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There is a need for accurate, quantitative soil information for natural resource planning andmanagement. This
information shapes theway decisions aremade as to how soil resources are assessed andmanaged. This paper
proposes a novel method for whole-soil profile predictions (to 1 m) across user-defined study areas where
limited soil information exists. Using the Edgeroi district in north-western NSW as the test site, we combined
equal-area spline depth functions with digital soil mapping techniques to predict the vertical and lateral
variations of carbon storage and available water capacity (AWC) across the 1500 km2 area. Neural network
models were constructed for both soil attributes to model their relationship with a suite of environmental
factors derived from a digital elevation model, radiometric data and Landsat imagery. Subsequent fits of the
models resulted in an R2 of 44% for both carbon and AWC. For validation at selected model depths, R2 values
ranged between 20 and 27% for carbon prediction (RMSE: 0.30–0.52 log (kg/m3)) and between 8 and 29%
for AWC prediction (RMSE: 0.01 m/m). Visually, reconstruction of splines at selected validation data points
indicated an average fit with raw data values. In order to improve upon our model and validation results there
is a need to address some of the structural andmetrical uncertainties identified in this study. Nevertheless, the
resulting geo-database of quantitative soil information describing its spatial and vertical variations is an
example of what can be generated with this proposed methodology. We also demonstrate the functionality of
this geo-database in terms of data enquiry for user-defined queries.
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1. Introduction

In order to benefit from the ecological and economical functions of
soil in a sustainable way; land holders, corporate stakeholders and,
governmental departments need access to quantitative soil information.
Such information confers weight to decisions regarding the manage-
ment of the land and soil resources. Even in most environmental
and agricultural research, accurate, continuous soil attribute data is
becoming increasingly important in computer simulation models and
for the assessment and monitoring of soil resources (Hempel et al.,
2008). To facilitate this need, this paper introduces a novel method for
the prediction of user-defined, continuous soil properties to a given soil
depth, across landscapes (at a fixed resolution) where only limited soil
data exists.
The variation of soil properties down a profile is usually con-
tinuous (Ponce-Hernandez et al., 1986). Soil depth functions are often
created to represent the depth-wise variation of soil properties. How-
ever, with traditional sampling of soil profile horizons, it is often
assumed that the horizon value of a particular attribute represents the
average value for that attribute for the depth interval of that horizon.
With this paradigm, in effect what should be a continuous function,
the data often appears discontinuous or stepped. Similarly, current
digital soil mapping techniques are limited to map soil properties at
specified depths or a combination of depth intervals (see Grimm et al.,
2008; Stoorvogel et al., 2009 as recent examples).

Bishop et al. (1999) pointed out, the discontinuity of depth
functions derived from bulk horizon data lends to inaccuracies when
attempting to predict the value of an attribute at specific depthswithin
a soil profile. Subsequently, many attempts have been made to derive
continuous depth functions of soil attributes. The earliest known
attempt was by Jenny (1941) who drew freehand curves between
attribute data points that corresponded to the mid-point value of a
horizon. Over time, more sophisticated methods have evolved for
constructing continuous soil depth functions such as using exponen-
tial decay functions (Russell and Moore, 1968). Minasny et al. (2006)
demonstrated that fitting exponential decay functions to carbon
profile data resulted in an adequate quality of fit when attempting to
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map carbon storage in the LowerNamoi Valley, NSW. Linear regression
and polynomials to the n-th degree by least-squares fitting have also
been additional methods for deriving continuous soil depth functions
(Colwell, 1970; Moore et al., 1972). However, the disadvantage of
these novel procedures is that the value of a property at any depth
affects the form of the fitted function at all depths (Ponce-Hernandez
et al., 1986). As a consequence, the inflexibility of these functions
results in a varied quality of fit (Webster, 1978).

Irrespective of the identity of soil attribute, a more flexible and
accurate method for fitting continuous functions of soil data is the use
of smoothing splines (Erh, 1972) and equal-area spline functions as
proposed by Ponce-Hernandez et al. (1986). Both Ponce-Hernandez
et al. (1986) and Bishop et al. (1999) provide a good mathematical
explanation of the operation of spline functions. Essentially, a spline
function is a set of local quadratic functions tied together with ‘knots’
that describe a smooth curve through a set of points. Bishop et al.
(1999) demonstrated their superiority over other continuous soil
depth functions when they predicted a number of soil properties
including soil pH, electrical conductivity (EC), clay content, organic
carbon content, and gravimetric water content.

