
Empirical uncertainty quantification through

fuzzy clustering and cross validation

Soil Security Laboratory

2018

Like the previous uncertainty approach, this approach is similar in that
uncertainty is expressed in the form of quantiles of the underlying distribution
of model error (residuals). It contrasts however in terms of how the
environmental data is partitioned. For the previous approach, partitioning was
based upon the hard classification defined by a fitted Cubist model. This
approach uses a fuzzy clustering method of partition.

Essentially the approach is based on previous research by Shrestha and
Solomatine (2006) where the idea is to partition a feature space into clusters
(with a fuzzy k-means routine) which share similar model errors. A prediction
interval (PI) is constructed for each cluster on the basis of the empirical
distribution of residual observations that belong to each cluster. A PI is then
formulated for each observation in the feature space according to the grade of
their memberships to each cluster. They applied this methodology to artificial
and real hydrological data sets and it was found to be superior to other
methods which estimate a PI. The Shrestha and Solomatine (2006) approach
computes the PI independently and while free of the prediction model
structure, it requires only the model or prediction outputs. Tranter et al.
(2010) extended this approach to deal with observations that are outside of
the training domain.

The method presented in this exercise was introduced by Malone et al.
(2011) which modifies slightly the Shrestha and Solomatine (2006) and
Tranter et al. (2010) approaches to enable it for a DSM framework. The
approach is summarized by the flow diagram on Figure 1.

The process for deriving the uncertainties is much the same as for the
previous approach using the Cubist regression kriging approach. One benefit
of using a fuzzy kmeans approach is that the spatial distribution of
uncertainty is represented as a continuous variable. Further, the incorporation
of extragrades in the fuzzy kmeans classifying provides an explicit means to
identify and highlight areas of the greatest uncertainty and possibly where new
sampling efforts should be prioritized. As shown on 1 the approach entails 3
main processes:

• Calibrating the spatial model

• deriving the uncertainty model which includes both estimations of model
errors and fuzzy kmeans with extragrades classification

1

Figure 1: Flow diagram of the general procedure for achieving the outcome of
mapping predictions and their uncertainties (upper and lower prediction limits)
within a digital soil mapping framework. The 3 components for achieving this
outcome are the prediction model, the empirical uncertainty model and the
mapping component. Sourced from Malone et al. (2011).

• Creation of maps of both spatial soil predictions and uncertainties.

Naturally, this framework is validated using a withheld or better still
independent data set.

0.1 Defining the model parameters

Here we will use a random forest regression kriging model for the prediction of
soil pH across the study area. This model will also be incorporated into the
uncertainty model via leave-one-out cross validation in order to derive the
model errors. As before, we begin by preparing the data.

Library

library(ithir)

library(sp)

library(rgdal)

library(raster)

library(gstat)

DATA Point data

data(HV_subsoilpH)

c©2018, Soil Security Laboratory 2

str(HV_subsoilpH)

'data.frame': 506 obs. of 14 variables:

$ X : num 340386 340345 340559 340483 340734 ...

$ Y : num 6368690 6368491 6369168 6368740 6368964 ...

$ pH60_100cm : num 4.47 5.42 6.26 8.03 8.86 ...

$ Terrain_Ruggedness_Index: num 1.34 1.42 1.64 1.04 1.27 ...

$ AACN : num 1.619 0.281 2.301 1.74 3.114 ...

$ Landsat_Band1 : int 57 47 59 52 62 53 47 52 53 63 ...

$ Elevation : num 103.1 103.7 99.9 101.9 99.8 ...

$ Hillshading : num 1.849 1.428 0.934 1.517 1.652 ...

$ Light_insolation : num 1689 1701 1722 1688 1735 ...

$ Mid_Slope_Positon : num 0.876 0.914 0.844 0.848 0.833 ...

$ MRVBF : num 3.85 3.31 3.66 3.92 3.89 ...

$ NDVI : num -0.143 -0.386 -0.197 -0.14 -0.15 ...

$ TWI : num 17.5 18.2 18.8 18 17.8 ...

$ Slope : num 1.79 1.42 1.01 1.49 1.83 ...

Raster data

data(hunterCovariates_sub)

hunterCovariates_sub

class : RasterStack

dimensions : 249, 210, 52290, 11 (nrow, ncol, ncell, nlayers)

resolution : 25, 25 (x, y)

extent : 338422.3, 343672.3, 6364203, 6370428 (xmin, xmax, ymin, ymax)

coord. ref. : +proj=utm +zone=56 +south +ellps=WGS84 +datum=WGS84 +units=m +no_defs

subset data for modeling

set.seed(667)

training <- sample(nrow(HV_subsoilpH), 0.7 * nrow(HV_subsoilpH))

cDat <- HV_subsoilpH[training,]

vDat <- HV_subsoilpH[-training,]

Now we fit a random forest model using all possible covariates.

fit the model

library(randomForest)

hv.RF.Exp <- randomForest(pH60_100cm ~ Terrain_Ruggedness_Index + AACN + Landsat_Band1 +

Elevation + Hillshading + Light_insolation + Mid_Slope_Positon + MRVBF +

NDVI + TWI + Slope, data = cDat, importance = TRUE, ntree = 1000)

goof(observed = cDat$pH60_100cm, predicted = predict(hv.RF.Exp, newdata = cDat),

plot.it = FALSE)

R2 concordance MSE RMSE bias

1 0.9311825 0.8993517 0.2718095 0.5213536 0.002527227

The hv.RF.Exp model appears to perform quite well when we examine the
goodness of fit statistics.

