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We use an empirical method where model output uncertainties are expressed as a prediction interval (PI) of
the underlying distribution of prediction errors. This method obviates the need to identify and determine the
contribution of each source of uncertainty to the overall prediction uncertainty. Conceptually, in the context of
digital soil mapping, rather than a single point estimate at every prediction location, a PI, characterised by
upper and lower prediction limits, encloses the prediction (which lies somewhere on the interval) and ideally
the true but unknown value 100(1−α)% of times on average the target variable (typically 95%). The idea is to
partition the environmental covariate feature space into clusters which share similar attributes using fuzzy k-
means with extragrades. Model error for predicting a target variable is then estimated from which cluster PIs
are constructed on the basis of the empirical distribution of errors associated with the observations belonging
to each cluster. PIs for each non-calibration observation are then formulated on the basis of the grade of
membership each has to each cluster.
We demonstrate how we can apply this method for mapping continuous soil depth functions. First, using soil
depth functions and digital soil mapping (DSM) methods, we map the continuous vertical and lateral
distribution of organic carbon (OC) and available water capacity (AWC) across the Edgeroi district in north-
western NSW, Australia. From those predictions we define a continuous PI for each prediction node,
generating upper and lower prediction limits of both attributes. From an external validation dataset,
preliminary results are encouraging where 91% and 93% of the OC and AWC observations respectively fall
within the bounds of their 95% PIs. Ideally, 95% of instances should fall within these bounds.
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1. Introduction

Soil scientists are acutely aware of the current issues concerning
the natural environment because our expertise is intimately aligned
with their understanding and alleviation. We know that sustainable
soil management alleviates soil degradation, improves soil quality and
will ultimately ensure food security. Critical to better soil manage-
ment is information detailing the soil resource, its processes and its
variation across landscapes. Consequently, under the broad umbrella
of ‘environmental monitoring,’ there has been a growing need to
acquire quantitative soil information (Grimm and Behrens, 2010;
McBratney et al., 2003). The concerns of soil-related issues in
reference to environmental management were raised by McBratney
(1992) when stating that it is our duty as soil scientists, to ensure that
the information we provide to the users of soil information is both
accurate and precise, or at least of known accuracy and precision.

However, a difficulty we face is that soil can vary, seemingly
erratically in the context of space and time (Webster, 2000). Thus the
conundrum in model-based predictions of soil phenomena is that
models are not ‘error free.’ The unpredictability of soil variation
combined with simplistic representations of complex soil processes
inevitably leads to errors in model outputs.

We do not know the true character and processes of soils and our
models are merely abstractions of these real processes. We know this;
or in other words, in the absence of such confidence, we know we are
uncertain about the true properties and processes that characterise
soils (Brown and Heuvelink, 2005). The key is therefore to determine
to what extent our uncertainties are propagated through a model of
which effect the final predictions of a real-world process.

In modelling exercises, uncertainty of the model output is the
summation of the three main sources generally described as: model
structure uncertainty, model parameter uncertainty and model input
uncertainty (Brown and Heuvelink, 2005; Minasny and McBratney,
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Fig. 1. The prediction interval, characteristic features and general descriptive
terminology.
Adapted from Shrestha and Solomatine (2006).
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2002b). The general procedure is to determine independently the
contribution of each source to the overall uncertainty. One obvious
issue of this is that generating estimates of uncertainty for each of the
sources could become a prohibitive exercise in terms of time and cost.

With this in mind, there are a number of approaches to estimate
the uncertainty of model outputs. One of these is an empirical
approach in which the residuals between modelled outputs and
corresponding observed data are used to formulate a prediction
interval (PI). Such an approach was proposed by Shrestha and
Solomatine (2006) where uncertainty is expressed in the form of two
quantiles of the underlying distribution of model error (residuals). It
is stated that the PI explicitly takes into account all sources of
uncertainty and circumvents attempts to separate out the contribu-
tion of each source (Shrestha and Solomatine, 2006; Solomatine and
Shrestha, 2009). Their idea is to partition a feature space into clusters
(with a fuzzy k-means routine) which share similar model errors. A PI
is constructed for each cluster on the basis of the empirical
distribution of residual observations that belong to each cluster. A PI
is then formulated for each observation in the feature space according
to the grade of their memberships to each cluster. They applied this
methodology to artificial and real hydrological data sets and it was
found to be superior to other methods which estimate a PI. The
Shrestha and Solomatine (2006) approach computes the PI indepen-
dently and while free of the prediction model structure, it requires
only the model or prediction outputs. Tranter et al. (2010) extended
this approach to deal with observations that are outside of the training
domain.

