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Abstract

Soil Infrared spectroscopy uses electromagnetic energy to characterize the soil. In the past decades, visible, near to mid infrared
spectroscopy has gained considerable interest as a viable alternative for in-field and laboratory measurements, especially where a high
spatial density of measurements is needed, because of its speed and cost-effectiveness. Once chemometric models have been
calibrated, a single spectrum can be used to predict a range of soil properties simultaneously. This chapter provides an overview of
spectroscopy in soil research, including predicting physical, chemical, and biological properties, as well as determination of soil
contaminants.
Key points
• Infrared spectroscopy has been used to predict a range of physical, chemical and biological soil properties successfully.

• Soil contaminants have also been successfully quantified with infrared spectroscopy.

• Developments in artificial intelligence, computational power and big data have made more complex machine learning
algorithms possible.

• Smaller, portable and lower-cost spectrometers are now available.

Introduction

Obtaining quantitative soil information rapidly and objectively is essential for monitoring current soil conditions and maintaining
if not improving them, to ensure the current management practice does not lead to soil degradation. Quantitative soil data, which
vary in time and space, are conventionally obtained from laboratory analysis. However, this is expensive, time-consuming, and
requires the use of chemical reagents.

Research has been conducted worldwide to investigate proximal sensors that canmeasure soil properties from a close distance to
the soil surface using a various range of wavelengths of the electromagnetic spectrum as shown in Fig. 1. The electromagnetic energy
ranges from gamma rays which have higher frequencies to radio waves with the lowest frequencies. The interaction of energy with
matter depends on its molecular composition. A material can reflect, scatter, or emit electromagnetic radiation, which results in a
unique spectral signature. These sensors measure the response of the material at certain wavelengths, providing information about
its constituents. Soil responds uniquely to the infrared spectrum, and the technology has made infrared spectrometers suitable for
the analysis of soil samples as they can measure rapidly, cost-effectively, and non-destructively.
Spectroscopy in soil science

Optical sensors utilize various wavelengths from the electromagnetic spectrum (Fig. 1) to characterize properties (visible (vis):
400–700 nm; near-infrared (NIR): 700–2500 nm; mid-infrared (MIR): 2500–25,000 nm). The absorption in the MIR region can be
readily identified as it is related to the fundamental vibrations of molecules. The absorbance in the vis–NIR is more difficult to
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Fig. 1 The electromagnetic spectrum showing the boundaries between different regions, including the visible region (380–700 nm), the near infrared (NIR;
700–2500 nm), the mid-infrared (MIR: 2500–25,000 nm), and the far infrared (FIR 25,000–1,000,000 nm).

Fig. 2 The vis–NIR–MIR spectra of two soil samples showing fundamental peaks on MIR and overtones on NIR.
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interpret as there are fewer and broader absorptions related to overtones and combinations of the fundamental vibrations in the
MIR region. Absorptions in the visible region are associated with minerals that contain iron and organic matter, while absorptions
in the NIR region (780–2500 nm) result from the overtones of hydroxyl (OH−), sulfate (SO4

2−), and carbonate (CO3
2−) groups, and

combinations of fundamental features of water (H2O) and carbon dioxide (CO2) (Stenberg et al., 2010). An illustration of spectra
from the vis-NIR-MIR region is included in Fig. 2.

Discovery of the infrared region dates back to 1800 by Herschel (1800). However, the practical applications did not occur until
150 years later. In 1950s, researchers explored the use of infrared to characterize soil minerals (Hunt et al., 1950). In the 1980s,
although NIR was mainly used in agriculture and the food industries, it became popular the decade after when practical applications
started to expand to other industries, including pharmaceutical, earth science and environmental analyses. In soil science, early use
of near infrared spectroscopy was by Bowers and Hanks (1965) where the influence of moisture, organic matter and particle size on
the soil absorbance spectrum were observed.

