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Using Additional Criteria for Measuring the  
Quality of Predictions and Their Uncertainties 

in a Digital Soil Mapping Framework

Pedology

Quantifying soil map quality has been an area of sustained research for well 
over 40 yr, with seminal papers dating back to the 1960s and 1970s; e.g., 

Webster and Beckett (1968) and Burrough et al. (1971). Brus et al. (2011) dem-
onstrate not only the continual development of methodologies for validating soil 
maps but also the importance of quantifying soil map accuracy. Grunwald (2009) 
however, points out that while digital soil mapping (DSM) has become popular-
ized in recent times, it is frequently the case that maps are not validated.

Generally, soil map quality has been related to measures of accuracy (Finke, 
2007). These are conventionally based on measures of variance between observed 
and predicted values (Bishop et al., 2001). In soil attribute mapping, this is quanti-
fied by the goodness of fit (R2) or the mean of the squared prediction error (MSE). 
For assessing the quality of categorical soil maps measures based on mapping unit 
purity and user’s and producer’s accuracies are the most common (Lark, 1995). 
While useful, these measures are limited because it is possible only to estimate the 
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In this paper we introduce additional criteria to assess the quality of digital soil property maps. Soil map qual-
ity is estimated on the basis of validating both the accuracy of the predictions and their uncertainties (which are 
expressed as a prediction interval [PI]). The first criterion is an accuracy measure that is different in form to the 
usual mean square error (MSE) because it accounts also for the prediction uncertainties. This measure is the spatial 
average of the statistical expectation of the mean square error of a simulated random value (MSES). The second cri-
terion addresses the quality of the uncertainties which is estimated as the total proportion of the study area where 
the (1−a)–PI covers the true value. Ideally, this areal proportion equals the nominal value (1 − a). In the Lower 
Hunter Valley, NSW, Australia, we used both criteria to validate a soil pH map using additional units collected 
from a probability sample at five depth intervals: 0 to 5, 5 to 15, 15 to 30, 30 to 60, and 60 to 100 cm. For the first 
depth interval (0–5 cm) in 96% of the area, the 95% PI of pH covered the true value. The root mean squared simu-
lation error (RMSES) at this depth was 1.0 pH units. Generally, the discrepancy between the nominal value and 
the areal proportion in addition to the RMSES increased with soil depth, indicating largely a growing imprecision 
of the map and underestimation of the uncertainty with increasing soil depth. In exploring this result, conventional 
map quality indicators emphasized a combination of bias and imprecision particularly with increasing soil depth. 
There is great value in coupling conventional map quality indicators with those which we propose in this study as 
they target the decision making process for improving the precision of maps and their uncertainties. For our study 
area we discuss options for improving on our results in addition to determining the possibility of extending a simi-
lar sampling approach for which multiple soil property maps can be validated concurrently.

Abbreviations: ATV, all terrain vehicle; CCC, Lin’s concordance correlation coefficient; CI, confidence 
interval; DSM, digital soil mapping; GPS, global positioning satellite; IMP, imprecision; ME, mean 
error; MSE, mean square error; MSES, mean squared simulation error; PI, prediction interval; PIC, 
cluster prediction interval; PICP, prediction interval coverage probability; PL, prediction limit; 
RMSE, root mean square error; RMSES, root mean squared simulation error; SI, simple random 
sample design; STSI, stratified simple random sample design; SU, sampling units.
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accuracy of the predictions. While a number of tools are avail-
able that allow one to express or quantify the level of uncertainty 
in soil functions generated from uncertain predictions of ba-
sic soil properties (Minasny and McBratney, 2002; Brown and 
Heuvelink, 2005), rarely do we consider the quality or appro-
priateness of them in a practical sense. For example, given a level 
of uncertainty regarding a prediction of a soil attribute across a 
spatial extent, what implications does this have in how we inter-
pret soil phenomena or manage the soil resource in question? Is 
it possible to optimize inputs such as lime for soil pH manage-
ment given a prescribed level of uncertainty? It is apparent there-
fore that there needs to be additional measures of map quality to 
those conventionally reported which also take into account the 
quality of the estimates of prediction uncertainty for a particular 
soil attribute. By incorporating this additional information, we 
are able to consolidate our limited understanding of soil variabil-
ity with reciprocal measures of soil map quality.

