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The motivation for this chapter is to gain some insights into a digital soil
mapping approach that uses a combination of both continuous and categorical
attribute modeling. Subsequently, we will build on the efforts of the material
in the chapters that dealt with each of these type of modeling approaches
separately. There are some situations where, a combinatorial approach might
be suitable in a digital soil mapping work flow. An example of such a workflow
is in Malone et al. (2015) in regards to the prediction of soil depth. The
context behind that approach was that often lithic contact was not achieved
during the soil survey activities, effectively indicating soil depth was greater
than the soil probing depth (which was 1.5 m). Where lithic contact was
found, the resulting depth was recorded. The difficulty in using this data in
the raw form was that there were many sites where soil depth was greater than
1.5 m together with actual recorded soil depth measurements. The nature of
this type of data is likened to a zero-inflated distribution, where many zero
observations are recorded among actual measurements (Sileshi, 2008). In
Malone et al. (2015) the zero observations were attributed to soil depth being
greater than 1.5m. They therefore performed the modeling in two stages. First
modeling involved a categorical or binomial model of soil depth being greater
than 1.5 m or not. This was followed by continuous attribute modeling of soil
depth using the observations where lithic contact was recorded. While the
approach was a reasonable solution, it may be the case that the frequency of
recorded measurements is low, meaning that the spatial modeling of the
continuous attribute is made under considerable uncertainty, as was the case
in Malone et al. (2015) with soil depth and other environmental variables
spatially modeled in that study; for example, the frequency of winter
frosts.

Another interesting example of a combinatorial DSM work flow was
described in Gastaldi et al. (2012) for the mapping of occurrence and thickness
of soil profiles. There they used a multinomial logistic model to predict the
presence or absence of the given soil horizon class, followed by continuous
attribute modeling of the horizon depths. For the purposes a demonstrating
the work flow of this combinatorial or two-stage DSM, we will re-visit the
approach that is described by Gastaldi et al. (2012) and work through the
various steps needed to perform it within R.
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The data we will use comes from 1342 soil profile and core descriptions from
the Lower Hunter Valley, NSW Australia. These data have been collected on
an annual basis since 2001 to present. These data are distributed across the
220km2 area as shown in Figure 1. The intention is to use these data first to
predict the occurrence of given soil horizon classes (following the nomenclature
of the Australian Soil Classification (Isbell, 2002)). Specifically we want to
prediction the spatial distribution of the occurrence of A1, A2, AP, B1, B21,
B22, B23, B24, BC, and C horizons, and then where those horizons occur,
predict their depth.

First lets perform some data discovery both in terms of the soil profile data
and spatial covariates to be used as predictor variables and to inform the
spatial mapping. You will notice the soil profile data dat is arranged in a flat
file where each row is a soil profile. There are many columns of information
which include profile identifier and spatial coordinates. Then there are 11
further columns that are binary indicators of whether a horizon class is present
or not (indicated as 1 and 0 respectively). The following 11 columns after the
binary columns indicate the horizon depth for the given horizon class.

# library

library(ithir)

library(sp)

library(raster)

# data

load("HV_horizons.rda")

str(dat)

## 'data.frame': 1342 obs. of 25 variables:

## $ FID : Factor w/ 1342 levels "1","10","100",..: 1 2 3 4 5 6 7 8 9 10 ...

## $ e : num 338014 338183 341609 341352 339736 ...

## $ n : num 6370646 6370550 6370437 6370447 6370439 ...

## $ A1 : int 1 0 1 1 1 1 1 0 1 1 ...

## $ A2 : int 1 0 0 0 0 1 1 0 0 0 ...

## $ AP : int 0 1 0 0 0 0 0 1 0 0 ...

## $ B1 : int 0 0 1 1 1 0 0 0 1 0 ...

## $ B21 : int 1 1 1 1 1 1 1 1 1 1 ...

## $ B22 : int 1 0 1 0 1 1 1 1 1 1 ...

## $ B23 : int 0 0 0 0 0 0 0 0 0 0 ...

## $ B24 : int 0 0 0 0 0 0 0 0 0 0 ...

## $ B3 : int 0 0 0 0 0 0 0 0 0 0 ...

## $ BC : int 0 0 0 0 0 0 0 0 1 1 ...

## $ C : int 0 0 0 0 0 0 0 0 0 0 ...

## $ A1d : num 21 NA 17 45 20 25 13 NA 10 44 ...

## $ A2d : num 27 NA NA NA NA 15 13 NA NA NA ...

## $ APd : num NA 40 NA NA NA NA NA 35 NA NA ...

## $ B1d : num NA NA 25 25 30 NA NA NA 30 NA ...

## $ B21d: num 26 60 26 30 30 25 58 40 20 38 ...

## $ B22d: num 26 NA 32 NA 20 20 16 25 25 18 ...

## $ B23d: int NA NA NA NA NA NA NA NA NA NA ...

## $ B24d: int NA NA NA NA NA NA NA NA NA NA ...
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## $ B3d : int NA NA NA NA NA NA NA NA NA NA ...