Application of the Shrestha and Solomatine (2006) approach for
estimating model output uncertainty has not previously been
attempted in a digital soil mapping (DSM) framework where they
are often infrequently reported (Grunwald, 2009). Such was the case
in Malone et al. (2009) where a methodology for mapping continuous
depth functions of soil attributes was introduced. Other than to
identify the sources, no attempt wasmade to address the contribution
of each source to the overall uncertainty. Given the modest results in
terms of accuracy, particularly with increasing soil depth it was
assumed that significant model uncertainties existed. It is thought
that given the complexity of the modelling component to generate
predictions both in a vertical and lateral space, that traditional forms
of uncertainty analysis would be prohibitive and time consuming. A
pragmatic approach to this dilemma is to use an empirical
methodology in a similar fashion to that presented by Shrestha and
Solomatine (2006) and Tranter et al. (2010) who view the model
residuals as the best quantitative measure of the discrepancy between
a model and the modelled real-world process.

The method we present here modifies slightly the Shrestha and
Solomatine (2006) and Tranter et al. (2010) approach to suit it for a
DSM framework. It extends the idea of model uncertainty by
extrapolating the uncertainty parameters across the extent of a
defined area so that mapping the continuous depth functions (Malone
et al., 2009) involves both the mapping of predictions and their
uncertainties. In addition to presenting this modified approach to
uncertainty analysis, we also perform an external validation in order
to gauge how successful this method works for this particular
application of DSM.

2. Theory and scope of work

2.1. The prediction interval as a measure of uncertainty

The characteristics of a PI include both upper and lower prediction
limits. The interval between the prediction limits constitutes the PI
(Fig. 1). Given a prescribed probability such as a 95% confidence level,
a future unknown value is expected to lie somewhere along this
interval. There is a clear distinction between a PI and a confidence
interval (CI), however. A CI tells us how well or how accurate is the
estimate of a true regression to predict one variable from another.
Conversely, the PI deals with the accuracy of the prediction with
respect to the corresponding observed value. Thus a PI is alwayswider
than a CI because it includes both the uncertainty in knowing the
value of the population mean, and the uncertainty of the new
measurement (Altman and Gardner, 1988).

Calculating the PI for a given observation following the method of
Shrestha and Solomatine (2006) is performed independently of the
model building or calibration process. Solomatine and Shrestha
(2009) refer to this as “uncertainty estimation based on local errors
and clustering” (UNEEC). The purpose of the UNEEC is to derive the
upper and lower prediction limits based on the model error, and since
it is estimated through empirical distribution, it is not necessary to
make any assumption about residuals (Solomatine and Shrestha,
2009). First a user-defined class of regression is performed to estimate
the target variable from one or a suite of predictor variables or
covariates. The prediction outputs are compared to their observed
corresponding values; the residuals are recorded. Using a clustering
routine such as fuzzy k-means (Bezdek, 1981), the calibration dataset
is partitioned into c clusters corresponding to different values or
distributions of the residuals. It is assumed that the region in the
feature space associated with any particular cluster has similar
residuals or residuals with similar distributions. Once the clusters
have been identified, the PIs for each cluster are computed from
empirical distributions of the corresponding residuals. To construct a
100(1−α)% prediction, the (α/2)×100 and (1−α/2)×100 percentile
values are taken from the empirical distribution of residuals for the
lower and upper prediction limits respectively. The computation of
the PI for each calibration observation is straightforward if it belongs
entirely to one cluster as would be the case where the input space is
divided into crisp clusters e.g. hard clustering. However in the case of
fuzzy clustering, where each observation belongs to all available
clusters with respect to a membership grade, a “fuzzy committee”
approach is used where the PI is computed using the weighted mean
of the PI of each cluster (Shrestha and Solomatine, 2006). This can be
defined mathematically as:

PILj = ∑c
i=1mijPIC

L
j

PIUj = ∑c
i=1mijPIC

U
j

ð1Þ
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where PIi
L and PIi

U correspond to the weighted lower and upper PI for
the ith observation. PICiL and PICi

U are the lower and upper PIs for each
cluster j, andmij is the membership grade of ith observation to cluster
j. Finally, the lower and upper prediction limits (PLiL and PLi

U

respectively) are derived for each calibration observation by adding
the prediction (from the prediction model) to PIi

L and PIi
U.

2.2. Validating the prediction interval

Validation of the PI is performed externally with a dataset separate
from the calibration dataset. In the context of DSM, data splitting or
collecting additional samples using some sort of probability sampling
are the most common methods for which validations are then based
upon; see Grinand et al. (2008) and Kempen et al. (2009) for recent
examples of each. The procedure for validating (the PI) follows closely
with Shrestha and Solomatine (2006) in which the idea is to simply
determine whether each of the validating observed values is inside
their respective prediction limits. By definition, the prediction limits
enclose the true but unknown value (1−α)% of times on average
(typically 95%). The performance of the model is therefore evaluated
by means of a prediction interval coverage probability (PICP)
(Shrestha and Solomatine, 2006) whereby the PICP is the probability
that all observed values fit within their prediction limits and is
estimated by:

PICP =
1
V
count i

i: PLLi ≤ obsi ≤ PLUi

ð2Þ

V is the number of observations in the validation dataset. The
clustering technique and uncertainty model is said to be optimal
when the PICP value is close to the 100(1−α)%.