A useful and empirical approach to estimating the uncertain-
ty of model outputs was proposed by Shrestha and Solomatine 
(2006) where uncertainty was expressed in the form of two 
quantiles (constituting a PI) of the underlying distribution of 
prediction errors (residuals). The PI explicitly takes into account 
all sources of uncertainty and circumvents attempts to separate 
out the contribution of each source (Shrestha and Solomatine, 
2006; Solomatine and Shrestha, 2009). In Malone et al. (2011) 
the empirical uncertainty approach of Shrestha and Solomatine 
(2006) was adapted within a DSM framework to map PIs across 
a study area. To that end, the soil map quality criteria we propose 
in this study are largely based on the empirical coverage of PIs.

In terms of quality measures for validating soil maps, Brus et 
al. (2011) provide a comprehensive review of those used for both 
categorical and quantitative digital soil maps. Map validation by 
probability sampling involves the random selection of additional 
test units (observations at locations not used for model calibra-
tion) from a study area. In probability sampling all units within 
a study area have a positive probability of being selected; where 
the probabilities are determined by the sampling design and can 
be derived from this design (de Gruijter et al., 2006). Brus et 
al. (2011) concluded that probability sampling is the more su-
perior validation method (in comparison with data splitting or 
cross-validation) because unbiased estimates of the measures of 
soil map quality can be obtained by ‘design-based’ inference and 
thus are free of model assumptions (Brus and de Gruijter, 1997). 
This is generally not the case for data splitting or cross-validation 
(Brus et al., 2011).

Overall the aim of this research therefore is to present and il-
lustrate new criteria (in addition to those conventionally report-
ed) for evaluating both the quality of predictions and the quality 
of quantifications of the uncertainty in a DSM. Validation is per-
formed on the basis of a probability sample to collect additional 
sampling units from the study area.

SOIL MAP TO BE VALIDATED
Study Area

The area selected for this study is an approximately 220 km2 area 
north of the town of Cessnock (32°49¢48²S 151°20¢59²E) in the Lower 
Hunter Valley, approximately 140 km north of Sydney, NSW, Australia 
(Fig. 1). Topographically, this area consists mostly of undulating hills 
that ascend to low mountains to the south-west. This area is part of the 
Sydney Basin where parent materials are composed mostly of Mesozoic 
sandstones and shales (Thackway and Cresswell 1995). The domi-
nant soil types are Typic Natrudalfs and, on topographic rises, Typic 
Calciudolls (Odgers, 2010). In terms of landuse, dryland agricultural 
grazing systems are predominant, followed by an expansive viticultur-
al industry. While most of the land has been dedicated for these uses, 
tracts of remnant natural vegetation (dry forest) are apparent, particu-
larly toward the south-western (Broken Back Range), eastern (Werakata 
National Park) and northern margins of the study area. See Bell (2004) 
for further details of the environmental setting of this area.

For this study we chose soil pH as the target variable. The reason for 
this selection was because viticulture is an extensive industry across the 
study area and many management decisions are centered on the nutrient 
status of the high value wine grape crops, which is generally dependent 
on soil pH (White, 2003). Soil nutritional status affects all parts of the 
grape vine, from root growth and distribution through to shoot growth 
and grape composition.

The soil dataset we used contains 994 sites where pH was recorded 
at each horizon and/or at specific depths to at least 1 m. Three hun-
dred of the soil samples were collected in 2004 using the Conditioned 
Latin Hypercube sampling method (Minasny and McBratney 2006) 
where compound topographic index, parent material, and Normalized 
Difference Vegetation Index were used as auxiliary variables to provide 
environmental information. The remaining 694 samples were collected 
sporadically between 2001 and 2009 mainly using toposequence sam-
pling design (Odgers et al., 2008).

MATERIALs AND METHODS
Digital Soil Mapping of the Predictions

A soil map depicting the lateral and vertical distribution of soil pH 
across the study area was generated following the procedure of Malone 
et al. (2009) which uses an amalgam of soil depth spline functions and 
DSM techniques (Fig. 2b) (only 0–10 cm shown). The spatial entity of 
the map is point support where point estimates were made on a 25-m 
regular grid. The vertical resolution at each grid node is 1 cm.