Clearly, continuous soil depth functions such as equal-area splines
are advantageous for prediction of soil properties at specific depths.
However, in a spatial context, a collection of spline functions for
individual site observations will ultimately lead only to point ob-
servation data sets. To the parties concerned, such data will be of little
use when they require continuous estimates of soil property variation
across defined study areas or landscapes. The response to this demand
has been answered partly in the way of digital soil mapping, where
soil properties are mapped digitally based on their relationship with
environmental variables (Minasny et al., 2008). The scorpan factors
or environmental covariates as proposed by McBratney et al. (2003)
provide a valuable predictive framework for determining soil vari-
ability in areas with limited soil data.

Given the predictive capabilities of soil depth functions and an
explosion in the capabilities of digital soil mapping in areas with
limited data (Lagacherie, 2008), it seems only logical for there to be an
amalgam of both methods to quantitatively predict the vertical and
lateral variations of soil properties across a defined area. Using agro-
nomically important soil properties-soil carbon storage and available
water capacity (AWC) as the subjects for prediction, this paper pro-
poses a novel method of predicting both their spatial and depth-wise
variation. This is achieved in a number of stages:

(i) Fitting of equal-area spline functions to soil carbon and AWC
profile data

(ii) Assembly of a geo-database of environmental or scorpan factors
for a defined study area where the point observations exist.

(iii) Derive a neural network model using the best available set of
scorpan factors to predict the depth-wise variation of the two
soil properties.

(iv) Extrapolate the spline parameters onto the wider study area
where soil observations do not exist.

(v) Map the carbon storage and AWC of the entire study area to a
depth of 1 m.

(vi) Demonstrate the functionality of the resulting soil geo-database
for data enquiry.

2. Material and methods

2.1. Study area

The study site is situated in the lower valley of the Namoi River, near
Narrabri (30.32S 149.78E), approximately 500 km NNW of Sydney,
NSW, Australia.Within this areawhich covers approximately 1500 km2,
agriculture is the major landuse with irrigated cotton, wheat and pas-
toral farming being the predominant enterprises. Significant areas of
native vegetation are also present, where it is mostly concentrated on
the lower foothills of the Nandewar Range on the eastern flanks of the
study site.

2.2. Environmental data

For the purpose of digital soil mapping, a number of environmental
indices were sourced and interpolated onto a common grid of 90 m
resolution, encapsulating the study area. These included:

• Landsat 7 ETM+ images from 2003: b1 (0.45–0.52 μm), b2 (0.52–
0.60 μm), b3 (0.63–0.69 μm), b4 (0.78–0.90 μm), b5 (1.55–1.75 μm),
and b7 (2.09–2.35 μm). The Landsat bands were used to approxi-
mate the biosphere as a soil forming factor in terms of generalised
land cover and land use. Vegetation cover and type was approxi-
mated using the Normalised Difference Vegetation Index (NDVI)
determined by using bands b3 and b4, where:

NDVI = ðb4−b3Þ= ðb4 + b3Þ:

Furthermore, the band ratios or more commonly, soil enhance-
ment ratios of b3/b2, b3/b7 and b5/b7 were derived. It has been
proposed that these soil enhancement ratios can accentuate carbon-
ate radicals, ferrous iron, and hydroxyl radicals respectively in
exposed soil (Saunders and Boettinger, 2007).

• Gamma-radiometric survey data (Geosciences Australia, 2008). The
method of gamma-radiometric survey estimates the abundances
of potassium (40K), thorium (232Th) and uranium (238U) gamma-ray
radiation emitted from the earth's surface. Cook et al. (1996) dem-
onstrated that variations in the gamma-ray radiation of earth surfaces
correspond with the distribution of various parent materials over the
landscape.

• Digital elevation model (DEM) from the Shuttle Radar Topography
Mission (SRTM) terrain data. From the DEM, first and second de-
rivatives, namely: slope, aspect, terrain wetness index (TWI), flow
length, slope length factor (LS-factor), area above channel network
(AOCN) and streampower index (SPI)were determined.Moore et al.
(1993) and McKenzie and Ryan (1999) provide exemplar studies
where some or all of the derivatives have been used to derive rela-
tionships with the spatial distribution various soil properties.

