
R literacy for digital soil mapping. Part 2

Soil Security Laboratory

2017

1 Vectors, matrices, and arrays

1.1 Creating and working with vectors

There are several ways to create a vector in R. Where the elements are spaced
by exactly 1, just separate the values of the first and last elements with a
colon.

1:5

[1] 1 2 3 4 5

The function seq (for sequence) is more flexible. Its typical arguments are
from, to, and by (or, in place of by, you can specify length.out).

seq(-10, 10, 2)

[1] -10 -8 -6 -4 -2 0 2 4 6 8 10

Note that the by argument does not need to be an integer. When all the
elements in a vector are identical, use the rep function (for repeat).

rep(4, 5)

[1] 4 4 4 4 4

For other cases, use c (for concatenate or combine).

c(2, 1, 5, 100, 2)

[1] 2 1 5 100 2

Note that you can name the elements within a vector.

c(a = 2, b = 1, c = 5, d = 100, e = 2)

a b c d e

2 1 5 100 2

Any of these expressions could be assigned to a symbolic variable, using an
assignment operator.

v1 <- c(2, 1, 5, 100, 2)

v1

1

[1] 2 1 5 100 2

Variable names can be any combination of letters, numbers, and the symbols
. and , but they can not start with a number or with . Google has a R style
guide https://google.github.io/styleguide/Rguide.xml which describes
good and poor examples of variable name attribution, but generally it is a
personal preference on how you name your variables.

probably.not_a.good_example.for.a.name.100 <- seq(1, 2, 0.1)

probably.not_a.good_example.for.a.name.100

[1] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

The c function is very useful for setting up arguments for other functions, as
will be shown later. As with all R functions, both variable names and function
names can be substituted into function calls in place of numeric values.

x <- rep(1:3)

y <- 4:10

z <- c(x, y)

z

[1] 1 2 3 4 5 6 7 8 9 10

Although R prints the contents of individual vectors with a horizontal
orientation, R does not have “column vectors” and “row vectors”, and vectors
do not have a fixed orientation. This makes use of vectors in R very
flexible.

Vectors do not need to contain numbers, but can contain data with any of
the modes mentioned earlier (numeric, logical, character, and complex), as
long as all the data in a vector are of the same mode.

Logical vectors are very useful in R for sub-setting data i.e., for isolating some
part of an object that meets certain criteria. For relational commands, the
shorter vector is repeated as many as necessary to carry out the requested
comparison for each element in the longer vector.

x <- 1:10

x > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

Also, note that when logical vectors are used in arithmetic, they are changed
(coerced in R terms) into a vector of binary elements: 1 or 0. Continuing with
the above example:

a <- x > 5

a

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

a * 1.4

[1] 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.4 1.4 1.4

One function that is commonly used on character data is paste. It

c©2017, Soil Security Laboratory 2

concatenates character data (and can also work with numerical and logical
elements—these become character data).

paste("A", "B", "C", "D", TRUE, 42)

[1] "A B C D TRUE 42"

Note that the paste function is very different from c. The paste function
concatenates its arguments into a single character value, while the c function
combines its arguments into a vector, where each argument becomes a single
element. The paste function becomes handy when you want to combine the
character data that are stored in several symbolic variables.

month <- "April"

day <- 29

year <- 1770

paste("Captain Cook, on the ", day, "th day of ", month, ", "

, year, ", sailed into Botany Bay", sep = "")

[1] "Captain Cook, on the 29th day of April, 1770, sailed into Botany Bay"

This is especially useful with loops, when a variable with a changing value is
combined with other data. Loops will be discussed in a later section.

group <- 1:10

id <- LETTERS[1:10]

for (i in 1:10) {
print(paste("group =", group[i], "id =", id[i]))

}

[1] "group = 1 id = A"

[1] "group = 2 id = B"

[1] "group = 3 id = C"

[1] "group = 4 id = D"

[1] "group = 5 id = E"

[1] "group = 6 id = F"

[1] "group = 7 id = G"

[1] "group = 8 id = H"

[1] "group = 9 id = I"

[1] "group = 10 id = J"

LETTERS is a constant that is built into R—it is a vector of uppercase letters
A through Z (different from letters).

