45185565 1.46214146 1.20887737 -0.06697598

Validation data

cubPred.V <- matrix(NA, ncol = nbag, nrow = nrow(vDat))

cubiMat <- matrix(NA, nrow = nbag, ncol = 5)

for (i in 1:nbag) {
fit_cubist <- readRDS(c.models[i])

cubPred.V[, i] <- predict(fit_cubist, newdata = vDat)

cubiMat[i,] <- as.matrix(goof(observed = vDat$pH60_100cm,

predicted = predict(fit_cubist,

newdata = vDat)))

}
cubPred.V_mean <- rowMeans(cubPred.V)

cubiDat <- as.data.frame(cubiMat)

names(cubiDat) <- c("R2", "concordance", "MSE", "RMSE", "bias")

colMeans(cubiDat)

R2 concordance MSE RMSE bias

0.09010054 0.26690013 1.80777927 1.34013203 0.11262625

Average validation MSE

avGMSE <- mean(cubiDat[, 3])

For the validation data, in addition to deriving the model diagnostic
statistics, we are also saving the actual model predictions for these data for
each iteration to the cubPred.V object. These will be used further on for
validating the prediction uncertainties. The last line of the script above saves
the mean of the mean square error (MSE) estimates from the validation data.
The independent MSE estimator, accounts for both systematic and random
errors in the modeling. This estimate of the MSE is needed for quantifying the
uncertainties, as this error is in addition to that which are accounted for by
the bootstrap, which are specifically those associated with the deterministic
model component i.e. the model relationship between target variable and the
covariates. Subsequently an overall prediction variance (at each point or pixel)
will be the sum of the random error component (MSE) and the bootstrap
prediction variance (as estimated from the mean of the realisations from the
bootstrap modeling).

1.2 Mapping

Our initial purpose here is to derive the mean and the variance of the
predictions from each bootstrap sample. This requires loading in each
bootstrap model, applying into the covariate data, then saving the predicted
map to file or R memory. In the case below the predictions are saved to file.
This is illustrated in the following script.

Note you will likely have different file path names

for (i in 1:nbag) {
fit_cubist <- readRDS(c.models[i])

c©2018, Soil Security Laboratory 4

mapFile <- paste(paste(paste(paste(getwd(), "/~/",

sep = ""), "bootMap_", sep = ""), i, sep = ""), ".tif", sep = "")

predict(hunterCovariates_sub, fit_cubist, filename = mapFile, format = "GTiff",

overwrite = T)

}

To evaluate the mean at each pixel from each of the created maps, the base
function mean can be applied to a given stack of rasters. First we need to get
the path location of the rasters. Notice from the list.files function and the
pattern parameter, we are restricting the search of rasters that contain the
string “bootMap”. Next we make a stack of those rasters, followed by the
calculation of the mean, which is also written directly to file.

Pathway to rasters Note you will likely have different file path names

files <- list.files(paste(getwd(), "/~/",

sep = ""), pattern = "bootMap", full.names = TRUE)

Raster stack

r1 <- raster(files[1])

for (i in 2:length(files)) {
r1 <- stack(r1, files[i])

}

Calculate mean

meanFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "meanPred_", sep = ""), ".tif", sep = "")

bootMap.mean <- writeRaster(mean(r1), filename = meanFile, format = "GTiff",

overwrite = TRUE)

There is not a simple R function to use in order to estimate the variance at
each pixel from the prediction maps. Therefore we resort to estimating it
directly from the standard equation:

V ar(X) =
1

1− n

n∑
i=1

(xi − µ)2 (1)

The symbol µ in this case is the mean bootstrap prediction, and xi is the ith
bootstrap map. In the first step below, we estimate the square differences and
save the maps to file. Then we calculate the sum of those squared differences,
before deriving the variance prediction. The last step is to add the variance of
the bootstrap predictions to the averaged MSE estimated from the validation
data.