Both vis–NIR and MIR have been used to determine successfully various chemical (pH, cation exchange capacity, carbon
contents (organic, inorganic, and total) and nutrient contents), physical (texture (sand, silt and clay) and minerals (kaolinite,
gibbsite, montmorillonite and iron oxides)), and biological (microbial biomass and enzyme activities) soil properties
(Soriano-Disla et al., 2014).

The use of infrared spectroscopy is gaining interest for applications in various settings due to its possible application on different
platforms, ranging from proximal sensing in the field, within the laboratory setting to remote sensing platforms with hyperspectral
capabilities. Improvement in instrumentation also leads to the development of portable and handheld spectrometers. Recently,
lower-cost portable and miniaturized NIR spectrometers with limited wavelength ranges have also become available, making it a
cost-effective method of analysis for farmers, agricultural consultants, and researchers. It has been demonstrated that the minia-
turized spectrometer provided comparable accuracy to the standard vis–NIR spectrometer (Tang et al., 2020).

Over the past two decades, the application of spectroscopy to complement soil analyses has increased rapidly. This increase is
correlated with progress in the multivariate statistical data analysis and the development of both infrared and computer
technologies.
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Fundamental absorption of clay minerals

The vis–NIR and MIR spectra can be used for detecting clay mineral species and iron oxides. The most common soil forming clay
minerals include kaolinite, montmorillonite (also commonly referred to as smectite) and illite. The most common iron oxide
species include hematite and goethite. These minerals are distinct in composition, structural arrangements, and physicochemical
characteristics. Consequently, each mineral has specific spectral responses at specific wavelengths in the electromagnetic spectrum
(Clark et al., 1990). Earlier contributions from Gadsden (1975) comprehensively summarized diagnostic spectral features of
minerals. Some diagnostic wavelengths in both the vis–NIR and MIR spectral regions for the key clay minerals and iron oxides
are provided in Table 1.

The relatively simple way to assess the mineral composition of a soil sample directly from infrared spectra is to compare the
reflectance of the diagnostic wavelengths from the reference spectra with those at the same wavelengths of the soil samples.
As established, the wavelength ranges specifically diagnostic to each clay mineral and iron oxide specimen are known and they can
be isolated and standardized by fitting a convex hull to them. The convex hull fits a straight line that connects the local maxima of
the spectrum of a specific wavelength range and represents the background information. Fig. 3 shows an example of the fitted
convex hulls to the diagnostic reflectance ranges from the reference spectra sourced from the United States Geological Survey
(USGS) spectral library for end member specimens of smectite and kaolinite, and the associated spectra once the continuum is
removed.

Soil infrared spectra are similarly standardized followed by the application of comparative metrics between reference and soil
spectra to derive relative abundances. For example, shape match algorithms can be used and are implemented in the USGS
Tetracorder decision making framework for mineral detection (Clark et al., 2003). Other metrics include relative area and depth
of the absorbance feature and slope of the convex hull. Relative abundance of the minerals can then be inferred. For example, Fig. 4
provides statistical summaries of the relative abundances of kaolinite and smectite minerals derived from soil survey samples from
the Hunter valley region, NSW Australia used in Malone et al. (2014). Here, there is a clear relationship between estimated
abundance and its corresponding spectral response feature relative to the reference specimen.

The alternative to direct inference on mineral composition from infrared spectra is with soil spectral calibration models, which
are described in more detail further on. Robinson and Kitching (2016) demonstrated this where partial least squares regression
(PLSR) and support vector machine models were trialled and constructed to estimate soil clay mineral compositions (kaolinite,
smectite and illite) based on associated soil MIR spectra. These models were extended to a larger spectral library to enable digital soil
mapping of these variables in their study area in Victoria, Australia. The authors reported that their model can have an accuracy of
70% or better for each of the mineral species.
Soil chemometrics

As soil is a complex mixture of materials, it is difficult to assign particular features of the spectra to specific physical, chemical, or
biological components. Multivariate calibration techniques are used to predict soil properties, relating the spectra to observed soil
properties (properties that have been measured using conventional laboratory analysis).