Now we can examine the model residuals for any presence of spatial structure

c©2018, Soil Security Laboratory 3

with variogram modeling. For the output below it does seems that there is
some useful correlation structure in the residuals that will likely help to
improve upon the performance of the hv.RF.Exp model.

Estimate the residual

cDat$residual <- cDat$pH60_100cm - predict(hv.RF.Exp, newdata = cDat)

residual variogram model

coordinates(cDat) <- ~X + Y

vgm1 <- variogram(residual ~ 1, data = cDat, width = 200)

mod <- vgm(psill = var(cDat$residual), "Sph", range = 10000, nugget = 0)

model_1 <- fit.variogram(vgm1, mod)

model_1

model psill range

1 Nug 0.18822277 0.000

2 Sph 0.09624227 1307.864

gOK <- gstat(NULL, "hunterpH_residual_RF", residual ~ 1, cDat, model = model_1)

Like before, we need to estimate the model errors and a good way to do this
is via a LOCV approach. The script below is more-or-less a repeat from earlier
with the Cubist regression kriging modeling except now we are using the
random forest modeling.

Uncertainty analysis

cDat1 <- as.data.frame(cDat)

names(cDat1)

cDat1.r1 <- cDat1

target.C.r1 <- cDat1.r1$pH60_100cm

looResiduals <- numeric(nrow(cDat1.r1))

for (i in 1:nrow(cDat1.r1)) {
looRFPred <- randomForest(pH60_100cm ~ Terrain_Ruggedness_Index + AACN +

Landsat_Band1 + Elevation + Hillshading + Light_insolation + Mid_Slope_Positon +

MRVBF + NDVI + TWI + Slope, data = cDat1.r1[-i,], importance = TRUE,

ntree = 1000)

cDat11.r1.sub <- cDat1.r1[-i,]

cDat11.r1.sub$pred <- predict(looRFPred, newdata = cDat11.r1.sub)

cDat11.r1.sub$resids <- target.C.r1[-i] - cDat11.r1.sub$pred

residual variogram

vgm.r1 <- variogram(resids ~ 1, ~X + Y, cDat11.r1.sub, width = 200)

mod.r1 <- vgm(psill = var(cDat11.r1.sub$resids), "Sph", range = 10000, nugget = 0)

model_1.r1 <- fit.variogram(vgm.r1, mod.r1)

model_1.r1

interpolate residual

int.resids1.r1 <- krige(cDat11.r1.sub$resids ~ 1, locations = ~X + Y,

data = cDat11.r1.sub,

newdata = cDat1.r1[i, c("X", "Y")], model = model_1.r1, debug.level = 0)[,

3]

looPred <- predict(looRFPred, newdata = cDat1.r1[i,])

looResiduals[i] <- target.C.r1[i] - (looPred + int.resids1.r1)

c©2018, Soil Security Laboratory 4

}

Combine residual to main data frame

cDat1 <- cbind(cDat1, looResiduals)

[1] "X" "Y"

[3] "pH60_100cm" "Terrain_Ruggedness_Index"

[5] "AACN" "Landsat_Band1"

[7] "Elevation" "Hillshading"

[9] "Light_insolation" "Mid_Slope_Positon"

[11] "MRVBF" "NDVI"

[13] "TWI" "Slope"

[15] "residual" "looResiduals"

The defining aspect of this uncertainty approach is fuzzy clustering with
extragrades. McBratney and de Gruijter (1992) recognized a limitation of the
normal fuzzy clustering algorithm in that it had an inability to distinguish
between observations very far from the cluster centroids and those at the
centre of the centroid configuration. These observations were termed
extragrades as opposed to intragrades, which are the observations that lie
between the main clusters. The extragrades are considered the outliers of the
data set and have a distorting influence on the configuration of the main
clusters (Lagacherie et al., 1997). McBratney and de Gruijter (1992)
developed an adaptation to the FKM algorithm which distinguishes
observations that should belong to an extragrade cluster. The FKM with
extragrades algorithm minimizes the objective function:

Je(C,M) = α

n∑
i=1

c∑
j=1

mψ
ijd

2
ij + (1− α)

n∑
i=1

mψ
i?

n∑
i=1

d−ij2 (1)

where C is the c× p matrix of cluster centers where c is the cluster and p is
the number of variables. M is the n× c matrix of partial memberships, where
n is the number of observations; mijε[0, 1] is the partial membership of the ith
observation to the j th cluster. ψ ≥ 1 is the fuzziness exponent. The square
distance between the ith observation to the j th cluster is d2ij . m

ψ
i? denotes the

membership to the extragrade cluster. This function also requires the
parameter alpha (α) to be defined, which is used to evaluate membership to
the extragrade cluster.

A very good stand-alone software developed by Minasny (2002) called
‘Fuzme’ contains the FKM with extragrades method, plus other clustering
methods. The software may be downloaded for free from
http://sydney.edu.au/agriculture/pal/software/fuzme.shtml. The
source script to this software has also been written to an R package of the
same name. Normally, the stand-alone software would be used because it is
computationally much faster. However, using the fuzme R package allows one
to easily integrate the clustering procedures into a standard R workflow. For
example, one of the issues of clustering procedures is the uncertainty regarding
the selection of an optimal cluster number for a given data set. There are a
number of ways to determine an optimal solution. Some popular approaches

c©2018, Soil Security Laboratory 5

include to determining the cluster combination which minimizes the Fuzzy
Performance Index (FPI) or Modified partition Entropy (MPE). The MPE
establishes the degree of fuzziness created by a specified number of clusters for
a defined exponent value. The notion is that the smaller the MPE, the more
suitable is the corresponding number of clusters at the given exponent value.
A more sophisticated analysis is to look at the derivative of Je(C,M) with
respect to ψ and is used to simultaneously establish the optimal ψ and cluster
size. More is discussed about each of these indices by Odeh et al. (1992) and
Bragato (2004).

