1 Logical thinking and algorithm development

One of the advantages of using a scripting language, such as R, is that we can develop algorithms or script a set of commands for problem-solving. We illustrate this by developing an algorithm for generating a catena, or more correctly, a digital toposequence from a digital elevation model (DEM). To make it more interesting, we will not use any function from external libraries other than basic R functions. Before scripting, it is best to write out the algorithm or sequence of routines to use.

A toposequence can be described as a transect (not necessarily a straight line) which begins at a hilltop and ends at a valley bottom or a stream (Odgers et al., 2008). To generate a principal toposequence, one can start from the highest point in an area. If we numerically consider a rainfall as a discrete packet of “precipitation” that falls on the highest elevation pixel, then this precipitation will mostly move to its neighbor with the highest slope. As DEM is stored in matrix format, we simply look around its 3 x 3 neighbors and determine which pixel is the lowest elevation. The algorithm for principal toposequence can be written as:

1. Determine the highest point in an area.
2. Determine its 3 x 3 neighbor, and determine whether there are lower points?
3. If yes, set the lowest point as the next point in the toposequence, and then repeat step 2. If no, the toposequence has ended.

To facilitate the 3 x 3 neighbor search in R, we can code the neighbors using its relative coordinates. If the current cell is designated as [0,0], then its left neighbor is [-1,0], and so on. We can visualize it as follows in Figure 1:

If we designate the current cell [0,0] as z_1, the function below will look for the lowest neighbor for pixel z_1 in a DEM.

```r
# function to find the lowest 3 x 3 neighbor
find_steepest <- function(dem, row_z, col_z)
{
  z1 = dem[row_z, col_z]  # elevation
  # return the elevation of the neighboring values
}
```
Figure 1: Indexation of 3 x 3 neighborhood.

dir = c(-1, 0, 1) # neighborhood index
r = nrow(dem)
nc = ncol(dem)
pz = matrix(data = NA, nrow = 3, ncol = 3) # placeholder for the values
for (i in 1:3) {
 for (j in 1:3) {
 if (i != 0 && j != 0) {
 ro <- row_z + dir[i]
 co <- col_z + dir[j]
 if (ro > 0 && co > 0 && ro < nr && co < nc) {
 pz[i, j] = dem[ro, co]
 }
 }
 }
}
pz <- pz - z1 # difference of neighbors from centre value
find lowest value
min_pz <- which(pz == min(pz, na.rm = TRUE), arr.ind = TRUE)
row_min <- row_z + dir[min_pz[1]]
col_min <- col_z + dir[min_pz[2]]
retval <- c(row_min, col_min, min(pz, na.rm = TRUE))
return(retval) # return the minimum

The principal toposequence code can be implemented as follows. First we load in a small dataset called topo_dem from the ithir package.

library(ithir)
data(topo_dem)
str(topo_dem)
Now we want to create a data matrix to store the result of the toposequence i.e. the row, column, and elevation values that are selected using the `find_steepest` function.

```r
transect <- matrix(data = NA, nrow = 20, ncol = 3)
```

Now we want to find within that matrix that maximum elevation value and its corresponding row and column position.

```r
max_elev <- which(topo_dem == max(topo_dem), arr.ind = TRUE)
row_z = max_elev[1]  # row of max_elev
col_z = max_elev[2]  # col of max_elev
z1 = topo_dem[row_z, col_z]  # max elevation
```

Put values into the first entry of the transect object
```r
t <- 1
transect[t, 1] = row_z
transect[t, 2] = col_z
transect[t, 3] = z1
lowest = FALSE
```

Below we use the `find_steepest` function. It is embedded into a while conditional loop, such that the routine will run until neither of the surrounding neighbors are less than the middle pixel or \(z_1 \). We use the `break` function to stop the routine when this occurs. Essentially, upon each iteration, we use the selected \(z_1 \) to find the lowest value pixel from it, which in turn becomes the selected \(z_1 \) and so on until the values of the neighborhood are no longer smaller than the selected \(z_1 \).

```r
# iterate down the hill until lowest point
while (lowest == FALSE) {
  # find steepest neighbor
  result <- find_steepest(dem = topo_dem, row_z, col_z)
  t <- t + 1
  row_z = result[1]
col_z = result[2]
z1 = topo_dem[row_z, col_z]
transect[t, 1] = row_z
transect[t, 2] = col_z
transect[t, 3] = z1
if (result[3] >= 0) {
  lowest = TRUE
  break
}  # if found lowest point
}
```