Digital soil spectra usually contain hundreds or thousands of reflectance values as a function of wavelength. Since there are
typically more predictor variables than the observed variables, methods that reduce the dimensions of the predictors are required.
Principal component regression and PLSR are commonly utilized methods. Partial least squares regression extracts successive linear
combinations of the predictors, optimizing the combined goals of explaining response variation and predictor variation.

Another way to handle large dimensional data is to use variable selection techniques. When the high dimensional data have
been reduced to several components or important variables have been selected, they are used for prediction using either linear
regression or data-mining tools. Regression trees, neural networks and support vector machines have been used for such predictions.

There are also machine learning algorithms that can handle a large dimension of inputs and extract information from many
samples. Models such as Cubist models, random forest, neural networks, support vector machines have been trialled successfully for
predicting soil properties from vis–NIR and MIR data. While such models have been used successfully for prediction, each model
Table 1 Diagnostic wavelength ranges of clay minerals and iron oxides as reported by Gadsden (1975).

Mineral Diagnostic wavelength range(s) in wavenumber (cm−1)

Visible and near infrared Mid infrared

Kaolinite 4812–4411 3636, 2710, 1923–1818, 1587, 1064, 855
Smectite 4721–4372 3636, 1961, 1852, 1639, 1111, 1064
Illite 4640–4413, 4336–4192 3226, 2874, 2141, 2604–2513, 1799, 1639
Goethite 21,881–17,761; 12,887–7899 912–882, 812–793
Hematite 21,978–16,340; 13,072–9524 560–550



Fig. 4 Continuum removed soil spectra (dashed lines) with comparison to reference spectra at their given diagnostic wavelength ranges. The dashed lines
represent (as numbered for kaolinite) the spectra for soils where relative mineral abundance is (1) the minimum, (2) first quartile, (3) second quartile, (4) third
quartile, and (5) maximum. Partial figure sourced from Malone BP, Hughes P, McBratney AB, Minasny B (2014) A model for the identification of terrons in the Lower
Hunter Valley, Australia. Geoderma Regional 1: 31–47.

Fig. 3 Diagnostic wavelength ranges for smectite and kaolinite. To prepare for analyses, spectra need to be standardized by fitting a convex hull (red line). Soil
spectra and reference spectra are then compared based on the continuum removed spectra. Sourced from Malone BP, Hughes P, McBratney AB, Minasny B (2014) A
model for the identification of terrons in the Lower Hunter Valley, Australia. Geoderma Regional 1: 31–47.
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form varies in complexity and ability of interpretation, and these features should be considered in detail in the exploratory stages of
soil spectral model development.

Large soil spectral libraries are expanding as more spectral data are collected at a regional or national scale. An emerging method
used for large data and the processing complex images, and which is capable of handling high-dimensional data is the deep learning
model. One form is the convolutional neural network (CNN) which is widely used in handling high dimensional data, such as
images. Ng et al. (2019) explored the use of the CNN model for predicting soil properties on a large vis-NIR and MIR spectral
database. The architecture of the CNN model is quite flexible and can accept multi-dimensional input and provide multi-task
predictions. The study reported that deep learning on an extensive MIR spectra library could predict fundamental soil properties
(texture, organic and inorganic C, CEC, and pH) very accurately with R2 > 0.95. Furthermore, only one model needed to be trained
to provide predictions of multiple properties. Data fusion can also improve the prediction of soil properties.
Soil properties

Soil physical properties

Soil physical properties regulate the movement, retention and availability of water and nutrients to plants, and determine the flow
of heat and air into, within and out of the soil. Despite the importance of these properties, a common feature in their measurement
is that they often require considerable time to collect the data, are expensive to acquire, and require very specialized equipment.
Consequently, alternative and less costly approaches with pedotransfer functions, which exploit easier to acquire attributes coupled
with statistical modelling, have been proposed and have demonstrated their utility in numerous applications. Similarly, soil spectral
modelling of these attributes has been demonstrated. Soriano-Disla et al. (2014) provide an all-encompassing review of the
applicability of vis–NIR and MIR spectroscopy for the prediction of various soil properties such as texture, aggregation and soil
water content. Stenberg et al. (2010) provide a similar account but focus specifically on vis–NIR soil spectroscopy. It is recom-
mended that readers review those contributions and the references cited therein to appreciate not only the breadth and variation of
studies that have been undertaken, but also the comparative assessment of their model performances.