2.3. Fuzzy clustering

Particularly important in this study is what methodology of
clustering we use, especially in the context of soil variability and
identifying regions in a study area where predictions are more certain
in some areas in comparison to other areas. In general terms,
clustering is the unsupervised partitioning of a feature space into
natural groups or clusters which share some measure of similarity.
Many clustering techniques are in existence for which Jain et al.
(1999) comprehensively reviews. In the domain of soil science, the
most widespread clustering algorithms are non-hierarchical or in
other words, have a partitional basis (McBratney and Odeh, 1997).
The k-means algorithm is the simplest partitional clustering method
and aims to minimise the within-class sum of square distances
between the input space observations and the corresponding cluster
centroids (McQueen, 1967). An extension of the k-means algorithm is
fuzzy k-means (FKM) which allows each observation a degree of
membership to j clusters (Bezdek et al., 1984). Because soil is both
spatially and temporally continuous, the FKM approach to classifica-
tion is more commonly used. The FKM algorithm minimises the
objective function:

JðC;MÞ = ∑
n

i=1
∑
c

j=1
mφ

ij d
2
ij

i = 1;…;n; j = 1;…; c

ð3Þ

where C is the c×p matrix of class centres, M is the n×c matrix of
partial memberships, mij∈ [0,1] is the partial membership of the ith
observation to the jth cluster, φ≥1 is the fuzziness exponent.
Increasing φ results in a fuzzier partition between clusters. The
square distance between the ith observation and jth cluster centre is
dij
2. A more detailed explanation of the FKM algorithm can be found in

Bezdek (1981). Essentially FKM gives the number of clusters; it
defines class centroids based on each variable and calculates optimally
the memberships of each observation to each defined cluster.

McBratney and de Gruijter (1992) recognised a limitation of the
FKM algorithm in that it had the inability to distinguish between
observations very far from the cluster centroids and those at the
centre of the centroid configuration. The observations were termed
extragrades as opposed to intragrades, which are the observations
that lie between themain clusters. The extragrades are considered the
outliers of the data set and have a distorting influence on the
configuration of themain clusters (Lagacherie et al., 1997). McBratney
and de Gruijter (1992) developed an adaptation to the FKM algorithm
which distinguishes observations that should belong to an extragrade
class. The FKM with extragrades algorithm minimises the objective
function:

Je C;Mð Þ = α ∑
n

i=1
∑
c

j=1
mφ

ij d
2
ij + ð1−αÞ ∑

n

i=1
mφ

i� ∑
c

j=1
d−2
ij ð4Þ

The notation is similar to the FKM algorithm except where mi*

denotes the membership to the extragrade class. This function also
requires the parameter alpha (α) to be defined which determines the
degree of importance attributed to the extragrade class. Details of
FKM with extragrades are comprehensively discussed in McBratney
and de Gruijter (1992) and Odeh et al. (1992).

Shrestha and Solomatine (2006) used a FKM algorithm for their
clustering routine which also implemented the Euclidean distance
measure where equal weight is given to all the variables in the feature
space. For this study we implement the FKM with extragrades
algorithm for the reasons described above. Tranter et al. (2010) also
point out that extragrade instances exist spatially in regions of low
density calibration data. As a consequence, this fact also confers a low
reliability of prediction in these areas which is an important
consideration in the context of DSM. A Mahalanobis distance measure
is also used in our procedure and for reasons discussed in more detail
later is on the basis that we cluster the feature space based on a suite
of available soil prediction covariates rather than the prediction errors
themselves. The Mahalanobis distance takes into account the
correlation between variables in the feature space.

2.4. Adaptation of the of the UNEEC approach for digital soil mapping of
continuous depth functions

In order to use the UNEEC procedure of Shrestha and Solomatine
(2006) and Solomatine and Shrestha (2009) within a DSM frame-
work, some critical modifications and assumptions need to be made.
The first involves the feature space clustering such that the model
errors are calculated on the basis of the available soil state factors. The
idea is to perform the clustering routine prior to estimating model
errors after which the cluster PIs are then formulated. The key
assumption of this paper therefore is that particular areas within a
landscape will have similar residuals or distribution of residuals and
ultimately share a similar range of uncertainty.