The key generally is to define clusters which can be easily distinguished
compared to a collection of clusters that are all quite similar. Such diagnostic
criteria are useful; however it would be more beneficial to determine an
optimal cluster configuration based on criteria that are meaningful to the
current situation of deriving prediction uncertainties. In this case we might
want to evaluate the optimal cluster number and fuzzy exponent that
maximizes the fidelity of PICP to confidence interval, and minimizes the
prediction interval range. Hence in this section we will integrate the R fuzme
with the DSM uncertainties workflow to achieve those ends.

The idea here is to determine an optimal cluster number and fuzzy exponent
based on criteria related to prediction interval width and PICP, together with
some of the other fuzzy clustering criteria. We essentially want to perform
fuzzy clustering with extragrades upon the environmental covariate of the data
points in the cdat1 object. Fuzzy clustering with extragrades is implemented
via a two-step procedure using the fobjk and fkme functions from the fuzme
package. The fobjk function allows one to find an optimal solution for alpha
(α) which is the parameter that allows one to control the membership of data
to the extragrade cluster. For example, if we wanted to stipulate that we want
the average extragrade membership of a data set to be 10%, then we need to
find an optimal solution for alpha to achieve that outcome. This can be
controlled through the Uereq parameter of the fobjk function.

The first step is to load the fuzme library and prepare the input data.

library(fuzme)

Now we need to prepare the data for clustering, and parameterize the other
inputs of the function. The other inputs are: nclass, which is the number of
clusters you want to define. Note that an extra cluster will be defined as this
will be the extragrade cluster and the associated memberships. data is the
data needed for clustering, U is an initial membership matrix in order to get
the fuzzy clustering algorithm operable. phi is the fuzzy exponent, while
distype refers to the distance metric to be used for clustering. There are 3
possible distance metrics available. These are: Euclidean (1), Diagonal (2),
and Mahalanobis (3). As an example of using the fobjk lets define 4 clusters
with a fuzzy exponent of 1.2, and with the average extragrade membership of
10%. Currently this function is pretty slow to compute the optimal alpha, so
be prepared to wait a while.

Parameterize fuzzy objective function

data.t <- cDat1[, 4:14] # data to be clustered

c©2018, Soil Security Laboratory 6

nclass.t <- 4 # number of clusters

phi.t <- 1.2

distype.t <- 3 #3 = Mahalanobis distance

Uereq.t <- 0.1 #average extragrade membership

initial membership matrix

scatter.t <- 0.2 # scatter around initial membership

ndata.t <- dim(data.t)[1]

U.t <- initmember(scatter = scatter.t, nclass = nclass.t, ndata = ndata.t)

run fuzzy objective function

alfa.t <- fobjk(Uereq = Uereq.t, nclass = nclass.t, data = data.t, U = U.t,

phi = phi.t, distype = distype.t)

Remember the fobjk function will only return the optimal alfa value. This
value then gets inserted into the associated fkme function in order to estimate
the memberships of the data to each cluster and the extragrade cluster. The
fkme function also returns the cluster centroids too.

alfa.t

1

0.01136809

The fkme function is parameterized similarly to fobjk, yet with some
additional inputs related to the number of allowable iterations for convergence
(maxiter), the convergence criterion value (toldif), and whether or not to
display behind-the-scenes processing.

tester <- fkme(nclass = nclass.t, data = data.t, U = U.t, phi = phi.t, alfa = alfa.t,

maxiter = 500, distype = distype.t, toldif = 0.01, verbose = 1)

The fkme function returns a list with a number of elements. At this stage we
are primarily interested in the elements membership and centroid which we
will use a little later on.

As described earlier, there are a number of criteria to assess the validity of a
particular clustering configuration. We can evaluate these by using the
fvalidity function. It essentially takes in a few of the outputs from the fkme

function.

fvalidity(U = tester$membership[, 1:4], dist = tester$distance,

centroid = tester$centroid,

nclass = 4, phi = 1.2, W = tester$distNormMat)

fpi mpe S dJ/dphi

1 0.5149733 0.4026764 0.8377058 -1710.19

Another useful metric is the confusion index (after Burrough et al. (1997))
which in our case looks at the similarity between the highest and second
highest cluster memberships. The confusion index is estimated for each data
point. Taking the average over the data set provides some sense of whether
cluster can be distinguished from each other.

c©2018, Soil Security Laboratory 7

mean(confusion(nclass = 5, U = tester$membership))

[1] 0.3356157

Note number of cluster is set to 5 to account for the Additional

extragrade cluster.

To assess the clustering performance using the criteria of the PICP and
prediction interval range, we need to first assign each data point a one of the
clusters we have derived. The assignment is based on the cluster which has the
highest membership grade. The script below provides a method for evaluating
which data point belongs to which cluster

membs <- as.data.frame(tester$membership)

membs$class <- 99999

for (i in 1:nrow(membs)) {
mbs2 <- membs[i, 1:ncol(tester$membership)]

which is the maximum probability on this row

membs$class[i] <- which(mbs2 == max(mbs2))[1]

}
membs$class <- as.factor(membs$class)

summary(membs$class)

1 2 3 4 5

58 84 78 90 44

Then we combine it to the cDat1 object which contains the information
regarding the model errors (specifically in the looResiduals column).

combine

cDat1 <- cbind(cDat1, membs$class)

names(cDat1)[ncol(cDat1)] <- "class"

levels(cDat1$class)

[1] "1" "2" "3" "4" "5"