In general, MIR spectroscopy outperforms vis–NIR for most soil physical properties. Soil spectral models based on properties like
clay, sand and water content using either vis–NIR or MIR spectra are generally comparable (R2 ¼ 0.7–0.8). Soil aggregation as
measured by wet sieving also been reported as being well-predicted, for example, mean aggregate diameter and mean weight
diameter with R2 values between 0.66 and 0.79. Despite seemingly good modelling outcomes reported for soil physical properties
mentioned above, there are also corresponding examples where outcomes have not been so good such as bulk density and water
retention at field capacity. There are many potential causes for this variability, with some stemming from the data used and the
extent of soil variability captured, to differences in models and how the data are processed and handled. However, the more
probable reason is that soil spectral calibrations of soil physical properties are really about the utilization of variables related to
these properties that are known to be well-predicted, such as clay, soil carbon, andmineralogy. This co-relationship is acknowledged
in the reporting of very good results in the prediction of COLE and Atterberg limits with vis–NIR spectroscopy and reported R2 of
0.84 and 0.48–0.71, respectively (Rehman et al., 2020). Utilizing both soil spectroscopy and pedotransfer functions together,
i.e. soil spectral inference (McBratney et al., 2006), is seen as a more appropriate way to estimate some soil physical properties,
particularly those based on soil pore–space relationships, e.g. volumetric water retention, hydraulic conductivity and penetration
resistance, and bulk density. This somewhat echoes the conclusions from Minasny et al. (2008) that soil physical properties based
on soil pore space relations are not in general well predicted directly with infrared spectroscopy, therefore more focus should be
given to soil spectral inference systems to improve what can be predicted well and use those estimates in existing or, newly calibrated
pedotransfer functions.
Soil chemical properties

Near- and mid-infrared spectroscopy is mostly used to predict soil chemical attributes. These properties affect soil biological activity
and nutrient dynamics in the soil and have been used as soil quality assessment indicators. Soil chemical properties include pH,
organic carbon, nitrogen, nutrients, as well as cation exchange capacity.

Numerous studies had been carried out to measure soil carbon. This interest is due to the recognition that storing additional
carbon in the soil serves as one of the options to mitigate anthropogenic climate change. Soil organic carbon is a component of soil
organic matter that affects the physical, chemical, and biological properties of soil, influencing soil structure, water and nutrient
retention. In addition to total carbon, organic and inorganic soil carbon predictions were also found to be successful, with
R2 ranging from 0.94–0.98 (McCarty et al., 2002). The use of infrared spectroscopy for the prediction of various carbon fractions,
including labile and recalcitrant carbon fractions (R2 ¼ 0.89–0.97), had been proven to be successful (Zimmermann et al., 2007).
In the MIR range, organic carbon may also be identified by absorption peaks at approximately 2920 and 1230 cm−1 (Zimmermann
et al., 2007), while carbonates may be identified by strong and numerous absorption bands at 1450, 1060, 880 and 700 cm−1 (Clark
et al., 1990) (as shown in Fig. 2). In the NIR range, organic carbon can be related to absorption peaks at approximately 600, 1910
and 2100 nm, while carbonates may be identified by peaks at 2300–2350 nm (Clark et al., 1990).