2.3. The equal-area smoothing spline

The spline model we used is a generalisation of the quadratic
splinemodel of Bishop et al. (1999). Themodel by Bishop et al. (1999)
is when data are averages over adjacent horizons or layers in a soil
profile. The model used in this paper is more general where the data
are again averages of soil layers, but the supports of the data are not
adjacent. Given measurements for soil properties at n layers in a soil
profile, the boundaries of the layers are given in increments (u1, v1),
(u2, v2),… (un, vn), given that

u1 < v1≤u2< v2≤…≤un< vn:

The measurement of the bulk sample from layer i is assumed
to reflect the mean attribute level, apart from measurement error.
Mathematically, the measurements are modelled as

yi =
―

fi + ei:

It is assumed that the true soil attribute values vary smoothly with
depth. This is translated into mathematical terms. We denote depth
by x, and the depth function describing the true attribute values by
f(x); which mean that f(x) and its first derivative f′(x) are both
continuous, and that f′(x) is square integrable. The depths of the
boundaries of the n layers are given by xn<xn,…<xn, and fi ̅ is the
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mean value of f(x) over the interval (xi−1, xi) and ei are measurement
errors with mean 0 and variance σ2. f(x) represents a spline function,
which can be found by minimising:

1
n
∑
n

i=1
ðyi−

―

fiÞ2 + λ∫xn
xo
½f mðxÞ�2dx:

The first term represents the fit to the data, the second term mea-
sures the roughness of function f(x), expressed by its first derivative
f′(x). Parameter λ controls the trade-off between the fit and the
roughness penalty. The solution is a linear-quadratic smoothing spline,
linear between layers, and quadratic within layers. See Appendix A
for derivation.

2.4. Mapping the smoothing spline soil depth function

1. Collate legacy profile descriptions. They can have any kind of
variation in any depth increments as long as they describe some of
the variation in properties with depth. The soil dataset we used
consists of 341 soil profiles. 210 were sampled on a systematic,
equilateral triangular grid with a spacing of 2.8 km between sites
(McGarry et al., 1989). The further 131 soil profiles are distributed
more irregularly or on transects (Fig. 1). The dataset describes
and quantifies various soil morphological, physical and chemical
Fig. 1. The Edgero
attributes at depth increments of 0–0.1, 0.1–0.2, 0.3–0.4, 0.7–0.8,
1.2–1.3 and 2.5–2.6 m.

The focus of this study examines the vertical and lateral variabilities
of carbon storage and AWC across the Edgeroi area at the time of
measurement (1985–1987). The units of measurement used for carbon
and AWC are kg m−3 and m/m respectively for each depth interval.
Soil carbon was measured and calculated by McGarry et al. (1989).
Meanwhile, AWC was derived from a pedo-transfer function using
sand, clay and organic carbon as predictors (Minasny et al., 2006).

2. Fit the spline to the values for each property. This generates a
continuous profile description for each legacy soil profile. The
maximum depth of our fitted splines to the legacy profile data was
1 m. The spline function depends on a smoothing parameter
lambda (λ). For this parameter lambda values of 10, 1, 0.1, 0.01,
0.001, 0.0001 and 0.00001 were tried. The ‘best’ lambda value
coincided with the spline that had the highest prediction quality
i.e. the lowest root mean square error (RMSE). The ‘best’ lambda
values were recorded and then assessed to determine the most
frequently occurring value for each variable. This value was then
used as a blanket value to re-fit splines for all data points.

3. From the fitted spline, derive the mean value of the soil property
within defined depth increments. For this study, the mean values
at depth increments; 0–10, 10–20, 20–30, 30–40, 40–50, 50–70,
i study area.



Table 1
Accuracy of constructed neural networks for AWC with respect to iterative changes to
the number of nodes.

Nodes R2 Cross-validated R2

1 9% 38%
2 34% 19%
3 44% 15%
4 52% 4%
5 59% 0%

Fig. 2. Carbon neural network prediction vs. observed plots from 80 randomly selected valida
residuals at each prediction depth (d–f). Final prediction (model prediction+residual) vs. o
concordance correlation co-efficient.
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70–80 and 80–100 cm were derived from the splines. The values
for each property for each of the depth increments become the
input for training data sets that are modelled against environ-
mental covariates. The expectation is that there will be a number
of surfaces (in our case — 8) for any region of interest. One surface
for each of the proposed depth increments.

4. Implement a model framework to derive relationship between the
training data set and environmental covariates. Firstly, we joined
the model inputs (based on their spatial location) to the envi-
ronmental data using the nearest neighbour method. Stepwise
regression was used to determine the best combination of envi-
ronmental variables to predict both carbon content and AWC.
tion points at a) 0–10 cm b) 30–40 cm and c) 80–100 cm. Semi-variogrammodels of the
bserved plots at each prediction depth (g–i). RMSE: root mean square error. CCC: Lin's



Fig. 3. Validation of measured soil attribute (McGarry et al., 1989) vs. final predictions at 0–10 cm, 10–20 cm, 30–40 cm, and 70–80 cm for a) carbon and b) AWC. CCC: Lin's
concordance correlation co-efficient.
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A systematic approach was implemented for modelling the training
data against the environmental covariates. Successive neural networks
were constructed for a training dataset each soil attribute, each time
adjustingmodel complexity by way of increasing the number of hidden
nodes. We used neural networks on the basis that predictions can be
made simultaneously at each depth interval for each iteration. For each
iteration, 33%of the trainingdatawasused for cross-validationpurposes
in order to assess model over-fitting. Therefore, without compromising
model predictive capability, we opted for models that also had a
reasonable predictive capability for the cross-validated training data.
Table 1 below shows this systematic model construction and selection
process (using AWC as the example). Here we chose the third option
(3 nodes).