Then we derive the cluster model error. This entails splitting the cDat1

object up on the basis of the cluster with the highest membership i.e.
cDat1$class.

cDat2 <- split(cDat1, cDat1$class)

cluster lower prediction limits

quanMat1 <- matrix(NA, ncol = 10, nrow = length(cDat2))

for (i in 1:length(cDat2)) {
quanMat1[i,] <- quantile(cDat2[[i]][, "looResiduals"], probs = c(0.005,

0.0125, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.45, 0.475), na.rm = FALSE,

names = F, type = 7)

}
row.names(quanMat1) <- levels(cDat1$class)

quanMat1[nrow(quanMat1),] <- quanMat1[nrow(quanMat1),] * 2

quanMat1 <- t(quanMat1)

row.names(quanMat1) <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5) #

c©2018, Soil Security Laboratory 8

cluster upper prediction limits

quanMat2 <- matrix(NA, ncol = 10, nrow = length(cDat2))

for (i in 1:length(cDat2)) {
quanMat2[i,] <- quantile(cDat2[[i]][, "looResiduals"], probs = c(0.995,

0.9875, 0.975, 0.95, 0.9, 0.8, 0.7, 0.6, 0.55, 0.525), na.rm = FALSE,

names = F, type = 7)

}
quanMat2[quanMat2 < 0] <- 0

row.names(quanMat2) <- levels(cDat1$class)

quanMat2[nrow(quanMat2),] <- quanMat2[nrow(quanMat2),] * 2

quanMat2 <- t(quanMat2)

row.names(quanMat2) <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5) #

The objects quanMat1 and quanMat2 represent the lower and upper model
errors for each cluster for each quantile respectively. For the extragrade
cluster, we multiple the error by a constant, here 2, in order to explicitly
indicate that the extragrade cluster (being outliers of the data) have a higher
uncertainty.

Using the validation or independent data that has been withheld, we evaluate
the PICP and prediction interval width. This requires first allocating cluster
memberships to the points on the basis of outputs from using the fkme

function, then using these together with the cluster prediction limits to
evaluate weighted averages of the prediction limits for each point. With that
done we can then derive the unique upper and lower prediction interval limits
for each point at each confidence level. First, for the membership allocation,
we use the fuzExall function. Essentially this function takes in outputs from
the fkme function and in our case, specifically that concerning the tester

object. Recall that the validation data is saved to the vDat object.

vDat1 <- as.data.frame(vDat)

names(vDat1)

[1] "X" "Y"

[3] "pH60_100cm" "Terrain_Ruggedness_Index"

[5] "AACN" "Landsat_Band1"

[7] "Elevation" "Hillshading"

[9] "Light_insolation" "Mid_Slope_Positon"

[11] "MRVBF" "NDVI"

[13] "TWI" "Slope"

covariates of the validation data

vCovs <- vDat1[, c("Terrain_Ruggedness_Index", "AACN", "Landsat_Band1", "Elevation",

"Hillshading", "Light_insolation", "Mid_Slope_Positon", "MRVBF", "NDVI",

"TWI", "Slope")]

run fkme allocation function

fuzAll <- fuzExall(data = vCovs, phi = 1.2, centroid = tester$centroid, distype = 3,

W = tester$distNormMat, alfa = tester$alfa)

Get the memberships

c©2018, Soil Security Laboratory 9

fuz.me <- fuzAll$membership

A ”fuzzy committee” approach is used to estimate the underlying residual at
each point. In this case the upper and lower limits are derived by weighted
mean of the lower and upper model errors of each cluster, where the weights
are the cluster memberships. This can be defined mathematically as:

PILi =

c∑
j=1

mijPIC
L
j andPI

U
i =

c∑
j=1

mijPIC
U
j (2)

where PILi and PIUi correspond to the weighted lower and upper limits for
the ith observation. PICLj and PICUj are the lower and upper limits for each
cluster j, and mij is the membership grade of the ith observation to cluster j
(which were derived in the previous step). In R, this can be interpreted
as:

lower prediction limit

lPI.mat <- matrix(NA, nrow = nrow(fuz.me), ncol = 10)

for (i in 1:nrow(lPI.mat)) {
for (j in 1:nrow(quanMat1)) {

lPI.mat[i, j] <- sum(fuz.me[i, 1:ncol(fuz.me)] * quanMat1[j,])

}
}

upper prediction limit

uPI.mat <- matrix(NA, nrow = nrow(fuz.me), ncol = 10)

for (i in 1:nrow(uPI.mat)) {
for (j in 1:nrow(quanMat2)) {

uPI.mat[i, j] <- sum(fuz.me[i, 1:ncol(fuz.me)] * quanMat2[j,])

}
}

Then we want to add these values to the actual regression kriging
predictions.

Regression kriging predictions

vPreds <- predict(hv.RF.Exp, newdata = vDat)

coordinates(vDat) <- ~X + Y

OK.preds.V <- as.data.frame(krige(residual ~ 1, cDat, model = model_1, newdata = vDat))

[using ordinary kriging]

OK.preds.V$randomForest <- vPreds

OK.preds.V$finalP <- OK.preds.V$randomForest + OK.preds.V$var1.pred

Add prediction limits to regression kriging predictions

vDat1 <- cbind(vDat1, OK.preds.V$finalP)

names(vDat1)[ncol(vDat1)] <- "RF_rkFin"

Derive validation lower prediction limits

lPL.mat <- matrix(NA, nrow = nrow(fuz.me), ncol = 10)

c©2018, Soil Security Laboratory 10

for (i in 1:ncol(lPL.mat)) {
lPL.mat[, i] <- vDat1$RF_rkFin + lPI.mat[, i]