## $ BCd : int NA NA NA NA NA NA NA NA 15 NA ...

## $ Cd : int NA NA NA NA NA NA NA NA NA NA ...

# convert data to spatial object

coordinates(dat) <- ~e + n

# covariates

data(hunterCovariates)

At our disposal are a few covariates that have either been derived from a
digital elevation model and airborne gamma radiometric survey data. These
data are available from the ithir package by way of the hunterCovariates

object. These covariates are all registered to the common spatial resolution of
25m and have been organized together into a rasterStack.

# covariates

names(hunterCovariates)

## [1] "AACN" "Drainage.Index" "Light.Insolation"

## [4] "TWI" "Gamma.Total.Count"

# resolution

res(hunterCovariates)

## [1] 25 25

# raster properties

dim(hunterCovariates)

## [1] 860 675 5

For a quick check, lets overlay the soil profile points onto the DEM. You will
notice on Figure 1 the area of concentrated soil survey (which represents
locations of annual survey) within the extent of a regional scale soil survey
across the whole study area.

plot(hunterCovariates[["AACN"]])

points(dat, pch = 20)

The last preparatory step we need to take is the covariate intersection of the
soil profile data, and remove any sites that are outside the mapping
extent.

# Covariate extract

ext <- extract(hunterCovariates, dat, df = T, method = "simple")

w.dat <- cbind(as.data.frame(dat), ext)

# remove sites with missing covariates

x.dat <- w.dat[complete.cases(w.dat[, 27:31]), ]
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Figure 1: Hunter Valley soil profiles locations overlaying digital elevation model

1 Two-stage model fitting and validation.

A demonstration will be given of the two-stage modeling work flow for the A1
horizon, but given some indication of the results for the other horizons and
their depths further on. First we want to subset 75% of the data for
calibrating models, and keeping the rest aside for validation purposes.

# A1 Horizon

x.dat$A1 <- as.factor(x.dat$A1)

# random subset

set.seed(123)

training <- sample(nrow(x.dat), 0.75 * nrow(x.dat))

# calibration dataset

dat.C <- x.dat[training, ]

# validation dataset

dat.V <- x.dat[-training, ]

We first want to model the presence/absence in this case of the A1 horizon.
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We will use a multinomial model, followed up with a stepwise regression
procedure in order to remove non-significant predictor variables.

library(nnet)

library(MASS)

# A1 presence or absence model

mn1 <- multinom(formula = A1 ~ AACN + Drainage.Index + Light.Insolation + TWI +

Gamma.Total.Count, data = dat.C)

# stepwise variable selection

mn2 <- stepAIC(mn1, direction = "both", trace = FALSE)

summary(mn2)

## Call:

## multinom(formula = A1 ~ TWI + Gamma.Total.Count, data = dat.C)

##

## Coefficients:

## Values Std. Err.

## (Intercept) 0.498432035 0.510337728

## TWI 0.161779911 0.043292373

## Gamma.Total.Count -0.002239168 0.001316435

##

## Residual Deviance: 782.6183

## AIC: 788.6183

We use the goofcat function from ithir to assess the model quality both in
terms of the calibration and validation data.

# calibration

mod.pred <- predict(mn2, newdata = dat.C, type = "class")

goofcat(observed = dat.C$A1, predicted = mod.pred)

## $confusion_matrix

## 0 1

## 0 0 0

## 1 137 861

##

## $overall_accuracy

## [1] 87

##

## $producers_accuracy

## 0 1

## 0 100

##

## $users_accuracy

## 0 1

## NaN 87

##

## $kappa

## [1] 0
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# validation

val.pred <- predict(mn2, newdata = dat.V, type = "class")

goofcat(observed = dat.V$A1, predicted = val.pred)

## $confusion_matrix

## 0 1

## 0 0 0

## 1 45 288

##

## $overall_accuracy

## [1] 87

##

## $producers_accuracy

## 0 1

## 0 100

##

## $users_accuracy

## 0 1

## NaN 87

##

## $kappa

## [1] 0

It is clear that the mn2 model is not too effective for predicting sites where
the A1 horizon is absent.