Once selected, formulae for each model depth interval were saved
for later use to predict in areas where data observations were not
available. Residuals (raw depth interval value derived from spline
minus modelled value) were calculated and then kriged (local) onto
the common 90 m grid as used for the environmental factors to
determine the spatial pattern random error.

5. Interpolate model rules or formulae onto the study area where
informationonly relating to the environmental covariates exists. The
kriged residuals (from Step 4 of general procedure) were added to
the predictions. Ultimately this resulted in a final prediction for each
modelled depth interval (0–10, 10–20, 20–30, 30–40, 40–50, 50–70,
70–80 and 80–100 cm) at each pixel within the study area. For each
soil attribute splines were reconstructed using the lambda param-
eter (from Step 2) and predicted value of each soil attribute at
each depth interval as inputs. From this, maps displaying the total
cumulative value of each soil attribute were produced.

Additionally, for demonstration of functionality, the resulting geo-
database of soil information generated in this study was queried for
the following three scenarios:

1) At what depth does soil carbon first decrease to below 1%?
2) At what depth in the soil canwe find the cumulative sum of carbon

equal 5 kg m−2?
3) What is the lowest depth at which total AWC equal 100 mm?
Fig. 4. Fitted splines (dashed lines) of observed carbonprofiledata (polygons) atfive randomly s
observed carbon profile data (polygons) at same selected sites (f–j).
Maps were produced in order to visualise the results of each
scenario.
2.5. Model validation

For model validation, the profile formulae were applied to 80
validation data points selected randomly from the original dataset.
Residuals, coinciding with the location of each validation point were
extracted from the 90 m grid of residuals then added to the estimated
depth values, equating to a final prediction. To visually assess the fit
of predictions against observed legacy soil information, splines for
selected validation data points were reconstructed using the 8 pre-
dicted depth increments and defined lambda parameter (from Step 2)
as inputs.
3. Results

3.1. Fitting equal-area splines to the dataset

The raw carbon data displayed a log-normal distribution and
subsequently was log-transformed prior to fitting the splines. The
data for AWC did not require any transformation. For carbon the
standard deviation of the log-transformed data was found to be 0.89
with data values ranging from 0.0–4.7 log(kg m−3). Overall, the best
fitting splines were found to have a lambda (λ) value of 0.01. AWC
values ranged from 0.05 to 0.23 mm−1 with a standard deviation of
0.03. The best fitting splines for AWC were also found to have a λ
value of 0.01.
3.2. Stepwise regression of environmental factors

Elevation, slope, radiometric K, band 5 and band ratios 3/7 and 5/7
were found to be strong covariates for both carbon and AWC
predictions. Other environmental factors of importance for carbon
prediction included altitude above channel network, stream power
index and bands 3 and 4. While for AWC, LS-factor, terrain wetness
index and NDVI were strong prediction covariates.
elected sites (a–e). Digital soilmappredictiondepth functions of carbon (dashed lines) and
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3.3. Neural networks for prediction of carbonandAWC from environmental
factors

From the systematic approach of neural network training, we
selected models for carbon and AWC that featured 2 and 3 hidden
nodes respectively as being the most appropriate (compromise
between model predictive capability and over-fitting). Both neural
networks resulted in fits where the R2 value was 44%. Cross-validation
of the training datasets resulted in R2 values of 10% and 14% for carbon
and AWC respectively. Depth wise, the prediction of carbon was best
between 20 and 70 cm where the RMSE ranged between 0.27 and
0.30. The top of the soil profile was adequately predictedwhere 50% of
the data variation for that layer could be explained. The predictions of
the depth function for AWCwere similar in that predictions were best
between 20 and 70 cm. The least predictive estimates were found at
the top of the profile (0–10 cm) followed by predictions at the bottom
of the profile (80–100 cm).