Square differences

for (i in 1:length(files)) {
r1 <- raster(files[i])

diffFile <- paste(paste(paste(paste(getwd(), "/~/",

sep = ""), "bootAbsDif_", sep = ""), i, sep = ""), ".tif", sep = "")

jj <- (r1 - bootMap.mean)^2

writeRaster(jj, filename = diffFile, format = "GTiff", overwrite = TRUE)

c©2018, Soil Security Laboratory 5

}

calculate the sum of square differences Look for files with the bootAbsDif

character string in file name

files2 <- list.files(paste(getwd(), "/~/",

sep = ""), pattern = "bootAbsDif", full.names = TRUE)

stack

r2 <- raster(files2[1])

for (i in 2:length(files2)) {
r2 <- stack(r1, files2[i])

}

sqDiffFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "sqDiffPred_", sep = ""), ".tif", sep = "")

bootMap.sqDiff <- writeRaster(sum(r2), filename = sqDiffFile, format = "GTiff",

overwrite = TRUE)

Variance

varFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "varPred_", sep = ""), ".tif", sep = "")

bootMap.var <- writeRaster(((1/(nbag - 1)) * bootMap.sqDiff), filename = varFile,

format = "GTiff", overwrite = TRUE)

Overall prediction variance

varFile2 <- paste(paste(paste(getwd(), "/~/",

sep = ""), "varPredF_", sep = ""), ".tif", sep = "")

bootMap.varF <- writeRaster((bootMap.var + avGMSE), filename = varFile, format = "GTiff",

overwrite = TRUE)

To derive to 90% prediction interval we take the square root of the variance
estimate and multiply that value by the z value that corresponds to a 90%
probability. The z value is obtained using the qnorm function. The result is
then either added or subtracted to the mean prediction in order to generate
the upper and lower prediction limits respectively.

Standard deviation

sdFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "sdPred_", sep = ""), ".tif", sep = "")

bootMap.sd <- writeRaster(sqrt(bootMap.varF), filename = sdFile, format = "GTiff",

overwrite = TRUE)

standard error

seFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "sePred_", sep = ""), ".tif", sep = "")

bootMap.se <- writeRaster((bootMap.sd * qnorm(0.95)), filename = seFile, format = "GTiff",

overwrite = TRUE)

upper prediction limit

c©2018, Soil Security Laboratory 6

uplFile <- paste(paste(paste(getwd(), "~/",

sep = ""), "uplPred_", sep = ""), ".tif", sep = "")

bootMap.upl <- writeRaster((bootMap.mean + bootMap.se), filename = uplFile,

format = "GTiff", overwrite = TRUE)

lower prediction limit

lplFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "lplPred_", sep = ""), ".tif", sep = "")

bootMap.lpl <- writeRaster((bootMap.mean - bootMap.se), filename = lplFile,

format = "GTiff", overwrite = TRUE)

prediction interval range

pirFile <- paste(paste(paste(getwd(), "/~/",

sep = ""), "pirPred_", sep = ""), ".tif", sep = "")

bootMap.pir <- writeRaster((bootMap.upl - bootMap.lpl), filename = pirFile,

format = "GTiff", overwrite = TRUE)

As for the Universal kriging example, we can plot the associated maps of the
predictions and quantified uncertainties (Figure 1.

phCramp <- c("#d53e4f", "#f46d43", "#fdae61", "#fee08b", "#ffffbf", "#e6f598",

"#abdda4", "#66c2a5", "#3288bd", "#5e4fa2", "#542788", "#2d004b")

brk <- c(2:14)

par(mfrow = c(2, 2))

plot(bootMap.lpl, main = "90% Lower prediction limit", breaks = brk, col = phCramp)

plot(bootMap.mean, main = "Prediction", breaks = brk, col = phCramp)

plot(bootMap.upl, main = "90% Upper prediction limit", breaks = brk, col = phCramp)

plot(bootMap.pir, main = "Prediction limit range", col = terrain.colors(length(seq(0,

6.5, by = 1)) - 1), axes = FALSE, breaks = seq(0, 6.5, by = 1))