What we want to do now is to model the A1 horizon depth. We will be using
an alternative model to those that have been examined in this book so far.
The is a quantile regression forest, which is a generalized implementation of
the random forest model from Breiman (2001). The algorithm is available via
the quantregForest package, and further details about the model can be
found at Meinshausen (2006).The caret package also interfaces with this
model too. Fundamentally, random forests are integral to the quantile
regression algorithm. However, the useful feature and advancement from
normal random forests is the ability to infer the full conditional distribution of
a response variable. This facility is useful for building non-parametric
prediction intervals for a any given level of confidence information and also the
ability to detect outliers in the data easily. Quantile regression used via the
quanregForest algorithm is implemented in the chapter simply to
demonstrate the wide availability of prediction models and machine learning
methods that can be used in digital soil mapping.

Getting the model initiated we first need to perform some preparatory tasks.
Namely the removal of missing data from the available data set.

# Remove missing values calibration

mod.dat <- dat.C[!is.na(dat.C$A1d), ]

# validation

val.dat <- dat.V[!is.na(dat.V$A1d), ]

It is useful to check the inputs required for the quantile regression forests

c©2018, Soil Security Laboratory 6



(using the help file); however its parameterization is largely similar to other
models that have been used already in this book, particularly those for the
random forest models.

# Fit quantile regression forest

library(quantregForest)

qrf <- quantregForest(x = mod.dat[, 27:31], y = mod.dat$A1d, importance = TRUE)

Naturally, the best test of the model is to use an external data set. In
addition to our normal validation procedure we can also derive the PICP for
the validation data too.

## Calibration

quant.cal <- predict(qrf, newdata = mod.dat[, 27:31], all = T)

goof(observed = mod.dat$A1d, predicted = quant.cal[, 2])

## R2 concordance MSE RMSE bias

## 1 0.8302768 0.8384576 32.05473 5.66169 -0.9436702

# Validation

quant.val <- predict(qrf, newdata = val.dat[, 27:31], all = T)

goof(observed = val.dat$A1d, predicted = quant.val[, 2])

## R2 concordance MSE RMSE bias

## 1 0.008559143 0.06093924 114.5833 10.70436 -0.6666667

# PICP

sum(quant.val[, 1] <= val.dat$A1d & quant.val[, 2] >= val.dat$A1d)/nrow(val.dat)

## [1] 0.4826389

Based on the outputs above, the calibration model seems a reasonable
outcome for the model, but is proven to be largely un-predictive for the
validation data set. We should also be expecting a PICP close to 90%, but this
is clearly not the case above.

What has been covered above for the two-stage modeling is repeated for all
the other soil horizons, with the main results displayed in Table 1. These
statistics are reported based on the validation data. It clear that there is a
considerable amount of uncertainty overall in the various soil horizon models.
For some horizons the results are a little encouraging; for example the model
to predict the presence of a BC horizon is quite good. It is clear however that
distinguishing between different B2 horizons is challenging. However
predicting the presence or absence of a B22 horizons seems acceptable.

Another way to assess the quality of the two-stage modeling is to assess first
the number of soil profile that have matching sequences of soil horizon types.
We can do this using:

vv.dat <- read.table(file = "validation_outs.txt",

sep = ",", header = T)

dat.V <- read.table(file = "validation_obs.txt",

sep = ",", header = T)
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Table 1: Selected model validation diagnostics returned for each horizon class
and associated depth model.

Presence/Absence of Horizon Depth of Horizon

Horizon
Overall

Accuracy
User’s

Accuracy
Kappa
Statistic

Concordance RMSE PICP

A1 87%
Pres = 89%
Abs = 54%

0.19 0.05 10 46%

A2 87%
Pres = 100%
Abs = 87%

0.04 0.10 12 42%

AP 86%
Pres = 50%
Abs = 88%

0.15 0.00 12 53%

B1 91%
Pres = 0%
Abs = 91%

0 0.16 12 45%

B21 97%
Pres = 97%
Abs = 0%

0 0.05 17 41%

B22 73%
Pres = 73%
Abs = 34%

0 0.10 14 41%

B23 78%
Pres = 0%
Abs = 78%

0 0.04 12 45%

B24 97%
Pres = 0%
Abs = 97%

0 0.00 22 46%

BC 74%
Pres = 68%
Abs = 75%

0.20 0.06 18 29%

C 95%
Pres = 0%
Abs = 95%

0 0 NA 68%

# Validation data horizon observations (1st 3 rows)

dat.V[1:3, c(1, 4:14)]