Model residuals at each depth interval were kriged using local
neighbourhood prediction models. For both carbon and AWC, whilst
there was some spatial patterning of residuals looking at each depth
increment independently, there was no similarity in the spatial
distribution of residuals when comparisons were made between each
depth increment. Overall, a general observation was that there was
only a slight degree of spatial auto-correlation of residuals for both
soil attributes.
3.4. Model validation with the 80 withheld data points

Validation of AWC indicated that model fits were significantly
better than in the top 20 cm of soil compared to the rest. The R2 values
for the top two depth increments prior to the addition of residuals
were 28% (0–10 cm) and 25% (10–20 cm). For the remaining soil
profile (20–100 cm), R2 values ranged between 6 and 12%. Fig. 2a–c
illustrate the observed vs. fitted plots at the selected depth increments
of 0–10 cm, 30–40 cm and 80–100 cm respectively prior to the
addition of residuals. At these depths, Lin's concordance coefficients
(CCC) range between 0.23 and 0.44 indicating a moderate
agreement, with the strongest agreement for the 0–10 cm depth
increment. While there was some spatial pattern in the distribution
of residuals (Fig. 2d–f), their addition to predicted estimates of
AWCmade only a little improvement on the final predictions where
R2 values ranged between 8 and 29% (RMSE: 0.01). CCC also indicate
a modest improvement in predictions resulting from the addition of
residuals (CCC: 0.27–0.49). Fig. 2g–i illustrate the observed vs. final
prediction plots at the aforementioned selected depth increments.

Prior to the addition of residuals, validation of the neural networks
on the 80 withheld data points indicates that the accuracy of carbon
prediction decreased for each depth interval. For the top 40 cm of the
soil profiles, model fits resulted in R2 values between 17 and 24%. For
the bottom 60 cm, R2 values ranged between 13 and 15%. Despite the
fact that there was not a very well defined spatial distribution of
residuals at any significant separation distances >160 m (data not
shown), the addition of residuals to predictions had an overall
improvement on model fits at all depth increments where R2 values
ranged between 20% and 27% (RMSE: 0.30–0.52).

For an additional validation; the majority of the raw data of each
soil variable were measured at specified depth ranges, for example, at
0–10 cm, 10–20 cm, 30–40 cm and 70–80 cm among others. Valida-
tion results at these specific depth increments indicate good fits for
both carbon and AWC (Fig. 3a–b). For carbon (R2: 35%), the strongest
agreements between themeasured and final predicted carbonwere in
Fig. 5. Fitted splines (dashed lines) of observed AWC profile data (polygons) at five randoml
and observed AWC profile data (polygons) at same selected sites (f–j).
the 30–40 cm and 70–80 cm depth ranges. Conversely for the 0–
10 cm and 10–20 cm it can be seen that there are a greater proportion
of systematic deviations from the 45° line. The resulting CCC of 0.56 is
indicative of this. For AWC (R2: 56%), there was overall a good
agreement between the measured and final predicted values (CCC:
0.74), with no obvious deviations at specific depth increments.

Five data points were selected at random from the 80 validation
points to graphically represent model predictions with observed data.
These representations are shown in Figs. 4f–j and 5f–j for carbon and
AWC respectively. The polygons represent the measured value at the
specified depth increment. These figures are compared to the spline
fits of the observed data calculated in the first stage of this study
(Figs. 4a–e and 5a–e). Carbon values were back-transformed after the
construction of the modelled spline estimates. Comparing the
modelled spline functions fitted to the raw data indicate that there
is an average agreement between the predictions and the observed
values. While not fitting exactly to the raw data, the splines are
sensitive to actual changes in carbon down the profile and follow the
general trend of carbon distribution as from the raw data. For these
graphical examples, the greatest errors of prediction were found at
the surface, particularly at ed002 and ed044 (Fig. 4f and g). At these
sites the actual vs. predicted values of volumetric carbon differed by
up the 7 kg m−3.

For AWC prediction there was also only a fair agreement between
the predicted spline depth functions and raw values (Fig. 5f–j). In
general the largest disagreement between predicted and actual values
was found at the soil surface, particularly at ed033, ed039, and ed157
(Fig. 5f, g, and i) where AWC differed by up to 0.05 m/m.

3.5. Mapping carbon storage and available water capacity

Total carbon storage in the soil of the study area ranged between 1
and 50 kg m−2 to a depth of 1 m (Fig. 6a). The total average carbon
storage was 9.5 kg m−2, with the highest levels found to the eastern
and southern sections of the area (8–50 kg m−2). From a generalised
perspective these areas coincidewith particular land uses not dedicated
to cropping for example in forested areas, along watercourses and
grazing areas. The cropping areas, situated in the northern and western
sections of the area have the lowest carbon storage (1–7 kg m−2). This
trend is similar for thedescription of the spatial variability of AWC.Here,
AWCrangedbetween76and169 mmtoadepth of 1 m,with anaverage
of 125 mm (Fig. 6b). For the cropping areas to the north-west, AWC
ranged mostly between 91 and 120 mm.