}

Derive validation upper prediction limits

uPL.mat <- matrix(NA, nrow = nrow(fuz.me), ncol = 10)

for (i in 1:ncol(uPL.mat)) {
uPL.mat[, i] <- vDat1$RF_rkFin + uPI.mat[, i]

}

Now as in the previous uncertainty approaches we estimate the PICP for
each level of confidence. We can also estimate the average prediction interval
length too. We will do this for the 90% confidence level.

bMat <- matrix(NA, nrow = nrow(fuz.me), ncol = 10)

for (i in 1:10) {
bMat[, i] <- as.numeric(vDat1$pH60_100cm <= uPL.mat[, i] & vDat1$pH60_100cm >=

lPL.mat[, i])

}

PICP

colSums(bMat)/nrow(bMat)

[1] 0.9736842 0.9407895 0.9144737 0.8815789 0.7960526 0.5723684 0.3881579

[8] 0.2039474 0.1250000 0.1118421

prediction interval width (averaged)

as.matrix(mean(uPL.mat[, 4] - lPL.mat[, 4]))

[,1]

[1,] 3.913579

Recall that our motivation at the moment to to derive and optimal cluster
number and fuzzy exponent based on criteria of the PICP and prediction
interval width. Above were the steps for evaluating those values for one
clustering parameter configuration i.e. 4 clusters (plus and extragrade) with a
fuzzy exponent of 1.2. Essentially we need to run sequentially, different
combinations of cluster number and fuzzy exponent value and then assess to
criteria resulting from each of the different configurations in order to find the
optimum. For example we might initiate the process by specifying:

nclass.t <- seq(2, 6, 1)

nclass.t

[1] 2 3 4 5 6

phi.t <- seq(1.2, 1.6, 0.1)

phi.t

[1] 1.2 1.3 1.4 1.5 1.6

Then it is a matter of using all possible combinations of these values in the
fobjk and fkme functions that are needed ultimately to estimate the PICP
and prediction interval width as was just done above for a single combination.

c©2018, Soil Security Laboratory 11

Computationally this can be pretty complex to organize. However, for brevity,
below are the clustering outputs from implementing the described procedure
for finding the optimal clustering parameter configuration.