Although soil pH is non spectrally active, it is one of the soil properties that is predicted quite well (R2 ¼ 0.57 0.79) because of its
relationship with exchange sites related to clay minerals and organic matter (Soriano-Disla et al., 2014).
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Infrared spectroscopy has been used successfully to predict exchangeable cation related properties. While cation exchange
capacity (CEC) is not a spectrally active component, it has a strong correlation with clay mineralogy and soil organic matter content
(Stenberg et al., 2010), particularly absorbance of peaks near 2926–2850 cm−1, and carboxylate species 1633–1413 cm−1. Greater
prediction accuracy for certain cations (Ca2+, Mg2+, and K+) with R2 of 0.70–0.84 compared to Na+ (R2 ¼ 0.32) was most likely
because those cations are dominant on the exchange sites.

Infrared spectroscopy has also been used to predict nutrients in the soil, particularly the nitrogen (N), phosphorus (P), and
potassium (K) concentrations in the soil. However, most studies have shown that only the total amount of nutrients can be well
predicted as this relates to soil minerals and organic matter. Available nutrients cannot be well-predicted because they are
determined by extraction and solution from soil. Integration of the prediction of plant nutrients and fertilizer recommendations
maximizes the nutrient management in the agroecosystems.
Soil biological properties

The correlation of soil biological properties and organic carbon enables the biological properties to be successfully predicted using
spectral features. Infrared spectroscopy has been used for the rapid assessment of a range of biological properties, including
microbial biomass, soil respiration, microbial groups, and soil enzymatic activities. No spectral contribution is expected from the
microbial biomass because it represents roughly less than 5% of the total organic carbon content (Janik et al., 1998). Successful
predictions of biological properties were most likely due to the correlation of biological properties with organic matter or other soil
properties that have spectral signatures.

Chang et al. (2001) obtained R2 of 0.6 for biomass C using NIR. Meanwhile, Janik et al. (1998) and Ludwig et al. (2015)
reported greater accuracy for the microbial biomass C predictions with MIR (R2 ¼ 0.69 and 0.79 respectively). In addition to
biomass C, biomass N (R2 ¼ 0.79) and P (R2 ¼ 0.62) were also determined with moderate accuracy by Ludwig et al. (2015).

A better prediction was reported by Chang et al. (2001) using NIR for microbial respiration than the soil microbial biomass with
R2 of 0.72, 0.66, and 0.82 for mineralizable N, total respiration rate and basal respiration rate (BSR), respectively. van Groenigen
et al. (2003) reported greater accuracy for mineralizable N using NIR (R2 ¼ 0.46) compared to MIR (R2 ¼ 0.21) in flooded soils.
Similarly, Ludwig et al. (2015) reported an acceptable accuracy of R2 ¼ 0.63 for BSR using MIR.

Microbial biomarkers have also been utilized as a biological indicator of change in the microbial community because the size of
microbial biomass itself is not sufficient to explain the effect of certain management regimes. Zornoza et al. (2008) successfully
predicted several variables related to soil microbial groups based on PLFA biomarkers: bacteria (R2 ¼ 0.93), G+ bacteria
(R2 ¼ 0.91), actinomycetes (R2 ¼ 0.92), VAM fungi (R2 ¼ 0.91) and PLFAs (R2 ¼ 0.91).

The presence of soil enzymes can be linked to soil physico-chemical properties. Although 500 enzymes might be present, only a
handful have been identified and measured to date. Reeves et al. (2000) achieved an R2 within the range of 0.8 with NIR to predict
four enzymes (dehydrogenase, phosphatase, arylsulfatase and urease).
Soil contaminants

Contaminants include a wide range of natural and synthetic materials that can be found in soil. Given that exposure to
contaminants leads to detrimental effects on human health and ecosystems, there is a need to develop rapid, low-cost methods
to assess the spatial and temporal variation of soil contaminants. The application of spectroscopy in detecting contaminants is
beneficial for rapid screening to determine whether contamination exceeds a certain threshold and if remediation is required. The
prediction of organic contaminants can be directly related to the absorption peaks in the spectra because of sensitivity of the IR
method to organic materials. Nonetheless, these absorbances of the organic contaminants overlapped with other organic and
inorganic components that exist in the soil throughout the electromagnetic spectrum. Several examples of organic pollutants
include petroleum hydrocarbons, microplastics and pesticides.