The whole-soil profile maps (displayed as depth increments) of
carbon storage and available water capacity are shown in Figs. 7 and 8.
It can be observed that carbon is more abundant in the surface layers
than in the sub-surface layers. The amount of carbon in the surface
layer (0–10 cm) of the cropping soils ranges between 6 and 9 kg m−3.
While for areas with natural vegetation, volumetric carbon ranges
between 15 and 51 kg m−3 at the soil surface.

AWC in the 0–10 cm layer across the study area is relatively
homogeneous where it ranges between 0.12 and 0.205 mm–1, the
lowest values occurring where cropping is practiced in the east of the
study area. In all cases AWC decreases with the increase in soil depth.
However, the rate of decrease in soil water is higher in areas where
the land cover is either under native vegetation or pasture.

3.6. Scenario-based queries of the generated soil geo-database

By calculation, the geo-databases generated in this study each
contain over 200million bits of information (210370 lateral or grid
y selected sites (a–e). Digital soil map prediction depth functions of AWC (dashed lines)
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Fig. 6. Predicted total carbon (kg m−2) and available water capacity (mm) to a depth of 1 m across the Edgeroi study area.
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square observations×100 depth observations) that describe the vertical
and lateral variabilities of carbon storage and AWC in the Edgeroi area.

As can be observed in Fig. 9a the depth at which soil carbon drops
below 1% is quite variable across the study area where it ranges from
1 cm to over 1 m, with the average depth at 21 cm. The cropping areas
situatedmostly to the western areas of the study area tend to have the
highest concentration of soils where in the top 5 cm of soil, soil carbon
falls below 1%. In most cases in these areas, even at 2 cm below the
surface, soil carbon has already decreased to below 1%. Conversely,
the areas that do not appear to be cropped maintain soil carbon levels
above 1% to greater depths. The range of depths at which soil carbon
decreases to below 1% is much larger than that observed in the areas
where cropping is practiced and would be predominantly due to land
use (grazing as apposed to dense vegetation etc) and other factors
such as parent materials and proximity to waterways.

There is some correlation between the depth at which soil carbon
decreases to below 1% and depth at which the cumulative sum of
carbon equals 5 kg m−2 (Fig. 9b). This simple relationship highlights
the negative exponential distribution of carbon in a soil profile, where
carbon ismost concentrated at the surface but decreases exponentially



Fig. 7. Predicted soil profile carbon (kg/m3) to 1 m displayed in 8 profile layers.
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with increased soil depth. Therefore, the soils with low carbon storage
i.e. greater depths required to attain 5 kg m−2 are the ones that have
initially low concentrations of carbon at the soil surface. Despite a
number factors determining the variability of carbon across the study
area the average depth required to attain 5 kg m−2 was found to be
50 cm.

In terms of the soil depth required to attain 100 mm of AWC
(Fig. 9c), the results indicated that the shallowest depth needed was
55 cm. However the frequency of this phenomenon occurring was
relatively sparse and tended to be concentrated close to waterways or
sources of water. Nevertheless the average depth required to attain
100 mm of AWC was 79 cm. There were some sparse areas where
greater than 1 m was required. While variability in depth required
does not appear significant, which could be due to a similarity in
climate, a pattern of land use effect appears evident. Here the areas
that have cropping have marginally less AWC than those that do not,
reflecting both an increased pressure on AWC to sustain crops and an
increase in evaporation due to cultivation effects.



Fig. 8. Predicted soil profile available water capacity (m/m) to 1 m displayed in 8 profile layers.
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4. Discussion

The Edgeroi area represents an ideal location for testing the
methodologies of this study. First, the placement of survey sites in a
Fig. 9. Maps of scenario-based queries. a) Depth at which soil carbon decreases to below 1%
cumulative sum of AWC equals 100 mm.
mostly equilateral grid means that site location is random with
respect to the topography, landuse and soil type (McGarry et al.,
1989). Secondly, the density of observations at each site ensures that
the vertical distribution of soil properties is sufficiently represented.
. b) Depth at which cumulative total of soil carbon equals 5 kg m−2. c) Depth at which
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Our predictionmodels of carbon and AWCwere able to account for
44% of the variation of these properties across the study area. Similar
accuracy assessments of models have also been reported for other
digital soil mapping studies, for example, Ryan et al. (2000) and
Florinsky et al. (2002). Broadly, these results are acceptable given that
for quantitative soil spatial models, R2 over 70% are unusual and
values of 50% or less are common (Beckett and Webster, 1971). Our
studies show that while the shape of the predicted spline depth
functions is determined by the modelled depth increments, their
flexible and sensitive nature makes them quite conducive for digital
soil mapping purposes as we can fit them to any type of soil property
and then derive information from them to use as model inputs. Post-
modelling, the reconstruction of splines results in densely populated
datasets with fine vertical resolution (1 cm) which can be queried as
per the intentions of the user.