This map was generated using a regression kriging approach where 
the predictions were based on the calibration dataset of 994 soil profile 
descriptions distributed across the area (Odgers, 2010). To standardize 
prediction depths, mass preserving splines were fitted individually to 
each profile before mean estimates of pH were taken at 0 to 10, 10 to 
20, 20 to 30, 30 to 40, 40 to 50, 50 to 70, 70 to 80, and 80–100 cm. 
The deterministic component (of regression kriging) used a neural net-
work where the target variables were the mean observations at each of 
the standardized depths. These were modeled against a suite of environ-
mental covariates derived from 25 m rasters of a digital elevation model 
(DEM) and various derived terrain attributes; Landsat 7 ETM+ band 
data and various band derivatives. The model formulae derived from this 



1034	 SSSAJ: Volume 75: Number 3  •  May–June 2011

Fig. 1. Lower Hunter Valley study area with respect to location in New South Wales (large box) and Australia (small box).

Fig. 2. Soil pH map to be validated (displaying only the 0- to 10-cm interval). Soil map depicts the (b) digital soil mapping prediction and the (a) 
upper and (c) lower prediction limits which constitute a prediction interval.
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procedure were then applied across the extent of the study area, where 
covariate information existed only.

For the stochastic component, model residuals were indepen-
dently mapped for each standardized depth with kriging using localized 
variograms (exponential function) of the 100 nearest neighbors to a pre-
diction point. Both the deterministic and stochastic components were 
summed to arrive at a final prediction for each standard depth at each 
point. The standard depths at each grid node were then used as param-
eters to construct continuous profiles using the mass-preserving spline 
function (see Malone et al., 2009).

Digital Soil Mapping of the Uncertainties
First, a PI should be distinguished from a confidence interval (CI). 

A CI is an interval estimate of a fixed quantity/parameter (e.g., a spatial 
mean in a design-based approach), whereas a PI is an interval prediction 
of a random quantity (e.g., the value of the target variable at a given lo-
cation or the spatial mean in a model-based, geostatistical approach (de 
Gruijter et al., 2006). A PI is bounded by its upper and lower limits and 
by definition, the prediction limits for a given confidence level (1−a)%, 
enclose the true but unknown target value (1−a)%,  of times on average 
(Shrestha and Solomatine, 2006).

Calculating the PI for a prediction node following the method 
of Shrestha and Solomatine (2006) is performed independently of the 
model building or calibration process and is referred to as the ‘‘uncer-
tainty estimation based on local errors and clustering’’ (UNEEC) 
method (Solomatine and Shrestha, 2009). The purpose of the UNEEC 
is to derive the upper and lower prediction limits based on the model 
error, and since it is estimated through an empirical distribution, it is 
not necessary to make any assumption about residuals (Solomatine 
and Shrestha, 2009). Using the calibration data, the adaption of the 
UNEEC for DSM (Malone et al., 2011) first uses fuzzy k-means with 
extragrades to partition the environmental covariate data into clus-
ters which share similar environmental attributes (McBratney and de 
Gruijter, 1992). Fuzzy k-means with extragrades is used on the basis that 
extragrades are considered the outliers of the data, and as Tranter et al. 
(2010) also point out, they are also spatially in regions of low density 
calibration data, which confers a low reliability of prediction in these 
areas. Ultimately each observation is given a grade of membership to all 
clusters including the extragrade cluster.

Next, model output error is determined. The regression kriging 
approach similar to that used for the DSM prediction procedure was 
used except final predictions were evaluated by leave-one-out-cross-vali-
dation (Hastie et al., 2009). The only output required here is the residual 
between the observed value of the target variable and the corresponding 
final prediction at each calibration point.

Once the clusters and model output error have been identified, the 
PIs for each cluster are computed from the empirical distributions of the 
corresponding residuals. Therefore, one underlying assumption of the 
empirical uncertainty method is that particular areas (clusters) within 
a landscape will have similar residuals or distribution of residuals and 
ultimately share a similar range of uncertainty (Malone et al., 2011). To 
construct a cluster 95% PI, first we assign each calibration point to the 
cluster it has the highest membership to. Then for each cluster, the 2.5 
and 97.5 percentile values are taken from the empirical distribution of 

residuals for the lower and upper prediction limits, respectively. Those 
points that belong to the extragrade cluster are handled differently in 
that we impose a penalization by way of a multiplier, as proposed by 
Tranter et al. (2010):

2.5PIC  2 L
ej q= ×

97.5PIC  2 U
ej q= ×

 [1]

where PICL
ej  and PICU

ej  are the lower and upper prediction limits of the 
extragrade class, and q is the quantile value of the extragrade cluster error 
distribution at each depth increment.