1.3 Validating the quantification of uncertainty

You will recall the bootstrap model predictions on the validation data were
saved to the cubPred.V object. We want estimate the standard deviation of
those predictions for each point. Also recall that the prediction variance is the
sum of the MSE and the bootstrap models prediction variance. Taking the
square root of that summation results in standard deviation estimate.

val.sd <- matrix(NA, ncol = 1, nrow = nrow(cubPred.V))

for (i in 1:nrow(cubPred.V)) {
val.sd[i, 1] <- sqrt(var(cubPred.V[i,]) + avGMSE)

}

We then need to multiply the standard deviation by the corresponding
percentile of the standard normal distribution in order to express the
prediction limits at each level of confidence. Note the use of the for loop and
the associated cycling through of the different percentile values.

Percentiles of normal distribution

qp <- qnorm(c(0.995, 0.9875, 0.975, 0.95, 0.9, 0.8, 0.7, 0.6, 0.55, 0.525))

c©2018, Soil Security Laboratory 7

Figure 1: Soil pH predictions and prediction limits derived using bootstrapping.

zfactor multiplication

vMat <- matrix(NA, nrow = nrow(cubPred.V), ncol = length(qp))

for (i in 1:length(qp)) {
vMat[, i] <- val.sd * qp[i]

}

Now we add or subtract the limits to/from the averaged model predictions to
derive to prediction limits for each level of confidence.

upper prediction limit

uMat <- matrix(NA, nrow = nrow(cubPred.V), ncol = length(qp))

for (i in 1:length(qp)) {
uMat[, i] <- cubPred.V_mean + vMat[, i]

}

c©2018, Soil Security Laboratory 8

lower prediction limit

lMat <- matrix(NA, nrow = nrow(cubPred.V), ncol = length(qp))

for (i in 1:length(qp)) {
lMat[, i] <- cubPred.V_mean - vMat[, i]

}

Now we assess the PICP for each level confidence. Recalling that we are
simply assessing whether the observed value is encapsulated by the
corresponding prediction limits, then calculating the proportion of agreement
to total number of observations.

bMat <- matrix(NA, nrow = nrow(cubPred.V), ncol = length(qp))

for (i in 1:ncol(bMat)) {
bMat[, i] <- as.numeric(vDat$pH60_100cm <= uMat[, i] & vDat$pH60_100cm >=

lMat[, i])

}

colSums(bMat)/nrow(bMat)

[1] 1.00000000 1.00000000 0.99342105 0.96710526 0.90131579 0.69078947

[7] 0.45394737 0.21052632 0.08552632 0.03289474

As can be seen on Figure 2, there is an indication that the prediction
uncertainties could be a little too liberally defined, where particularly at the
higher level of confidence the associated PICP is higher.

make plot

cs <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5) # confidence level

plot(cs, ((colSums(bMat)/nrow(bMat)) * 100))

Quantiles of the distribution of the prediction limit range are express below
for the validation data (in terms of the 90% level of confidence). Compared to
the universal kriging approach, the uncertainties quantified from the
bootstrapping approach are higher in general.

cs <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5) # confidence level

colnames(lMat) <- cs

colnames(uMat) <- cs

quantile(uMat[, "90"] - lMat[, "90"])

0% 25% 50% 75% 100%

4.551972 4.702860 4.795511 4.950161 6.610331

References

Efron, B. and R. Tibshirani
1993. An Introduction to the Bootstrap. London: Chapman and Hall.

Liddicoat, C., D. Maschmedt, D. Clifford, R. Searle, T. Herrmann,
L. Macdonald, and J. Baldock
2015. Predictive mapping of soil organic carbon stocks in south australias
agricultural zone. Soil Research, 53:956–973.

c©2018, Soil Security Laboratory 9

Figure 2: Plot of PICP and confidence level based on validation of bootstrapping
model.

Viscarra Rossel, R. A., C. Chen, M. J. Grundy, R. Searle, D. Clifford, and
P. H. Campbell
2015. The australian three-dimensional soil grid: Australias contribution to
the globalsoilmap project. Soil Research, 53:845–864.

c©2018, Soil Security Laboratory 10