Validation results (R2) of between 20–27% and 8–29% for carbon
and AWC indicated that the predictions were not as good as those
generated by the prediction model. These results are confounding,
given that our predictions at specific measured depths of the soil
profile were of much greater agreement. Nevertheless, we did not
expect to improve upon the results of the calibrationmodels as we are
trying to predict soil depth functions just from a suite of environ-
mental variables. Many studies of mapping continuous soil properties
are rarely validated. Studies that have, such as Minasny et al. (2006),
(R2=50%) and Stoorvogel et al. (2009) (R2=8–23%) as examples,
also reported average validation results. In this study, average
validation results could have stemmed from the fact that the models
performed better for predicting surface soil conditions compared to
sub-surface conditions (Minasny et al., 2006). Particularly for AWC,
there was significant error propagation with depth. While the
environmental variables that were used to predict carbon and AWC
are important sources of variability, it is likely we have not fully
realised other sources of variability. In other words, we may have
captured most of the variation of these soil properties at the soil
surface using the existing data sources but we need to explore and
seek out current and new data sources that will also explain their
variation in the soil sub-surface. Additionally, we also found that the
spatial distribution of residuals displayed very little patterning. This
affected the final model predictions in that only a slight improvement
was achieved when they were incorporated into predictions. Other
studies such as Odeh et al. (1995) and Stacey et al. (2006) have
reported greater success using the regression kriging approach we
implemented for this study.

Given that we need to address the predictive performance of our
models, there should not be an expectation that modelled observations
will laterfit exactlywith the rawdata. For each step in thismethodology,
there has been propagation of some degree of uncertainty or error in
prediction. This uncertainty could be translated as being a combination
of both metrical and structural uncertainty (Rowe, 1994). Metrical
uncertainty is unavoidable because our reliance onmodels to define real
objects. For example, calculating the various terrain attributes from a
digital elevationmodel is derived from a series of polynomial equations
of various orders fitted using least-squares (Skidmore, 1989). However,
structural uncertainty in this study would be the most prevalent due to
the fact that we are modelling environmental phenomena. Natural
systems are inherently complex and difficult to define (Young, 1998); a
collection of environmental factors alone will never account for the
entire variability of natural processes. In a lot of cases, models of natural
systems do not account for interactions between factors, or more often
there are a whole suite of other factors which are not considered or
difficult to interpret (Young, 1998). This brings us back to the point
discussed previously where new and alternative data sources are
needed if we want to capture more of the soil variability in both lateral
and vertical spaces.

While it is likely that improvements can be made if we follow
these suggestions, what we really want is to be able to account for the
known and unknown structural and metrical uncertainties within
our predictions. Estimation of the uncertainty for model outputs
can be approached via a number of alternatives which include fore-
casting model outputs probabistically; analysing the statistical prop-
erties model outputs and observed data; usage of simulation and re-
sampling based techniques; or via methodologies based on fuzzy
theory and machine learning techniques (Shrestha and Solomatine,
2006). The study completed by Shrestha and Solomatine (2006)
propose a novel method whereby they express uncertainty in the
form of two quantiles (prediction interval). Future studies will have
to explore these ideas further, but expressing a prediction within a
defined interval rather than having a single estimate seems an ap-
propriate route to follow when we are modelling difficult environ-
mental processes over large spatial scales.

Overall, the maps of carbon storage and AWC are the ‘end-product’
of a richly populated dataset of their variability with depth and across
the Edgeroi area. At first glance, interpretations can be made to
describe the pattern of variability. More importantly, behind these
maps is an invaluable geo-database of quantitative soil information
suited to the requirements of end-users for the assessment and
monitoring of soil resources. The versatility of this data was
demonstrated by the three scenarios that queried the underlying
geo-database.

5. Conclusions

• Spline functions are sensitive and flexible to the variation of both
carbon and AWC with soil depth and are thus quite amendable to
use within the digital soil mapping framework.

• This study identifies two types of predictive uncertainty— structural
and metrical. Our validation results indicate there is a need to
address these forms of uncertainty. By incorporating a measure of
uncertainty within predictions, improving the model calibration
process and using new and existing alternative data sources as
model variables, we envisage that more reliable estimates can be
generated to describe the lateral and vertical variations of soil in
prescribed study areas.

• This study provides an example where a rich soil attribute geo-
database can be generated from a limited soil dataset.We highlighted
the functionality of this geo-database in termsof data enquiry for user-
defined purposes.