Computing the PI for each prediction node across the study area 
first requires each node to be assigned membership grades to each of 
the clusters characterized in the calibration procedure. These are deter-
mined on the basis of the environmental covariates at each node and the 
predetermined cluster centroids. From this, we determine the predic-
tion node PI using the weighted mean of the PI of each cluster (Shrestha 
and Solomatine 2006). This can be defined mathematically as:

1
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j ij ji

m
=

=∑
U

1
PI PIC  

cU
j ij ji

m
=

=∑  [2]

where PIL
i and PIU

i  correspond to the weighted lower and upper PI for 
the ith prediction node, PICL

j  and PICU
j  are the lower and upper PIs for 

each cluster j (including extragrade cluster) as determined from the cali-
bration sites, and mij is the membership grade of ith prediction node to 
cluster j. Finally, the lower and upper prediction limits ( PLL

i and PLU
i  re-

spectively) are then derived for each prediction node by adding the predic-
tion (from the DSM procedure) to PIL

i and PIU
i .

All the steps after the clustering process are repeated for each of the 
standardized depths. Figure 2a and 2c show the lower and upper predic-
tion limits of pH across the study area for the 0- to 10-cm depth incre-
ment. Mass preserving splines are also used to construct continuous rep-
resentations of the upper and lower prediction limits of pH by using the 
estimated PLU

i and PLL
i values at each depth respectively as parameters.

Concepts of Soil Map Quality
In this study we use a design-based approach to derive external 

accuracy estimates of soil map quality in terms of both the predictions 
and their uncertainties. This involves the use of additional data collected 
from a probability sample for which the specifics will be discussed later 
in more detail. Using such a design-based approach means that our es-
timates of map quality are model-free and unbiased (de Gruijter et al., 
2006; Brus et al., 2011).

For this study, the mapped predictions and their uncertainties are 
on point support. This means that the additional independent sampling 
units should also have point-support. As the first criteria of our pro-
posed soil map quality indicators we use a measure which assesses the 
accuracy of predictions (but also taking into account the uncertainties). 
As discussed previously, the usual measure for the accuracy of quantita-
tive map predictions is the mean squared prediction error (MSE) which 
is defined as:



1036	 SSSAJ: Volume 75: Number 3  •  May–June 2011

( ) ( ){ }21
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= −∫  [3]

where A is the mapped area and zp (s) and z(s) are the predicted and true 
values at location s of the target variable, here pH. Additionally bias, 
expressed as the mean error (ME) can then also be derived, which has 
the general formula:

( ){ }
∈

= −∫
1

ME     ( ) dp
s A

z s z s s
A

 [4]

These conventional measures quantify only the error and bias 
of the predictions, it does not account for the uncertainty of the lo-
cal predictions. To this end we introduce the ‘Mean Squared Error of 
Simulation’ (MSES). The underlying idea can be simply explained by 
imagining that a value is simulated randomly at a given location, using 
the local prediction and the local prediction variance given by the map 
as parameters of a local error distribution. The measure that we propose 
is the spatial average of the statistical expectation of the mean squared 
error of a simulated random value:

  21MSES   ( ) ds s
s A

E z s z s s
A 

   [5]

where  zs(s) and z(s)  are the simulated and true values, respectively, at 
location s and Es is the statistical expectation over the error distribution. 
For estimation of the MSES, it is equated as the summation of two com-
ponents; a spatially averaged (squared) local bias component, identical 
to the MSE and a spatially averaged local precision component:
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s= + 2MSE  [6]

where s2(s) is the variance of the prediction error as given by the map 
at location s. Note that the second component can be simply obtained 
by averaging the s2 over the entire map grid. An estimate of MSES can 
therefore be obtained by estimating MSE from the sample data, and 
adding 2  to it:

   s2MSES =MSE + 	 [7]

The second criterion is expressed as the areal proportion of the 
mapped area where the measured value at a specified depth interval fits 
within the bounds of its estimated (1−a) % PI (the PI covers the mea-
sured value), shortly referred to hereafter as the areal proportion cor-
rectly predicted (APCP):

( )
∈

= ∫
1

APCP   d
s A

i s s
A

 [8]

where i(s) equals 1 if the true pH value at location s is covered by the PI 
given by the map at s, and 0 otherwise.