The second modification or moulding to a DSM framework is the
question of how we extend the PI to prediction nodes that have not
been visited. Like in any DSMproject, training rules are constructed on
calibration data which are then extrapolated across a study area
where only the prediction covariates are known. This approach is
maintained for estimating the uncertainties at these sites whereby the
cluster centroids derived from the calibration procedure are used to
determine the membership grade of each prediction node across the
study area to each cluster. Once these are known, PIiL and PIi

U can be
calculated after which PLi

L and PLi
U are derived once the model

prediction is made.
In order to derive a continuous depth estimation of the upper and

lower prediction limits for each prediction node, we follow the same
routine as for mapping continuous functions of soil attributes as



617B.P. Malone et al. / Geoderma 160 (2011) 614–626
presented in Malone et al. (2009). Once the standard depths of
prediction are determined, an uncertainty model is used to estimate
the PI at each depth increment. Using the PIs at each depth as
parameters, we can then perform a mass-preserving spline recon-
struction to generate continuous representations of the upper and
lower prediction limits to a prescribed maximum depth.
2.5. Procedure

There are thus three components that need to be adhered to
replicate this approach in a DSM framework. The first of which is the
predictionmodel which essentially recreates themethod of Malone et
al. (2009) for using splines and regression kriging modelling for the
prediction of soil attributes at standardised depths. The second
component involves the training of the empirical uncertainty model,
from which cluster PIs can be derived. For both components,
validation is performed using an independent dataset. In this study,
both calibration and validation sets are the same for these two
components. The third component involves the mapping of the
predictions and associated PIs in the lateral and vertical dimensions. A
summary of the stepwise procedure for achieving these outcomes is
as follows and illustrated in Fig. 2:

• Soil data is pre-processed then arranged for analysis. The framework
we present here applies to available soil datasets where soil
observations within a profile have been made at horizon and/or
regular depth increments. Often the depths of observation between
profiles are not the same;

• Mass preserving spline functions (Bishop et al., 1999) are used to
standardise the depth increments of prediction for all available site
locations;
• Standardisation of so
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• The dataset is then spatially intersected with a suite of available
environmental covariates;

• The dataset is then randomly split into two; we use 85% of total site
observations for calibration and 15% for validation.

The prediction model

• The calibration dataset is used to train a prediction model via a
regression technique in which the prediction variables are the
environmental covariates;

• For validation of the prediction model, the training rules are
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The empirical uncertainty model

• Clustering is performed where the feature space is the suite of
environmental covariates observed at each calibration site. Once the
optimal number of clusters is determined, cluster centroids are
saved;

• Estimation of the model error is made. We would opt to use the
same class of model as used in the prediction model component but
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idea is that we save only the residual between the predicted (model
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• The highestmembership value to a cluster determines which cluster
each observation is assigned to. Cluster PIs (PICiL and PICi

U) are found
for each cluster on the basis of the distribution of residuals within
each cluster. To construct a 95% PIs (for each cluster) we take the
lower 2.5% and upper 97.5% percentile values from the empirical
distribution of residuals in each cluster;

• Validation (using the validation dataset) of the uncertainty
procedure involves construction of the PI for each observation i.e.
PIi

L and PIi
U (Eq. (1)) where the requirements are the cluster PIs and

cluster centroids, from which the cluster membership values can be
derived. Adding the prediction of the soil attribute (from prediction
model) to PIi

L and PIi
U yields the upper and lower prediction limits

(PLiL and PLi
U) for each validation observation. Calculating the PICP

determines (for a given confidence level) the proportion of
observed values which fit within their respective prediction limits
(Eq. (2)).

Mapping of the predictions and associated PI

• Training rules from the calibration procedure are extended to all
prediction nodes across a study area where only covariate
information is available;

• Cluster centroids from the uncertainty model are used to determine
the membership grade each prediction node has to each cluster,
from which PIi

L and PIi
U are formulated;

• Adding the model prediction to PIi
L and PIi

U yields the upper and
lower prediction limits at each prediction node;

• Continuous depth representations of the predictions and upper and
lower prediction limits can be generated by using the mass-
preserving spline reconstruction method where the observations
at the standardised depths are the only required parameters.

3. Materials and methods

3.1. The data

We test the approach described above using actual soil data where
our target properties are organic carbon (kg m−3) (OC) and available
water capacity (m m−1) (AWC). The area from which the data has
been collected is the Edgeroi district located near Narrabri (30.32S
149.78E) in north-western New South Wales, Australia. Details of this
predominantly agricultural district can be found in McGarry et al.
(1989) and Ward (1999). The soil dataset consists of 341 soil profiles,
210 of which were sampled on a systematic, equilateral triangular
grid. At most profile sites observation of OC and AWC were made at
the depth increments of 0–0.1, 0.1–0.2, 0.3–0.4, 0.7–0.8, 1.2–1.3 and
2.5–2.6 m (McGarry et al., 1989).

Environmental covariates were compiled for the whole Edgeroi
study area (≈1500 km2) on a grid with spatial resolution of
90 m×90 m. These included a digital elevation model and its
derivatives, Landsat 7 ETM images from 2003 and gamma radiometric
data from airborne survey (Geosciences Australia, 2008). Specifically,
the environmental covariates used for analysis in this study were
elevation, slope, altitude above channel network (AOCN), flow path
length (FPL), multi-resolution index of valley bottom flatness
(MRVBF) (Gallant and Dowling, 2003) and SAGA wetness index
which is similar to the topographic wetness index (TWI) (Boehner
et al., 2002). Bands 1–5 and 7 of the Landsat ETM were used in
addition to the Normalised Difference Vegetation Index (NDVI) and
soil enhancement ratios of b3/b2, b3/b7 and b5/b7 (Saunders and
Boettinger, 2007). For gamma radiometric data, the percentage
measure of radiometric K was used in addition to the ppm measures
of both radiometric U and Th.