fkme.outs

class expon alfa confusion fpi mpe S

1 2 1.2 0.005124426 0.3826885 0.5664630 0.6686026 2.434422e+00

2 2 1.3 0.005379610 0.5546698 0.7839436 0.8995941 3.054369e+00

3 2 1.4 0.005247453 0.6992748 0.9354939 1.0541716 4.641781e+00

4 2 1.5 0.004997139 0.8418018 1.0441222 1.1612614 1.396096e+01

5 2 1.6 0.004700295 0.9707954 1.0915822 1.2156737 1.466621e+06

6 3 1.2 0.008058919 0.3724314 0.4757238 0.5303243 1.981344e+00

7 3 1.3 0.008700468 0.5496682 0.6911314 0.7563128 2.668302e+00

8 3 1.4 0.009085534 0.7501051 0.8629492 0.9272163 1.732949e+01

9 3 1.5 0.009135423 0.8499948 0.9400907 1.0114920 3.759586e+09

10 3 1.6 0.008965663 0.9622403 1.0269282 1.0983380 1.931253e+06

11 4 1.2 0.011368089 0.3356154 0.4098895 0.4404190 1.466233e+00

12 4 1.3 0.012443913 0.5194940 0.6338683 0.6721924 1.612367e+00

13 4 1.4 0.013312052 0.7052652 0.8180113 0.8575417 3.673102e+00

14 4 1.5 0.013979655 0.8456542 0.9112886 0.9580570 3.265964e+08

15 4 1.6 0.014225644 0.9552375 1.0052042 1.0566683 1.238797e+07

16 5 1.2 0.014470766 0.3284219 0.3786159 0.3889102 1.346230e+00

17 5 1.3 0.016338497 0.5085432 0.6032573 0.6227569 1.345716e+00

18 5 1.4 0.018119534 0.7390841 0.8163015 0.8378098 3.718401e+04

19 5 1.5 0.019640328 0.8469274 0.9033973 0.9361176 3.123211e+07

20 5 1.6 0.020083903 0.9506230 0.9945531 1.0345826 1.146549e+07

21 6 1.2 0.018138555 0.3353890 0.3670481 0.3605114 1.231055e+00

22 6 1.3 0.020091380 0.4990245 0.5730767 0.5777931 1.222209e+00

23 6 1.4 0.023620259 0.7438648 0.8203979 0.8315384 2.894973e+05

24 6 1.5 0.025368293 0.8495561 0.9027086 0.9267227 1.174473e+11

25 6 1.6 0.026754212 0.9462337 0.9880089 1.0205813 1.641539e+09

dJdphi PICP PIw

1 -1156.906 0.12973684 3.975894

2 -1434.856 0.15605263 3.992315

3 -1558.146 0.14421053 3.885237

4 -1594.820 0.17052632 3.883247

5 -1528.474 0.15736842 3.857267

6 -1361.192 0.11105263 3.861995

7 -1734.959 0.09789474 3.968063

8 -1922.302 0.14289474 3.976594

9 -1857.203 0.13368421 3.895518

10 -1803.114 0.33631579 4.483795

11 -1356.265 0.15184211 3.913579

12 -1810.981 0.17026316 3.995139

13 -2039.601 0.12947368 4.019338

14 -1973.390 0.14684211 4.197816

15 -1882.285 0.20473684 4.257101

16 -1351.156 0.21631579 3.903318

17 -1849.211 0.20052632 3.850294

c©2018, Soil Security Laboratory 12

18 -2161.102 0.15315789 3.833518

19 -2038.082 0.11000000 4.185526

20 -1897.424 0.29026316 4.499928

21 -1374.898 0.24263158 3.818262

22 -1833.395 0.20315789 3.848154

23 -2250.853 0.20052632 3.653220

24 -2075.234 0.13631579 4.155074

25 -1886.003 0.34947368 4.619364

The data frame above lists the optimal alfa, clustering validity diagnostics,
PICP and prediction interval width diagnostics for each combination. The
PICP column is actually an absolute distance of the PICP at each level of
prescribed confidence. Subsequently we should look for a minimum in that
regard. Overall the best combination considering PICP and PIw together is 3
clusters with a fuzzy exponent of either 1.2 or 1.3. Based on the other fuzzy
validity criteria a fuzzy exponent of 1.2 is optimal. Now we just re-run the
function with these optimal values in order to derive the cluster centroids
which are need in order to create maps of the prediction interval and
range.

U.t <- initmember(scatter = 0.2, nclass = 3, ndata = ndata.t)

fkme.fin <- fkme(nclass = 3, data = data.t, U = U.t, phi = 1.2, alfa = 0.008058919,

maxiter = 500, distype = 3, toldif = 0.01, verbose = 1)

Now we have to calculate the cluster model error limits. This is achieved by
evaluating which cluster each data point in cDat1 belongs to based on the
maximum membership. Then we derive the quantiles of the model errors for
each cluster.

Assign cluster to respective data point

membs <- as.data.frame(fkme.fin$membership)

membs$class <- 99999

for (i in 1:nrow(membs)) {
mbs2 <- membs[i, 1:ncol(fkme.fin$membership)]

which is the maximum probability on this row

membs$class[i] <- which(mbs2 == max(mbs2))[1]

}
membs$class <- as.factor(membs$class)

summary(membs$class)

1 2 3 4

119 104 91 40

combine to main data frame

cDat1 <- cbind(cDat1, membs$class)

names(cDat1)[ncol(cDat1)] <- "class"

levels(cDat1$class)

[1] "1" "2" "3" "4"

split data frame based on class

cDat2 <- split(cDat1, cDat1$class)

c©2018, Soil Security Laboratory 13

cluster lower prediction limits

quanMat1 <- matrix(NA, ncol = 10, nrow = length(cDat2))

for (i in 1:length(cDat2)) {
quanMat1[i,] <- quantile(cDat2[[i]][, "looResiduals"], probs = c(0.005,

0.0125, 0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.45, 0.475), na.rm = FALSE,

names = F, type = 7)

}
row.names(quanMat1) <- levels(cDat1$class)

quanMat1[nrow(quanMat1),] <- quanMat1[nrow(quanMat1),] * 2

quanMat1 <- t(quanMat1)

row.names(quanMat1) <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5) #

cluster upper prediction limits

quanMat2 <- matrix(NA, ncol = 10, nrow = length(cDat2))

for (i in 1:length(cDat2)) {
quanMat2[i,] <- quantile(cDat2[[i]][, "looResiduals"], probs = c(0.995,

0.9875, 0.975, 0.95, 0.9, 0.8, 0.7, 0.6, 0.55, 0.525), na.rm = FALSE,

names = F, type = 7)

}
quanMat2[quanMat2 < 0] <- 0

row.names(quanMat2) <- levels(cDat1$class)

quanMat2[nrow(quanMat2),] <- quanMat2[nrow(quanMat2),] * 2

quanMat2 <- t(quanMat2)

row.names(quanMat2) <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5)

0.2 Spatial mapping

With the spatial model defined together with the fuzzy clustering with the
associated parameters and model errors, we can create the associated maps.
First, the random forest regression kriging map. The map is shown on Figure
3.

map.Rf <- predict(hunterCovariates_sub, hv.RF.Exp, filename = "RF_HV.tif",

format = "GTiff", overwrite = T)

kriged residuals

crs(hunterCovariates_sub) <- NULL

map.KR <- interpolate(hunterCovariates_sub, gOK, xyOnly = TRUE, index = 1,

filename = "krigedResid_RF.tif",

format = "GTiff", datatype = "FLT4S", overwrite = TRUE)

raster stack of predictions and residuals

r2 <- stack(map.Rf, map.KR)

f1 <- function(x) calc(x, sum)

add both maps

mapRF.fin <- calc(r2, fun = sum, filename = "RF_RF.tif",

format = "GTiff", overwrite = T)

c©2018, Soil Security Laboratory 14

Now we need to map the prediction intervals. Essentially for every pixel on
the map we first need to estimate the membership value to each cluster. This
membership is based on a distance of the covariate space and the centroids of
each cluster. To do this we use the fuzzy allocation function (fuzExall) that
was used earlier. This time we use the fuzzy parameters from the fkme final

object. We need to firstly create a dataframe from the rasterStack of
covariates.

Prediction Intervals

hunterCovs.df <- data.frame(cellNos = seq(1:ncell(hunterCovariates_sub)))

vals <- as.data.frame(getValues(hunterCovariates_sub))

hunterCovs.df <- cbind(hunterCovs.df, vals)

hunterCovs.df <- hunterCovs.df[complete.cases(hunterCovs.df),]

cellNos <- c(hunterCovs.df$cellNos)

gXY <- data.frame(xyFromCell(hunterCovariates_sub, cellNos, spatial = FALSE))

hunterCovs.df <- cbind(gXY, hunterCovs.df)

str(hunterCovs.df)

'data.frame': 33252 obs. of 14 variables:

$ x : num 340935 340960 340985 341010 341035 ...

$ y : num 6370416 6370416 6370416 6370416 6370416 ...