Conceptually, both criteria form an agreeable pair and ideally 
should be reported together. The first explicitly deals with the accuracy 
of the simulations, while the second signals either an under- or over-
coverage (PIs too narrow or too wide) for a given confidence level. As a 
case in point and the necessity for reporting on both criteria; it is possi-
ble to have an inaccurate map (wide prediction intervals) with the same 
coverage proportion (APCP) as an accurate map. Alone, the second 
criterion cannot tell the difference between the two. Therefore coupling 
the APCP with the MSES allows penalization to be given where predic-
tions are found to be inaccurate.

Probability Sampling Design
A stratified simple random sampling design (STSI) (de Gruijter et 

al., 2006) was used to select the sampling locations at which soil pH was 
to be laboratory analyzed at specified depth increments. This design was 
chosen over a simple random sample (SI) design on the basis that greater 
efficiency can be expected in terms of smaller sampling variance of the 
estimated map quality measures from the same number of samples (Brus 
et al., 2011). We used two stratification variables: the depth-averaged 
whole-profile prediction of pH and an uncertainty measure; the depth-
averaged whole-profile difference between the upper and lower predic-
tion limits. The averaged prediction and the uncertainty measure for 
each mapped point location were plotted on a graph from which four 
equal-area strata were generated empirically by shifting the threshold 
values of each stratification variable (Fig. 3a). The total number of pre-
diction nodes equaled 353,316 making the size of each stratum 88,329 
nodes. The characteristics or threshold values for each stratum are sum-
marized in Table 1. Figure 3b shows the spatial extent of the strata across 
the study area where it is worth noting that the strata are not from con-
tiguous areas. From knowledge of the soil landscape across the study 
area, the strata which have the highest uncertainty (C and D; widest 
PIs) appear to cover areas of mountainous terrain (south-west), densely 
forested areas (east), and areas of drainage, for example, creek lines and 
areas of low relief. A low density of prediction sites coupled with com-
plex terrain and for most part inaccessible, it is quite logical that uncer-
tainty is high in these landscape settings. Conversely, the strata that have 
a lower uncertainty (A and B) exist predominantly where the relief is less 
complex, the land has been cleared and where most agricultural pursuits 
are concentrated in the area such as grazing and viticultural production. 
For example, Stratum B, is a good indicator where viticulture is prac-
ticed as the soils are a little higher on the landscape and are generally 
characterized by higher pH levels.

A total of 100 sampling units (SUs) were used to validate the map 
in this study. These were allocated proportionally to the strata, so that 
from each stratum 25 nodes were randomly selected fully randomly 
from the potential 88,329 nodes. A handheld global positioning satel-
lite (GPS) receiver was used to locate the positions of the SUs within the 
field. The SUs were soil cores of between 100 and 120 cm in length and a 
diameter of 5 cm. These were taken using a hydraulic geoprobe soil corer 
mounted on the back of a truck/all terrain vehicle (ATV).

In the laboratory, each SU was subsampled corresponding to the 
depth intervals of: 0 to 5, 5 to 15, 15 to 30, 30 to 60, and 60 to 100 
cm. Once mixed, a small aliquot from each depth interval was ana-
lyzed using the 1:5 soil/water suspension method to determine soil pH 
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(Rayment and Higginson, 1992). Randomly selected, duplicate aliquots 
totaling 50 were also analyzed to estimate measurement error for rea-
sons described further on.