For all soil profiles (341), the procedure as described in Malone
et al. (2009) was used to fit splines to the observed values down to
1 m. This generated continuous profile descriptions to 1 m for both
soil attributes. From the fitted splines of the observed data, the mean
value of each soil attribute was derived at the specified depth
increments of: 0–10, 10–20, 20–30, 30–40, 40–50, 50–70, 70–80, 80–
100 cm. These 8 surfaces became the target inputs to be modelled
against the suite of environmental covariates which were then
intersected to the data based on the spatial location of each soil
profile description. Lastly, the dataset was then randomly divided into
two sets: 291 profiles for calibration and 50 profiles for validation.

3.2. The prediction model

3.2.1. Prediction model calibration
In terms of the modelling process, the systematic approach for

model calibration from Malone et al. (2009) was used to generate
rules or formulae based on the relationship between calibration data
at the eight specified depth increments and the suite of environmental
covariates. Like Malone et al. (2009) this study uses a regression
kriging approach for prediction where neural networks model the
deterministic component of variation and residual kriging to model
the stochastic component of the variation. Once an appropriate model
was constructed for each soil attribute, residuals were calculated and
then saved for use in the following validation and mapping
procedures.

3.2.2. Prediction model validation
For validation, model formulae generated in the calibration

procedure were used to derive the initial predictions of OC and
AWC from the suite of environmental covariates that existed at each
validating site. Kriging was used to interpolate the residuals at each
validation observation based on the localised exponential variogram
model of the 100 nearest residuals found for the calibration
procedure. A final prediction was derived from the summation of
the model prediction and the interpolated residual. To determine the
accuracy of the final predictions with their corresponding observed
values we used the root mean square error (RMSE) and Lin's
Concordance Correlation Coefficient (CCC) (Lin, 1989).

3.3. The empirical uncertainty model

3.3.1. Uncertainty model calibration: fuzzy clustering and formulation of
cluster prediction intervals

To establish the optimal cluster size and φ value of the calibration
data, fuzzy classification was performed with the FuzME software
(Minasny and McBratney, 2002a). As discussed previously, in this
study we used the FKMwith extragrades function. The environmental
covariates of the calibration data were arranged in a matrix of N
observations×M covariates (291×19). Iteratively, using cluster sizes
of 2 through 15, the FKM with extragrades function ran using
successive φ values ranging from 1 through 2 with step length of 0.01.
For this study along with an intuitive guide, we adopted an internal
criterion approach to determine the optimal cluster size and φ value
using both themodified partition entropy (MPE) and the derivative of the
objective function with respect to the fuzzy exponent (φ), –(δJ/δφ)c0.5

(McBratney andMoore, 1985). Such indices have beenused previously by
Bragato (2004) and Odeh et al. (1992) where more detailed discussion is
made about them. TheMPE establishes the degree of fuzziness created by
a specified number of classes for a defined φ value. The notion is that the
smaller theMPE, themore suitable is the correspondingnumberof classes
at the givenφ value. The derivative of Je(C,M) with respect toφ is used to
simultaneously establish the optimalφ and cluster size. The optimalφwill
maximise –(δJ/δφ)c0.5 and the most suitable cluster size will produce the
curve with the lowest maximum. In this study these indices are used as a
general guide; once the range of possible combinations has been
narrowed, we then intuitively decide on the most suitable cluster size
andφ value on other non-clustering related criteria such as the number of
observations within each cluster and the associated distribution of errors
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assigned to each cluster i.e. as close to being normally distributed as
manageable.

To determine model error we employed a leave-one-out-cross-
validation procedure (Hastie et al., 2009). With this form of cross-
validation, there were N=291 sets of computations. Using neural
networks, a prediction is made for each successive calibration profile
(at each depth increment) based on the learning rules of the remaining
N−1 calibration profiles. Furthermore, with each computation,
kriging was used to interpolate the residual at each depth increment
based on the spatial auto-correlation of residuals of the N−1
calibration profiles. A final prediction resulted from the summation
of the prediction and interpolated residual. Thus model error in this
case was determined to be the difference between the observed
value at a specific depth increment and its corresponding final
prediction.

To calculate the cluster PIs (PICiL and PICi
U) at each depth increment,

we first arranged the observations into their respective clusters on the
basis of their highest cluster membership grade. For a 95% PI, we took
the upper 97.5% and lower 2.5% quantiles of each distribution for
every cluster. In terms of handling the extragrade cluster error
distributions, we follow the procedure of Tranter et al. (2010) whom
suggested a penalisation calculation to extragrade areas where there
is very low model prediction confidence. The PI for the extragrade
class can be evaluated by:

PICL
ej = 2 × q2:5

PICU
ej = 2 × q97:5

ð5Þ

where PICej
L and PICej

U are the lower and upper PIs of the extragrade
class, and q is the quantile value of the extragrade cluster error
distribution at each depth increment.