$ cellNos : int 101 102 103 104 105 106 107 108 109 110 ...

$ Terrain_Ruggedness_Index: num 0.745 0.632 0.535 0.472 0.486 ...

$ AACN : num 9.78 9.86 10.04 10.27 10.53 ...

$ Landsat_Band1 : num 68 63 59 62 56 54 59 62 54 56 ...

$ Elevation : num 103 103 102 102 102 ...

$ Hillshading : num 0.94 0.572 0.491 0.515 0.568 ...

$ Light_insolation : num 1712 1706 1701 1699 1697 ...

$ Mid_Slope_Positon : num 0.389 0.387 0.386 0.386 0.386 ...

$ MRVBF : num 0.376 0.765 1.092 1.54 1.625 ...

$ NDVI : num -0.178 -0.18 -0.164 -0.169 -0.172 ...

$ TWI : num 16.9 17.2 17.2 17.2 17.2 ...

$ Slope : num 0.968 0.588 0.503 0.527 0.581 ...

Now we prepare all the other inputs for the fuzExall function, and then run
it. This may take a little time.

run fuzme allocation function

fuz.me_ALL <- fuzExall(data = hunterCovs.df[, 4:ncol(hunterCovs.df)],

centroid = fkme.fin$centroid,

phi = 1.2, distype = 3, W = fkme.fin$distNormMat, alfa = fkme.fin$alfa)

head(fuz.me_ALL$membership)

[,1] [,2] [,3] [,4]

[1,] 0.4198477 0.03991937 0.04619495 0.4940379882

[2,] 0.8235166 0.04977852 0.07423964 0.0524652482

[3,] 0.8701595 0.04153527 0.08148581 0.0068194501

[4,] 0.8533413 0.03511594 0.10930323 0.0022395558

[5,] 0.8360081 0.03625381 0.12709744 0.0006406516

[6,] 0.8362873 0.03617278 0.12718138 0.0003585568

With the memberships estimated, lets visualize them by creating the

c©2018, Soil Security Laboratory 15

associated membership maps (Figure 2).

combine

hvCovs <- cbind(hunterCovs.df[, 1:2], fuz.me_ALL)

Create raster

map.class1mem <- rasterFromXYZ(hvCovs[, c(1, 2, 3)])

names(map.class1mem) <- "class_1"

map.class2mem <- rasterFromXYZ(hvCovs[, c(1, 2, 4)])

names(map.class2mem) <- "class_2"

map.class3mem <- rasterFromXYZ(hvCovs[, c(1, 2, 5)])

names(map.class3mem) <- "class_3"

map.classExtramem <- rasterFromXYZ(hvCovs[, c(1, 2, 6)])

names(map.classExtramem) <- "class_ext"

par(mfrow = c(2, 2))

plot(map.class1mem, main = "cluster 1", col = terrain.colors(length(seq(0, 1,

by = 0.2)) - 1), axes = FALSE, breaks = seq(0, 1, by = 0.2))

plot(map.class2mem, main = "cluster 2", col = terrain.colors(length(seq(0, 1,

by = 0.2)) - 1), axes = FALSE, breaks = seq(0, 1, by = 0.2))

plot(map.class3mem, main = "cluster 3", col = terrain.colors(length(seq(0, 1,

by = 0.2)) - 1), axes = FALSE, breaks = seq(0, 1, by = 0.2))

plot(map.classExtramem, main = "Extragrade", col = terrain.colors(length(seq(0,

1, by = 0.2)) - 1), axes = FALSE, breaks = seq(0, 1, by = 0.2))

Figure 2: Fuzzy cluster memberships.

c©2018, Soil Security Laboratory 16

The last spatial mapping task is to evaluate the 90% prediction intervals.
Again we use the fuzzy committee approach given the cluster memberships
and the cluster model error limits.

Lower limits

quanMat1["90",]

1 2 3 4

-1.532867 -1.451595 -1.792331 -3.140459

upper limits

quanMat2["90",]

1 2 3 4

2.023297 1.734574 2.182650 3.275685

Now we perform the weighted averaging prediction.

Raster stack

s2 <- stack(map.class1mem, map.class2mem, map.class3mem, map.classExtramem)

lower limit

f1 <- function(x) ((x[1] * quanMat1["90", 1]) + (x[2] * quanMat1["90", 2]) +

(x[3] * quanMat1["90", 3]) + (x[4] * quanMat1["90", 4]))

mapRK.lower <- calc(s2, fun = f1, filename = "RF_lowerLimit.tif", format = "GTiff",

overwrite = T)

upper limit

f1 <- function(x) ((x[1] * quanMat2["90", 1]) + (x[2] * quanMat2["90", 2]) +

(x[3] * quanMat2["90", 3]) + (x[4] * quanMat2["90", 4]))

mapRK.upper <- calc(s2, fun = f1, filename = "RF_upperLimit.tif", format = "GTiff",

overwrite = T)

And finally we can derive the upper and lower prediction limits.

raster stack

s3 <- stack(mapRF.fin, mapRK.lower, mapRK.upper)

Lower prediction limit

f1 <- function(x) (x[1] + x[2])

mapRF.lowerPI <- calc(s3, fun = f1, filename = "RF_lowerPL.tif", format = "GTiff",

overwrite = T)

Upper prediction limit

f1 <- function(x) (x[1] + x[3])

mapRF.upperPI <- calc(s3, fun = f1, filename = "RF_upperPL.tif", format = "GTiff",

overwrite = T)

Prediction interval range

r2 <- stack(mapRF.lowerPI, mapRF.upperPI)

mapRF.PIrange <- calc(r2, fun = diff, filename = "cubistRK_PIrange.tif",

format = "GTiff", overwrite = T)