©2017, Soil Security Laboratory
Finally we can plot the transect. First lets calculate a distance relative to the top of the transect. After this we can generate a plot as in Figure 2.

```
dist = sqrt((transect[1, 1] - transect[,1])^2 + (transect[1, 2] - transect[,2])^2)
plot(dist, transect[,3], type = "l", xlab = "Distance (m)", ylab = "Elevation (m)"
```

![Figure 2: Generated toposequence](image)

So let’s take this a step further and consider the idea of a random toposequence. In reality, water does not only flow in the steepest direction, water can potentially move down to any lower elevation. And, a toposequence does not necessarily start at the highest elevation either. We can generate a random toposequence (Odgers et al., 2008), where we select a random point in the landscape, then find a random path to the top and bottom of a hillslope. In addition to the downhill routine, we need an uphill routine too.

The algorithm for the random toposequence could be written as:

1. Select a random point from a DEM.
2. Travel uphill:

 (a) Determine its 3 x 3 neighbor, and determine whether there are higher points?

 (b) If yes, select randomly a higher point, add to the uphill sequence, and repeat step 2a. If this point is the highest, the uphill sequence ended.
3. Travel downhill:

 (a) Determine its 3 x 3 neighbor, and determine whether there are lower points?
(b) If yes, select randomly a lower point, add to the downhill sequence, and repeat step 3a. If this point is the lowest or reached a stream, the downhill sequence ended.

From this algorithm plan, we need to specify two functions, one that allows the transect to travel uphill and another which allows it to travel downhill. For the one to travel downhill, we could use the function from before (find_steepest), but we want to build on that function by allowing the user to indicate whether they want a randomly selected smaller value, or whether they want to minimum every time. Subsequently the 2 new functions would take the following form:

```r
# function to simulate water moving down the slope input: dem and # its row & # column random: TRUE use random path, FALSE for steepest path return: # row,col,z-z1 of lower neighbour travel_down <- function(dem, row_z, col_z, random) {
  z1 = dem[row_z, col_z]
  # find its eight neighbour
  dir = c(-1, 0, 1)
  nr = nrow(dem)
  nc = ncol(dem)
  pz = matrix(data = NA, nrow = 3, ncol = 3)
  for (i in 1:3)
    for (j in 1:3)
      { # find its eight neighbour
        ro <- row_z + dir[i]
        co <- col_z + dir[j]
        if (ro > 0 & co > 0 & ro < nr & co < nc) {
          pz[i, j] = dem[ro, co]
        }
      }
  pz[2, 2] = NA
  pz <- pz - z1  # difference with centre value
  min_pz <- which(pz < 0, arr.ind = TRUE)
  nlow <- nrow(min_pz)
  if (nlow == 0) {
    min_pz <- which(pz == min(pz, na.rm = TRUE), arr.ind = TRUE)
  } else {
    if (random) {
      # find random lower value
      ir <- sample.int(nlow, size = 1)
      min_pz <- min_pz[ir, ]
    } else {
      # find lowest value
      min_pz <- which(pz == min(pz, na.rm = TRUE), arr.ind = TRUE)
    }
  }
}
```

©2017, Soil Security Laboratory
row_min <- row_z + dir[min_pz[1]]
col_min <- col_z + dir[min_pz[2]]
z_min <- dem[row_min, col_min]
retval <- c(row_min, col_min, min(pz, na.rm = TRUE))
return(retval)

function to trace water coming from up hill
input: dem and its row & column
random: TRUE use random path, FALSE for steepest path
return: row, col, z-zi of higher neighbour
travel_up <- function(dem, row_z, col_z, random)
{
 z1 = dem[row_z, col_z]
 # find its eight neighbour
 dir = c(-1, 0, 1)
 nr = nrow(dem)
 nc = ncol(dem)
 pz = matrix(data = NA, nrow = 3, ncol = 3)
 for (i in 1:3)
 for (j in 1:3)
 {ro <- row_z + dir[i]
 co <- col_z + dir[j]
 if (ro > 0 & co > 0 & ro < nr & co < nc)
 {pz[i, j] = dem[ro, co]}
 }
 pz[2, 2] = NA
 pz <- pz - z1 # difference with centre value
 max_pz <- which(pz > 0, arr.ind = TRUE) # find higher pixel
 nhi <- nrow(max_pz)
 if (nhi == 0)
 {max_pz <- which(pz == max(pz, na.rm = TRUE), arr.ind = TRUE)}
 else {
 if (random)
 {
 # find random higher value
 ir <- sample.int(nhi, size = 1)
 max_pz <- max_pz[ir,]
 }
 else {
 # find highest value
 max_pz <- which(pz == max(pz, na.rm = TRUE), arr.ind = TRUE)
 }
 }
 row_max <- row_z + dir[max_pz[1]]
col_max <- col_z + dir[max_pz[2]]
retval <- c(row_max, col_max, max(pz, na.rm = TRUE))
return(retval)