Absorbance peaks at 2222–2439 nm and 3000–2600 cm−1 in the NIR and MIR region have been used to predict the total
petroleum hydrocarbon concentration (Forrester et al., 2013) with high accuracy. The peaks in the MIR region are related to two
dCH3 peaks (2950 and 2730 cm−1), which were absent in the natural soil organic matter absorption dCH2 region at
2930–2850 cm−1. A similar range in the NIR region at 2250–2350 nm was reported by Chakraborty et al. (2010) for the prediction
of total petroleum hydrocarbon, which achieved good accuracy in moist intact soil. The absorption at 2200 nm is due to the OdH
bonds in the clay minerals, such as kaolinite, illite, and smectite, while absorptions between 2250 and 2450 nm were associated
with the CdH bonds in the organic matter and carbonates (Clark et al., 1990).

Absorptions between 1130 and 1720 nm in the NIR range have been reported in various studies (e.g. Sato et al., 2003) in the
identification of plastic polymers, such as polyethylene terephthalate (PET) and low density polyethylene (LDPE). Absorbance at
1210, 1420 and 1730 nm is due to CdH (CH2) first and second overtones and CdH deformation (Sato et al., 2003), while
absorbance at 1660 nm is related to overtone stretching of aromatic CdH groups which is present in PET but not LDPE.

Hermansen et al. (2020) successfully utilized NIR for predicting glyphosate (an active ingredient in herbicides) sorption in soil
(R2 ¼ 0.93). Bengtsson et al. (2007) also successfully utilized NIR as a tool to predict other pesticide sorption in soil, particularly
lindane (R2 ¼ 0.85) and linuron (R2 ¼ 0.84), despite no specific wavelengths being identified.

Although inorganic contaminants, such as heavy metals are not spectrally active, diagnostic screening is made possible due to the
relationship with iron oxides, clay, and organic matter. Gholizadeh et al. (2015) using the vis–NIR range detected heavy metal
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concentrations (Cu, Pb, Zn and Cd), which had low to moderate to correlations with clay and/or organic matter content, whereas
Mn did not have a dependence on clay and organic matter. Similarly, Kemper and Sommer (2002) achieved good R2 accuracy for
the prediction of As (0.84), Fe (0.72), Hg (0.96), Pb (0.95) and Sb (0.93).
Lower cost - miniaturized spectrometer

Lower cost and miniaturized spectrometers with a limited NIR spectral range are now widely available and can potentially enable
NIR measurements of soil properties to be used more broadly. For example, a miniaturized Michelson interferometer can be built
using monolithic micro-electro-mechanical systems (MEMS). A case study in Australia demonstrates that a miniaturized spectrom-
eter operating at 1250–2500 nm provides comparable accuracy with the complete vis–NIR spectrometer (400–2500 nm) in
predicting soil pH, CEC and exchangeable Ca and Mg (R2 > 0.63–0.78), and slightly less accurate predictions of total carbon,
sand, and clay (R2 > 0.70–0.80) (Tang et al., 2020).
Conclusions

Soil spectroscopy is a viable measurement technology with untapped possibilities. Soil reflectance in the visible-, near- and
mid-infrared offers rapid, cheap, and relatively accurate predictions for several soil properties. A single infrared spectrum can
offer the prediction of numerous soil properties. The MIR spectra have been shown to provide signatures that can be used to derive
many physical, chemical and biological properties. The mechanisms for the prediction of soil properties are due to the direct and
indirect interaction between the soil properties and the organic matter and mineral components of soil. Infrared can predict
fundamental soil properties related to the soil matrix or solid constituents and soil solution concentrations in equilibrium with the
solid phase. Soil properties that do not have active spectral components can be predicted if they are correlated to the mineral or
organic components of the soil. However, soil spectroscopy has been mainly used in research studies and has not been widely used
as a routine analysis method in agriculture.
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