Appendix A

The following is the derivation for the quadratic smoothing
spline:

Given measurements for soil properties at n layers in a soil profile,
the boundaries of the layers are given in increments (u1, v1), (u2, v2),…
(un, vn), given that

u1< v1≤u2<v2≤…≤un<vn:

The measurement of the bulk sample from layer i is assumed to
reflect the mean attribute level, apart from measurement error.
Mathematically, the measurements are modelled as

yi =
―

fi + ei: ð1Þ

It is assumed that the true soil attribute values vary smoothly
with depth. This is translated into mathematical terms. We denote
depth by x, and the depth function describing the true attribute
values by f(x); which mean that f(x) and its first derivative f′(x) are
both continuous, and that f′(x) is square integrable.

The depths of the boundaries of the n layers are given by xn<xn,…
<xn. Where f

–
i is the mean value of f(x) over the interval (xi−1, xi) and
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ei are measurement errors with mean 0 and variance σ2. f(x)
represents a spline function, which can be found by minimising:

1
n
∑n

i = 1ðyi−
―

fiÞ2 + λ∫xn
xo
½f ′ðxÞ�2dx: ð2Þ

The quadratic spline

We define quadratic spline s(x), in each layer, it conforms to a
quadratic polynomial p(x). The polynomials pi(x) and pi+1(x) for two
adjacent layers meet smoothly at the boundary. The curve is given by

sðxÞ = piðxÞ for xi−1≤ x≤ xi; i = 1;2;…;n:

The smoothness conditions are

piðxiÞ = pi + 1ðxiÞ

p′iðxiÞ = p′i + 1ðxiÞ

for i=1, 2,…, n−1, and

p1ðx0Þ = 0

p′nðxnÞ = 0:

The latter two conditions mean that s(x) is a natural spline. The
points (xi,s(xi)) at the layer boundaries are called knots, and each xi is
referred to as a knot location. We define

fi = sðxiÞ = piðxiÞ:

bi = s′ðxiÞ = p′iðxiÞ:

for i=1, 2,…, n.

Quadratic polynomials

A quadratic polynomial can be written as:

pðxÞ = β0 + β1x + β2x
2

with coefficients β0,β1,β2. In the case where the polynomial is over
depth interval (t, u) where u> t, then the coefficients can be
determined from p′ðtÞ; p′ðuÞ;―p = ∫u

t pðxÞdx= ðu−tÞ:
This is expressed as:

pðxÞ = ―
p− p′ðuÞ + 2p′ðtÞ

6
Δ + p′ðtÞðx−tÞ + p′ðuÞ + 2p′ðtÞ

2Δ
ðx−tÞ2 ð3Þ

for t≤x≤u, where Δ=(u− t).

Smoothing quadratic splines

Since f(x) is represented as a natural quadratic spline s(x), f′(x) is a
linear function between knots. For any linear function l(x), we have

∫t
u½f ′ðxÞ�2dx =

u−t
3

ðlðtÞ2 + lðuÞlðtÞ + lðuÞ2Þ:

Hence

∫xn
xo
½f ′ðxÞ�2dx = ∑

n

i=1

xi−xi−1

3
ðbni−1 + bi−1bi + b2i Þ:
The condition that f(x) is continuous at the internal knots yields:

piðxiÞ = pi+1ðxiÞ

for i=1, 2,…, n−1. Using Eq. (3), this translates into a set of
equations:

bi−1ðxi−xi−1Þ + 2biðxi+1−xi−1Þ + bi+1ðxi + 1−xiÞ = 6ð
―

f i+1−
―

f iÞ

for i=1, 2,…, n−1.
This can be expressed in a matrix form. Let R be the (n−1)×

(n−1) symmetric tridiagonal matrix with diagonal elements Rii=
2(xi+1−xi−1) and off-diagonal elements Ri+1,i=Ri,i+1=xi+1−xi.
Then

∫xn
xo
½f ′ðxÞ�2dx =

1
6
b
0
Rb:

Eq. (2) becomes

1
n
ðy � f̄ Þ′ðy � f̄ Þ + λ

6
b
0
Rb:

Minimising with respect to f ̅, the solution is represented as

½I + 6nλðR−1
Q

0 Þ0 RðR−1
Q

0 Þ0 � f̄ = y

where I is the identity matrix, Q is a (n−1)×n matrix with Qii=−1,
Qi,i+1=1 and Qij=0 otherwise. Solving this equation yield the fitted
layer values f̂̄ . The fitted values at the knots can be obtained from

b̂ = 6R−1
Q

0
f̂̄

and (3).
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