3.3.2. Uncertainty model validation
Validation of the uncertainty model follows the description as

detailed in Section 2.5. where PIi
L and PIi

U are formulated. The PICP is
estimated accordingly for a 95% PI based on the count of observed
values that lie within the PI for each site at each depth. As such the
PICP considers all observations (site and depth increments) as
independent observations. Thus the PICP is the proportion at all
depths across all observations which lie within the 95% PI. To assess
the sensitivity of the model by means of reducing the confidence limit
sequentially, we constructed PIs for various confidence levels ranging
from 5% to 99%. As for a 95% prediction level, by definition you would
expect the PICP value to be close to the corresponding confidence or
100(1−α)% level.

3.4. Mapping of predictions and their uncertainties

For mapping of the predictions and associated prediction PIs
follows precisely the steps as outlined in Section 2.5. Along with
generating maps of the predictions and their uncertainties (displayed
as upper and lower prediction limits) at the standard depths we also
demonstrate the functionality of the splines in a DSM framework
which was also demonstrated inMalone et al. (2009). In this study we
determine to total predicted AWC and OC across the study area to a
depth of 1 m. These predictions are also accompanied by upper and
lower prediction limits.

4. Results and discussion

4.1. The prediction model

4.1.1. Prediction model calibration
For model calibration of OC, we found that a neural networkmodel

with 4 hidden nodes was appropriate in terms of predictive power
without over-fitting the data. For AWC, 3 nodes was found to be the
most appropriate model configuration. The coefficients of determi-
nation (R2) were reasonable at 54% for OC and 48% for AWC.

4.1.2. Prediction model validation
Generally predictions of OC were strongest at the surface and

poorest at the bottom of the soil profile. As shown in Fig. 3a–c, CCC
ranged from 0.28 (RMSE=0.3) in the 0–10 cm depth increment, to
0.11 (RMSE=0.54) at 30–40 cm through to −0.05 (RMSE=0.90) for
the 80–100 cm depth increment.

It was apparent that there was a low spatial auto-correlation
between residuals at all 8 depth increments (data not shown), which
was also observed for OC inMalone et al. (2009). Nevertheless, adding
the model prediction to the interpolated validation residuals resulted
in modest improvements to the prediction of OC. In Fig. 3d–f, CCC
increased to 0.38 and 0.14 at the 0–10 cm and 30–40 cm depth
increments respectively, but no change was observed at 80–100 cm.
In each of the cases there was no improvement in the RMSE values.

For AWC, the validation results were also modest where predic-
tions were strongest in the 80–100 cm depth increment (CCC=0.1)
(data not shown). In terms of all 8 depth increments CCC ranged from
0.04 to 0.1(RMSE=0.015–0.027). As for OC, there was not a well
defined function for the spatial distribution of residuals. Additionally,
any spatial auto-correlation that we were able to define was
independent for each depth increment. Overall, adding the residuals
to the predictions of AWC resulted in little to no improvements.

The average CCC of the final validation predictions at the 8 depth
increments for AWC and OC found for Malone et al. (2009) was 0.44
and 0.38 respectively. Essentially the validation results in this paper
are weaker. An explanation for this is that we did not perform
independent multivariate analyses for both attributes to determine
what the most correlated covariates were before construction of the
neural networks. This is because, as discussed later, we performed the
clustering process of the environmental covariates once only. Thus the
defined clusters could be used simultaneously for both soil attributes.
Given that the final predictions of both OC and AWC aremodest in this
paper, future studies of this type will need to include an independent
multivariate analysis prior to modelling. This would also mean that
the clustering process would become independent for each predicted
soil attribute and that the error determination through the leave-one-
out-cross-validation would only include those environmental covari-
ates that are significant for each soil attribute.

4.2. The empirical uncertainty model

4.2.1. Uncertainty model calibration: fuzzy clustering and formulation of
cluster prediction intervals

The optimal cluster size for the given environmental covariates
using the FKM with extragrades algorithm was found to be 6,
including the extragrade class. Clustering resulted in 61 observations
belonging to cluster A, while 38, 43, 54 and 61 observations belonged
to cluster B, cluster C, cluster D, cluster E and the extragrade cluster
respectively.