©2017, Soil Security Laboratory
Now we can generate a random toposequence. We will use the same `topo_dem` data as before. First we select a point at random using a random selection of a row and column value. Keep in mind that the random point selected here may be different to the one you get because we are using a random number generator via the `sample.int` function.

```r
nr <- nrow(topo_dem)  # no. rows in a DEM
cc <- ncol(topo_dem)  # no. cols in a DEM

# start with a random pixel as seed point
row_z1 <- sample.int(nr, 1)
col_z1 <- sample.int(nc, 1)
```

We then can use the `travel_up` function to get our transect to go up the slope.

```r
# Travel uphill seed point as a starting point
t <- 1
transect_up <- matrix(data = NA, nrow = 100, ncol = 3)
row_z <- row_z1
col_z <- col_z1
z1 = topo_dem[row_z, col_z]
transect_up[t, 1] = row_z
transect_up[t, 2] = col_z
transect_up[t, 3] = z1

highest = FALSE
# iterate up the hill until highest point
while (highest == FALSE)
{
  result <- travel_up(dem = topo_dem, row_z, col_z, random = TRUE)
  if (result[3] <= 0)
  {
    highest = TRUE
    break
  }  # if found lowest point
  t <- t + 1
  row_z = result[1]
col_z = result[2]
z1 = topo_dem[row_z, col_z]
  transect_up[t, 1] = row_z
  transect_up[t, 2] = col_z
  transect_up[t, 3] = z1
}
transect_up <- na.omit(transect_up)
```

Next we then use the `travel_down` function to get our transect to go down the slope from the seed point.

```r
# travel downhill create a data matrix to store results
transect_down <- matrix(data = NA, nrow = 100, ncol = 3)
# starting point
row_z <- row_z1
```
col_z <- col_z1
z1 = topo_dem[row_z, col_z] # a random pixel

t <- 1
transect_down[t, 1] = row_z
transect_down[t, 2] = col_z
transect_down[t, 3] = z1
lowest = FALSE

iterate down the hill until lowest point
while (lowest == FALSE) {
 result <- travel_down(dem = topo_dem, row_z, col_z, random = TRUE)
 if (result[3] >= 0)
 {
 lowest == TRUE
 break
 } # if found lowest point
 t <- t + 1
 row_z = result[1]
 col_z = result[2]
 z1 = topo_dem[row_z, col_z]
 transect_down[t, 1] = row_z
 transect_down[t, 2] = col_z
 transect_down[t, 3] = z1
}
transect_down <- na.omit(transect_down)

The idea then is to bind both uphill and downhill transects into a single one. Note we are using the `rbind` function for this. Furthermore, we are also using the `order` function here to re-arrange the uphill transect so that the resultant binding will be sequential from highest to lowest elevation. Finally, we then calculate the distance relative to the hilltop.

transect <- rbind(transect_up[order(transect_up[, 3], decreasing = T),], transect_down[-1,])

calculate distance from hilltop
dist = sqrt((transect[1, 1] - transect[, 1])^2 + (transect[1, 2] - transect[, 2])^2)

The last step is to make the plot (Figure 3) of the transect. We can also add the randomly selected seed point for visualization purposes.

plot(dist, transect[, 3], type = "l", col = "red", xlim = c(0, 100), ylim = c(50, 120), xlab = "Distance (m)", ylab = "Elevation (m)"
points(dist[nrow(transect_up)], transect[nrow(transect_up), 3])
1.1 Exercises

After seeing how this algorithm works, you can modify the script to take in stream networks, and make the toposequence end once it reaches the stream. You can also add “error trapping” to handle missing values, and also in case where the downhill routine ends up in a local depression. This algorithm also can be used to calculate slope length, distance to a particular landscape feature (e.g. hedges), and so on.

References

Odgers, N. P., A. B. McBratney, and B. Minasny