## FID A1 A2 AP B1 B21 B22 B23 B24 B3 BC C

## 1 101 1 0 0 1 1 0 0 0 0 0 0

## 2 1022 0 0 1 0 1 1 0 0 0 0 0

## 3 1026 1 0 0 0 1 1 0 0 0 0 0

# Associated model predictions (1st 3 rows)

vv.dat[1:3, 1:12]

## dat.V.FID a1 a2 ap b1 b21 b22 b23 b24 b3 bc c

## 1 101 1 0 0 0 1 1 0 0 0 0 0

## 2 1022 1 0 0 0 1 1 0 0 0 0 0

## 3 1026 1 0 0 0 1 1 0 0 0 0 0

# matched soil profiles

sum(dat.V$A1 == vv.dat$a1 & dat.V$A2 == vv.dat$a2 & dat.V$AP == vv.dat$ap &

dat.V$B1 == vv.dat$b1 & dat.V$B21 == vv.dat$b21 & dat.V$B22 == vv.dat$b22 &

dat.V$B23 == vv.dat$b23 & dat.V$B24 == vv.dat$b24 & dat.V$B3 == vv.dat$b3 &

dat.V$BC == vv.dat$bc & dat.V$C == vv.dat$c)/nrow(dat.V)

## [1] 0.2222222
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The result above indicates that just over 20% of validation soil profiles have
matched sequences of horizons. We can examine visually a few of these
matched profiles to examine whether there is much coherence in terms of
observed and associated predicted horizon depths. We will select out two soil
profiles: One with an AP horizon, and the other with an A1 horizon. We can
demonstrate this using the aqp package, which is a dedicated R package for
handling soil profile data collections.

# Subset of matching data (observations)

match.dat <- dat.V[which(dat.V$A1 == vv.dat$a1 & dat.V$A2 == vv.dat$a2 & dat.V$AP ==

vv.dat$ap & dat.V$B1 == vv.dat$b1 & dat.V$B21 == vv.dat$b21 & dat.V$B22 ==

vv.dat$b22 & dat.V$B23 == vv.dat$b23 & dat.V$B24 == vv.dat$b24 & dat.V$B3 ==

vv.dat$b3 & dat.V$BC == vv.dat$bc & dat.V$C == vv.dat$c), ]

# Subset of matching data (predictions)

match.dat.P <- vv.dat[which(dat.V$A1 == vv.dat$a1 & dat.V$A2 == vv.dat$a2 &

dat.V$AP == vv.dat$ap & dat.V$B1 == vv.dat$b1 & dat.V$B21 == vv.dat$b21 &

dat.V$B22 == vv.dat$b22 & dat.V$B23 == vv.dat$b23 & dat.V$B24 == vv.dat$b24 &

dat.V$B3 == vv.dat$b3 & dat.V$BC == vv.dat$bc & dat.V$C == vv.dat$c), ]

Now we just select any row where we know there is and AP horizon

match.dat[49, ] #observation

## FID e n A1 A2 AP B1 B21 B22 B23 B24 B3 BC C A1d A2d APd B1d

## 195 642 338096 6372259 0 0 1 0 1 1 0 0 0 1 0 NA NA 10 NA

## B21d B22d B23d B24d B3d BCd Cd ID totalCount thppm

## 195 30 15 NA NA NA 45 NA 735 446.7597 7.192239

## Terrain_Ruggedness_Index slope SAGA_wetness_index r57 r37

## 195 0.846727 0.697118 13.34301 1.955882 0.794118

## r32 PC2 PC1 ndvi MRVBF MRRTF

## 195 1.542857 -1.89351 -2.239939 -0.076923 0.111123 3.746326

## Mid_Slope_Positon light_insolation kperc Filled_DEM drainage_2011

## 195 0.130692 1716.388 0.5863795 142.8293 3.909594

## Altitude_Above_Channel_Network

## 195 25.52147

match.dat.P[49, ] #prediction

## dat.V.FID a1 a2 ap b1 b21 b22 b23 b24 b3 bc c a1d a2d apd b1.1

## 195 642 0 0 1 0 1 1 0 0 0 1 0 18 16 21.92308 18

## b21d b22d b23d b24d b3d bcd cd

## 195 31 27 20 15.41176 NA 32 NA

We can see in these two profiles, the sequence of horizons is AP, B21, B22,
BC. Now we just need to upgrade the data to a soil profile collection. Using
the horizon classes together with the associated depths, we want to plot both
soil profiles for comparison. First we need to create a data frame of the
relevant data then upgrade to a soilProfileCollection, then finally plot.
The script below demonstrates this for the soil profile with the AP horizon.
The same can be done with the associated soil profile with the A1 horizon.
The plot of the is shown on Figure 2.
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# Horizon classes