Box plots of the empirical distribution are shown for AWC
(Fig. 4a–c) and OC (Fig. 4d–f) at the depth increments of 0–10 cm,
40–50 cm, and 80–100. At all depth increments the distribution of
model errors are different for each cluster. For both soil attributes
there was a decreasing distribution of model errors with increasing
depth down the profile, which was proportional to the observed
values at each depth increment. For example the proportion of the
error and observed value (error/observed value) for OC and AWC
regardless of cluster at 0–10 cm and 80–100 cmwere both found to be
very close to 1. For AWC the distribution of model errors was largest
for the extragrade cluster at all depth increments. This upholds the
notion that reliability of the prediction in this part of the feature space
is low in comparison to the other clusters. This relationship was



Fig. 3. Model validations of OC. Observed vs. fitted plots at 0–10 cm, 30–40 cm and 80–100 cm before adding residuals (a–c) and after adding residuals (d–f).

620 B.P. Malone et al. / Geoderma 160 (2011) 614–626
mostly observed also for OC, but there some exceptions (for example
Fig. 4d). Applying the penalisation calculation for the extragrade class
(Tranter et al., 2010) ensured that PICej

L and PICej
U were larger than

those of the other clusters at each depth increment.

4.2.2. Uncertainty model validation
The final prediction and corresponding upper and lower predic-

tions at the 8 specified depth intervals were used as parameters to
construct estimated splines. This process created 3 continuous profiles
for each observation: a final prediction profile and lower and upper
prediction limit profiles. We randomly selected 5 validation sites to
illustrate how these splines compare to the measured values of OC
and AWC at each of these sites. As can be seen in Fig. 5 that the dotted
lines constitute the final prediction, while the solid lines equate to the
lower and upper prediction limits, conferring the 95% PI. The bars
represent the measured values of AWC (Fig. 5a–e) and OC (Fig. 5f–j).
As can be seen, a measured value fits within a PI if the right vertical
side of the bar fits completely within the confines of the solid lines.

Due to the proportionality of the observed values with the
prediction errors, the PIs are mostly widest at the soil surface.
Generally for AWC, the PI then narrows gradually from about 40 cm to
a roughly equally spaced interval to 1 m. In the example of (Fig. 5b),
however, the interval is narrowest at 1 m. A similar situation is
evident for OC (Fig. 5f–j) where uncertainty is greatest towards the
soil surface. Additionally for OC there are a couple of instances where
the PI does not completely confine the measured value (Fig. 5i and j).
By deriving the relative proportion of the PI (range of the upper and
lower prediction limits) and the corresponding prediction of all
validation observations at each depth, it was found that the
proportions slightly increasedwith depth. This indicates an increasing
uncertainty with increasing soil depth, which was also the finding
when validating the prediction model. For AWC again the PI was



Fig. 4. Box plots of the empirical distributions of model error as derived from the empirical uncertainty model at the selected depths of 0–10 cm, 40–50 cm and 80–100 cm for AWC
(a–c) and OC (d–f).
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found generally to be proportional to the prediction at a given depth;
however the predictions were strongest at the sub-soil depth
increments. This was also reflected when validating the prediction
model for AWC and counters that found in Malone et al. (2009) which
could be put down to the difference in covariates and modelling steps
used between the two studies.

The results of the PICP analysis indicate that at the desired
confidence level of 95%, 91 and 93% of all observations fittedwith their
given PIs for OC and AWC respectively, indicating with this type of
validation, that the empirical uncertainty model is optimal for both
soil attributes (Fig. 6a–b) . Furthermore, with each successive
decrease in the confidence levels a near corresponding decrease in
the PICP is observed for both attributes indicating a required outcome
in terms of sensitivity of the PI to changing confidence levels.
4.3. Mapping of predictions and their uncertainties

The maps in Fig. 7 illustrate the spatial variability of the degree of
membership each prediction node has to each class, based on the
cluster centroids derived from the empirical uncertainty model
procedure. This gives a good representation of which areas in the
extent of the study area share a similarity based on the given suite of
environmental covariates.

image of Fig.�4


Fig. 5. Profile plots of AWC (a–e) and OC (f–j) at randomly selected validation sites. Bars represent actual observed values. Dotted lines represent final DSM predictions. Solid lines represent upper and lower prediction limits.
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Fig. 6. Prediction interval coverage probability plots (PICPs) for OC (a) and AWC (b).

Fig. 7. Spatial variation of the degree of membership each instance has to each cluster includi
(f), and cluster E (g).
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Areas with a high degree of membership to the extragrade class
(Fig. 7a) appear to correspond to regions that are topographically
diverse such as that to the east and south west where undulating
slopes and hills are situated. These areas are also moderately to
densely populated by native forest. While sample sites exist across
these landscapes in a predominantly equilateral triangular grid design
(McGarry et al., 1989), it is likely that given the combination of a
diverse landscape (rolling and undulating hills) and forest that these
areas have not been sufficiently defined from the few sites that were
taken in the area in terms of our clustering procedure. Because we
associate instances that have a high belongingness to the extragrade
class as having a high prediction uncertainty, such areas could become
the focus of future targeted sampling projects in order to generate
new knowledge. In other instances, farm reservoirs (which if true
should be eliminated from future analyses); as seen by symmetric
shapes predominantly in the west of the study area also have a high
extragrade membership.