And now we can display the necessary maps (Figure 3).

c©2018, Soil Security Laboratory 17

color ramp

phCramp <- c("#d53e4f", "#f46d43", "#fdae61", "#fee08b", "#ffffbf", "#e6f598",

"#abdda4", "#66c2a5", "#3288bd", "#5e4fa2", "#542788", "#2d004b")

brk <- c(2:14)

par(mfrow = c(2, 2))

plot(mapRF.lowerPI, main = "90% Lower prediction limit", breaks = brk, col = phCramp)

plot(mapRF.fin, main = "Prediction", breaks = brk, col = phCramp)

plot(mapRF.upperPI, main = "90% Upper prediction limit", breaks = brk, col = phCramp)

plot(mapRF.PIrange, main = "Prediction limit range", col = terrain.colors(length(seq(0,

6.5, by = 1)) - 1), axes = FALSE, breaks = seq(0, 6.5, by = 1))

Figure 3: Soil pH predictions and prediction limits derived using a Random
Forest regression kriging prediction model together with LOCV and fuzzy clas-
sification.

c©2018, Soil Security Laboratory 18

0.3 Validating the quantification of uncertainty

For the first step we can validate the random forest model alone and with the
auto-correlated errors. As we had already applied the model earlier, it is just a
matter of using the goof function to return the validation diagnostics.

regression kriging

goof(observed = vDat$pH60_100cm, predicted = OK.preds.V$finalP, plot.it = FALSE)

R2 concordance MSE RMSE bias

1 0.190423 0.3733501 1.349081 1.161499 0.08998709

Random Forest

goof(observed = vDat$pH60_100cm, predicted = OK.preds.V$randomForest, plot.it = FALSE)

R2 concordance MSE RMSE bias

1 0.1055376 0.2592972 1.512683 1.229912 0.1306959

The regression kriging model performs better than the random forest model
alone, but only marginally so; though both models are not particularly
accurate in any case.

And now to validate the quantification of uncertainty we implement the
workflow demonstrated above for the process of determining the optimal
cluster parameter settings.

[1] "X" "Y"

[3] "pH60_100cm" "Terrain_Ruggedness_Index"

[5] "AACN" "Landsat_Band1"

[7] "Elevation" "Hillshading"

[9] "Light_insolation" "Mid_Slope_Positon"

[11] "MRVBF" "NDVI"

[13] "TWI" "Slope"

[using ordinary kriging]

Now lets evaluate the PICP for each level of confidence

bMat <- matrix(NA, nrow = nrow(fuz.me), ncol = 10)

for (i in 1:10) {
bMat[, i] <- as.numeric(vDat1$pH60_100cm <= uPL.mat[, i] & vDat1$pH60_100cm >=

lPL.mat[, i])

}

PICP

colSums(bMat)/nrow(bMat)

[1] 0.9868421 0.9605263 0.9210526 0.8881579 0.7960526 0.5723684 0.3947368

[8] 0.1842105 0.1250000 0.1184211

Plotting the PICP against the confidence level provides a nice visual. It can
be seen on Figure 4 that the PICP follows closely to the 1:1 line.

cs <- c(99, 97.5, 95, 90, 80, 60, 40, 20, 10, 5) # confidence level

plot(cs, ((colSums(bMat)/nrow(bMat)) * 100))

abline(a = 0, b = 1, lty = 2, col = "red")

c©2018, Soil Security Laboratory 19

Figure 4: Plot of PICP and confidence level based on validation of Random
Forest regression kriging model.

From the validation observations the prediction intervals range between 3.2
and 6.4 with a median of about 3.6 pH units when using the Random Forest
regression kriging model.

quantile(uPL.mat[, 4] - lPL.mat[, 4])

0% 25% 50% 75% 100%

3.193603 3.470226 3.605872 3.964221 6.416089

References

Bragato, G.
2004. Fuzzy continuous classification and spatial interpolation in
conventional soil survey for soil mapping of the lower piave plain. Geoderma,
118:1–16.

Burrough, P. A., P. F. M. van Gaans, and R. Hootsmans
1997. Continuous classifcation in soil survey: spatial correlation, confusion
and boundaries. Geoderma, 77:115–135.

Lagacherie, P., D. Cazemier, P. vanGaans, and P. Burrough
1997. Fuzzy k-means clustering of fields in an elementary catchment and
extrapolation to a larger area. Geoderma, 77:197–216.

Malone, B. P., A. B. McBratney, and B. Minasny

c©2018, Soil Security Laboratory 20

2011. Empirical estimates of uncertainty for mapping continuous depth
functions of soil attributes. Geoderma, 160:614–626.

McBratney, A. and J. de Gruijter
1992. Continuum approach to soil classification by modified fuzzy k-means
with extragrades. Journal of Soil Science, 43:159–175.

Minasny, B Mcbratney, A. B.
2002. FuzME version 3.0. Australian Centre for Precision Agriculture, The
University of Sydney, Australia.

Odeh, I., A. McBratney, and D. Chittleborough
1992. Soil pattern recognition with fuzzy-c-means: application to
classification and soil-landform interrelationships. Soil Science Society of
America Journal, 56:506–516.

Shrestha, D. L. and D. P. Solomatine
2006. Machine learning approaches for estimation of prediction interval for
the model output. Neural Networks, 19:225–235.

Tranter, G., B. Minasny, and A. B. McBratney
2010. Estimating pedotransfer function prediction limits using fuzzy
k-means with extragrades. Soil Science Society of America Journal,
74:1967–1975.

c©2018, Soil Security Laboratory 21