H1 <- c("AP", "B21", "B22", "BC")

# Extract horizon depths then combine to create soil profiles

p1 <- c(22, 31, 27, 32)

p2 <- c(10, 30, 15, 45)

p1u <- c(0, (0 + p1[1]), (0 + p1[1] + p1[2]), (0 + p1[1] + p1[2] + p1[3]))

p1l <- c(p1[1], (p1[1] + p1[2]), (p1[1] + p1[2] + p1[3]), (p1[1] + p1[2] + p1[3] +

p1[4]))

p2u <- c(0, (0 + p2[1]), (+p2[1] + p2[2]), (+p2[1] + p2[2] + p2[3]))

p2l <- c(p2[1], (p2[1] + p2[2]), (p2[1] + p2[2] + p2[3]), (p2[1] + p2[2] + p2[3] +

p2[4]))

# Upper depths

U1 <- c(p1u, p2u)

# Lower depths

L1 <- c(p1l, p2l)

# Soil profile names

S1 <- c("predicted profile", "predicted profile", "predicted profile",

"predicted profile",

"observed profile", "observed profile", "observed profile", "observed profile")

# Random soil colors selected to distinguish between horizons

hue <- c("10YR", "10R", "10R", "10R", "10YR", "10R", "10R", "10R")

val <- c(4, 5, 7, 6, 4, 5, 7, 6)

chr <- c(3, 8, 8, 1, 3, 8, 8, 1)

# Combine all the data

TT1 <- data.frame(S1, U1, L1, H1, hue, val, chr)

# Convert munsell colors to rgb

TT1$soil_color <- with(TT1, munsell2rgb(hue, val, chr))

# Upgrade to soil profile collection

depths(TT1) <- S1 ~ U1 + L1

# Plot

plot(TT1, name = "H1", colors = "soil_color")

title("Selected soil with AP horizon", cex.main = 0.75)

Soil is very complex, and while there is a general agreement between
observed and associated predicted soil profiles, the power of the models used in
this two-stage example has certainly been challenged. Recreating the
arrangement of soil horizons together with maintenance of their depth
properties is an interesting problem for pedometric studies and one that is
likely to be pursued with vigor as better methods become available. The next
section will briefly demonstrate a work flow for creating maps that are
resultant of this type of modeling framework.
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Figure 2: Examples of observed soil profiles with associated predicted profiles
from the two-stage horizon class and horizon depth model.

2 Spatial application of the two-stage soil
horizon occurrence and depth model

We will recall from previous chapters the process for applying prediction
models across a mapping extent. In the case of the two-stage model the
mapping work flow if first creating the map of horizon presence/occurrence.
Then we apply the horizon depth model. In order to ensure that the depth
model is not applied to the areas where a particular soil horizon is predicted as
being absent, those areas are masked out. Maps for the presence of the A1 and
AP horizons and their respective depths are displayed in Figure 3.The
following scripts show the process of applying the two-stage model for the A1
horizon.

# Apply A1 horizon presence/absence model spatially Using the raster

# multi-core facility

beginCluster(4)

A1.class <- clusterR(hunterCovariates, predict, args = list(mn2, type = "class"),

filename = "class_A1.tif", format = "GTiff", progress = "text", overwrite = T)

# Apply A1 horizon depth model spatially Using the raster multi-core

# facility

A1.depth <- clusterR(hunterCovariates, predict, args = list(qrf, index = 2),
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filename = "depth_A1.tif", format = "GTiff", progress = "text", overwrite = T)

endCluster()

# Mask out areas where horizon is absent

A1.class[A1.class == 0] <- NA

mr <- mask(A1.depth, A1.class)

writeRaster(mr, filename = "depth_A1_mask.tif", format = "GTiff", overwrite = T)

Figure 3: Predicted occurrence of AP and A1 horizons, and their respective
depths in the Lower Hunter Valley, NSW.

Figure 3 displays an interesting pattern whereby AP horizons occur where A1
horizons do not. This makes reasonable sense. The spatial pattern of the AP
horizon coincides generally with the distribution of vineyards across the study
area, where soils are often cultivated and consequently removing the presence
of the A1 horizon. Increased depth of A1 horizons also appears to be the case
too in lower lying and stream channel catchments of the study area.
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