Fig. 8a–c shows the variability of OC across the study area at 3
selected model depth increments of 0–10 cm, 30–40 cm and 80–
100 cm. At each depth increment there is a lower prediction limit
map (Fig. 8a1–c1), the final predicted map (Fig. 8a2–c2) and an
upper prediction limit map (Fig. 8a3–c3). Similarly in Fig. 9a–c,
the spatial variability of AWC at the same depth increments as a
lower (Fig. 9a1–c1), final (Fig. 9a2–c2), and upper prediction
(Fig. 9a3–c3).

Based on the lower and upper prediction limits at 0–10 cm
across the study area, the average concentration of OC was
predicted to range from 4 to 35 kg m3. The average predicted OC
concentration at this depth was 18 kg m3. At 30–40 cm the
predicted average OC was 10 kg m3. We are 95% confident that
the true average of OC at this depth is between 3 and 19 kg m3.
ng the extragrade class. Extragrade (a), cluster A (b), cluster B (c), cluster C (d), cluster D

image of Fig.�6
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Fig. 8. Variability of OC at 0–10 cm, 30–40 cm and 80–100 cm across the Edgeroi study area. Lower prediction limit (1), DSM final prediction (2), and upper prediction limit (3).
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While at the 80–100 cm depth increment, the predicted average of
OC was 7 kg m3, and we are 95% confident that the true average is
between 2 and 16 kg m3.

For AWC at 0–10 cm the average was predicted to be 0.16 m/m.
With 95% confidence the true average is expected to be between 0.11
and 0.21 m/m at this depth. At the depth increments of 30–40 cm and
80–100 cm the average AWC was predicted to be 0.13 (0.08–0.16)
m/m and 0.11 (0.08–0.14) m/m respectively.

Total AWC and OC maps to 1 m are shown in Fig. 10a and b
respectively. Based on these maps we predicted that the average
total water (m2) to 1 m is 127 (88–158) mm. The total OC estimated
across the extent of the study area is predicted to be 191 (50–385)
Gg.

5. Conclusions

In this paper we have established a methodological framework for
mapping uncertainties in the form of a PI for predicted soil attributes
as they vary continuously with depth and space for a defined study
area. This methodology complements the continuous prediction of
soil attributes in a vertical and lateral space using splines and DSM
methods. The methodology for deriving PIs is independent of the
prediction model, requiring only the model outputs and the measure
of error associated with those predictions.

The best available quantitative measure of the deviation between
the modelled output and the modelled real-world process is the
residual or error. Therefore, the empirical uncertaintymodel explicitly
accounts for all sources of uncertainty without the requirement to
separate out the contribution of each error source to the overall
uncertainty. We have demonstrated that this method performed well
for both OC and AWC where for a given confidence level, a near
matching proportion of validation observations were within the
confines of the PI. While an encouraging result, we accept that this
methodology represents a pragmatic approach to estimating uncer-
tainties both spatially and laterally in a DSM framework. It is likely
their estimation may be a lot more complex than that formulated in
this study. Future research will obviously need to investigate the
extent of this perceived complexity and the scope of future research
would initially involve comparison of the empirical approach we have
presented with other approaches such as Monte Carlo simulations to
construct PIs. During such a comparative exercise, one would then
also need to consider in addition to the assessing the accuracy of the
estimated uncertainties, the time and costs for implementing such
alternative approaches.

In the course of this work however, a number of issues were
presented that need to be addressed in order for improvements to be
made to our approach. First, it begins with an independent model
prediction framework where prior to modelling, a multivariate
analysis should be performed to determine what the most closely
correlated environmental covariates are for each soil attribute. This
will ideally address some of the issues regarding the performance of
the prediction models. Having a stronger prediction will naturally
transfer to a reduced error. Ultimately, the distribution of errors for
each class will be narrower, resulting in PIs that display more
precision than that which we have just presented. By having an
independent modelling process also means the requirement of an
independent LOCV and clustering process. This inevitably generates
more work. However, while better prediction outcomes are expected,
the empirical uncertainty method is neither computationally de-
manding nor difficult to implement.

image of Fig.�8


Fig. 9. Variability of AWC at 0–10 cm, 30–40 cm and 80–100 cm across the Edgeroi study area. Lower prediction limit (1), DSM final prediction (2), and upper prediction limit (3).
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Beyond such pertinentmodifications, futurework could determine
how well the methodology handles both different calibration sample
sizes and types of soil attribute data. It would also be beneficial to test
this methodology through field validation of the prediction and
ultimately the PI. This would therefore require the implementation of
a suitable sampling scheme. On the idea of sampling, it would be ideal
to investigate whether sampling in areas that have a high member-
ship to the extragrade class would facilitate narrowing the uncer-
Fig. 10. Total water to 1 m (a) and total OC to 1 m (b) across the Edgeroi study area. Lo
tainty where the uncertainty is believed to be greatest. Methods for
determining the optimal class size will also need to be investigated.
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