1.2 Vector arithmetic, some common functions, and
vectorised operations

In R, vectors can be used directly in arithmetic operations. Operations are
applied on an element-by-element basis. This can be referred to as
“vectorised” arithmetic, and along with vectorised functions (described below),
it is a quality that makes R a very efficient programming language.

c©2017, Soil Security Laboratory 3

x <- 6:10

x

[1] 6 7 8 9 10

x + 2

[1] 8 9 10 11 12

For an operation carried out on two vectors, the mathematical operation is
applied on an element-by-element basis.

y <- c(4, 3, 7, 1, 1)

y

[1] 4 3 7 1 1

z <- x + y

z

[1] 10 10 15 10 11

When two vectors having different numbers of elements used in an expression
together, R will repeat the smaller vector. For example, with vector of length
one, i.e. a single number:

x <- 1:10

m <- 0.8

b <- 2

y <- m * x + b

y

[1] 2.8 3.6 4.4 5.2 6.0 6.8 7.6 8.4 9.2 10.0

If the number of rows in the smaller vector is not a multiple of the larger
vector (often indicative of an error) R will return a warning.

x <- 1:10

m <- 0.8

b <- c(2, 1, 1)

y <- m * x + b

Warning in m * x + b: longer object length is not a multiple

of shorter object length

y

[1] 2.8 2.6 3.4 5.2 5.0 5.8 7.6 7.4 8.2 10.0

Some arithmetic operators that are available in R include:

+ addition
- subtraction
* multiplication
/ division
^ exponentiation
%/% integer division
%% modulo (remainder)

c©2017, Soil Security Laboratory 4

log (a) natural log of a
log10 (a) base 10 log of a
exp (a) ea

sine (a) sine of a
cos (a) cosine of a
tan (a) tangent of a
sqrt (a) square root of a

Some simple functions that are useful for vector math include:

min minimum value of a set of numbers
max maximum of a set of numbers
pmin parallel minima (compares multiple vectors

“row-by-row”)
pmax parallel maxima
sum sum of all elements
length length of a vector (or number of columns in a data

frame)
nrow number of rows in a vector of data frame
ncol number of columns
mean arithmetic mean
sd standard deviation
rnorm generates a vector of normally-distributed random

numbers
signif, ceiling, floor rounding

Many, many other functions are available.

R also has a few built in constants, including pi.

pi

[1] 3.141593

Parentheses can be used to control the order of operations, as in any other
programming language.

7 - 2 * 4

[1] -1

is different from:

(7 - 2) * 4

[1] 20

and

10^1:5

[1] 10 9 8 7 6 5

is different from:

10^(1:5)

[1] 1e+01 1e+02 1e+03 1e+04 1e+05

c©2017, Soil Security Laboratory 5

Many functions in R are capable of accepting vectors (or even data frames,
arrays, and lists) as input for single arguments, and returning an object with
the same structure. These vectorised functions make vector manipulations
very efficient. Examples of such functions include log, sin, and sqrt, For
example:

x <- 1:10

sqrt(x)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751

[8] 2.828427 3.000000 3.162278

or

sqrt(1:10)

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751

[8] 2.828427 3.000000 3.162278

The previous expressions are also equivalent to:

sqrt(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))

[1] 1.000000 1.414214 1.732051 2.000000 2.236068 2.449490 2.645751

[8] 2.828427 3.000000 3.162278

But they are not the same as the following, where all the numbers are
interpreted as individual values for multiple arguments.

This will throw an error

sqrt(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

There are also some functions designed for making vectorised operations on
lists, matrices, and arrays: these include apply and lapply.

1.3 Matrices and arrays

Arrays are multi-dimensional collections of elements and matrices are simply
two-dimensional arrays. R has several operators and functions for carrying out
operations on arrays, and matrices in particular (e.g. matrix
multiplication).

To generate a matrix, the matrix function can be used. For example:

X <- matrix(1:15, nrow = 5, ncol = 3)

X

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

Note that the filling order is by column by default (i.e. each column is filled

c©2017, Soil Security Laboratory 6

before moving onto the next one). The “unpacking” order is the same:

as.vector(X)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

If, for any reason, you want to change the filling order, you can use the by

row argument:

X <- matrix(1:15, nrow = 5, ncol = 3, byrow = T)

X

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

[5,] 13 14 15

A similar function is available for higher-order arrays, called array. Here is
an example with a three-dimensional array:

Y <- array(1:30, dim = c(5, 3, 2))

Y

, , 1

##

[,1] [,2] [,3]

[1,] 1 6 11

[2,] 2 7 12

[3,] 3 8 13

[4,] 4 9 14

[5,] 5 10 15

##

, , 2

##

[,1] [,2] [,3]

[1,] 16 21 26

[2,] 17 22 27

[3,] 18 23 28

[4,] 19 24 29

[5,] 20 25 30

Arithmetic with matrices and arrays that have the same dimensions is
straightforward, and is done on an element-by-element basis. This true for all
the arithmetic operators listed in earlier sections.

Z <- matrix(1, nrow = 5, ncol = 3)

Z

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

c©2017, Soil Security Laboratory 7

[4,] 1 1 1

[5,] 1 1 1

X + Z

[,1] [,2] [,3]

[1,] 2 3 4

[2,] 5 6 7

[3,] 8 9 10

[4,] 11 12 13

[5,] 14 15 16

This does not work when dimensions do not match:

This will throw an error

Z <- matrix(1, nrow = 3, ncol = 3)

X + Z

For mixed vector/array arithmetic, vectors are recycled if needed.

Z

[,1] [,2] [,3]

[1,] 1 1 1

[2,] 1 1 1

[3,] 1 1 1

[4,] 1 1 1

[5,] 1 1 1

x <- 1:9

Z + x

Warning in Z + x: longer object length is not a multiple of

shorter object length

[,1] [,2] [,3]

[1,] 2 7 3

[2,] 3 8 4

[3,] 4 9 5

[4,] 5 10 6

[5,] 6 2 7

y <- 1:3

Z + y

[,1] [,2] [,3]

[1,] 2 4 3

[2,] 3 2 4

[3,] 4 3 2

[4,] 2 4 3

[5,] 3 2 4

R also has operators for matrix algebra. The operator %*% carries out matrix
multiplication, and the function solve can invert matrices.

c©2017, Soil Security Laboratory 8

X <- matrix(c(1, 2.5, 6, 7.5, 4.9, 5.6, 9.9, 7.8, 9.3), nrow = 3)

X

[,1] [,2] [,3]

[1,] 1.0 7.5 9.9

[2,] 2.5 4.9 7.8

[3,] 6.0 5.6 9.3

solve(X)

[,1] [,2] [,3]

[1,] 0.07253886 -0.5492228 0.3834197

[2,] 0.90385723 -1.9228555 0.6505469

[3,] -0.59105738 1.5121858 -0.5315678

1.4 Exercises

1. Generate a vector of numbers that contains the sequence 1, 2, 3, ...10 (try
to use the least amount of code possible to do this). Assign this vector to
the variable x, and then carry out the following vector arithmetic.

(a) log10x

(b) lnx

(c)
√
x

2−x

2. Use an appropriate function to generate a vector of 100 numbers that go
from 0 to 2π, with a constant interval. Assuming this fist vector is called
x, create a new vector that contains sine(2x− 0.5π). Determine the
minimum and maximum of sine(2x− 0.5π). Does this match with what
you expect?

3. Create 5 vectors, each containing 10 random numbers. Give each vector
a different name. Create a new vector where the 1st element contains the
sum of the 1st elements in your original 5 vectors, the 2nd element
contains the sum of the 2nd elements, etc. Determine the mean of this
new vector.

4. Create the following matrix using the least amount of code:

[,1] [,2] [,3] [,4] [,5]

[1,] 1 2 3 4 5

[2,] 6 7 8 9 10

[3,] 11 12 13 14 15

[4,] 16 17 18 19 20

[5,] 21 22 23 24 25

5. If you are bored, try this. Given the following set of linear equations:

27.2x + 32y - 10.8z = 401.2
x - 1.48y = 0
409.1x + 13.5z = 2.83

c©2017, Soil Security Laboratory 9

Solve for x, y, and z.

c©2017, Soil Security Laboratory 10