Design-Based Estimation of Soil Map Quality
The statistical inference for estimating the areal proportions and 

the standard errors of point locations which fit within their PI is given 
in de Gruijter et al. (2006). The indicator value for each SU at each 
depth was evaluated by:

•	 First, the PLL
i and PLU

i  estimates corresponding to each of the 
eight prediction depths were used as the spline parameters 
for the construction of continuous representations of the 
prediction limits;

•	 The continuous PLL
i and PLU

i  estimates were then queried to 
derive the mean of the prediction limits for each of the five 
sampling depths at the validation points;

•	 Analysis was performed to determine whether the observed 
pH value fitted within its corresponding PI. Indicator values 
of either a one (1) indicating a fit within the bounds of the PI, 
or zero (0) not fit within the bounds of the PI was assigned for 
each observation.

From Eq. [8] the design-based estimator for APCP in this study is:



= =

= ∑ ∑
1 1

1
APCP  

hnH
h

hj
h jh

A I
A n

 [9]

where  Ah and nh are the surface area and sample size (number of se-
lected validation points, here 25) of Stratum h, respectively, and Ihj is 
the indicator value as determined at the j-th sample point of Stratum 
h. The reason why we use Ikj instead of ikj is because we do not possess 
true values of pH and thus need to work from the measured pH values, 
meaning that the indicator values are thus subject to random error. The 
measurements that are used for validation may be accurate enough that 
one can safely assume that the effects of measurement error on the vali-
dation results are negligible. However, that assumption cannot be made 
in this study; therefore we need to consider the effects of measurement 
error. Contained within Appendix A is an explanation of accounting 
for measurement error in map validation. Also in Appendix A are the 
detailed calculations for estimation of the error variance of APCP  due 
to both the sampling and measurement errors.

For estimation of the MSES, Eq. [7] is followed. As only MSE  
is subject to sampling error, the sampling variance and standard error 
of MSES  equal those of MSE . Finally, an estimate at the scale of the 

Fig. 3. Determination of sampling strata and their subsequent spatial extent. (a) Plot illustrating the process for constructing equal-area strata 
where the stratification variables were the depth-averaged whole-profile pH prediction and depth-averaged whole-profile difference between 
upper and lower prediction limits. Black lines indicate the threshold values for demarcation of each Stratum A, B, C, and D. (b) Spatial coverage 
of the equal-area strata across the study area.

Table 1. Threshold values determined empirically of the strati-
fication variables: depth-averaged whole-profile prediction of 
pH and depth-averaged whole-profile difference between the 
upper and lower prediction limits for each stratum.

Stratum pH prediction Uncertainty (95% PI)

A Low (£5.9) Narrow (£2.6)
B High (>5.9) Narrow (£2.6)
C Low (£5.9) Wide (>2.6)
D High (>5.9) Wide (>2.6)
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mapped variable, the root mean squared error of simulation (RMSES), 
is obtained by taking the square root of MSES . Similarly for the limits 
of a confidence interval.

The methodology for estimation of the APCP is evaluated on the 
basis of a 95% PI. One way to assess both the performance and sensitiv-
ity of the PIs is to estimate the APCP using a range of confidence levels 
(besides 95%). Variants of this type of validation, termed the prediction 
interval coverage probability (PICP) have previously been shown to be 
an important validation criterion in other studies for example, Shrestha 
and Solomatine (2006) and Tranter et al. (2010). Akin to the estimation 
of a 95% PI, we performed the same procedures previously described to 
construct PIs with confidence levels ranging from 5 to 90% and 99%. 
For each confidence level, estimation of the APCP was derived in the 
same way as described for a 95% confidence level. The PICP is a valuable 
indicator of the validity of the uncertainty model where it is said to be 
optimal when the PICP value is close to the range of corresponding 100 
(1−a)% confidence levels.

Conventional Measures of Map Quality
For conventional measures of map quality, we compared the pre-

dicted values of pH at each depth for each SU with the corresponding 
observed value. The method (using mass-preserving splines) for evaluat-
ing the prediction at each sampling depth was the same as for deriving 
the lower and upper prediction limits.

We derived spatial estimates of accuracy, bias, and imprecision at 
each depth interval, where accuracy is stated in terms of the root mean 
squared error (RMSE) which is estimated by taking the square root of 
the predicted MSE (Eq. [3]). As we cannot assume that the measure-
ments used for validation are free of the effects of measurement er-
rors, we need to make allowances for them within our calculation. 
Appendix A provides unbiased estimates for the MSE and variance 
of MSE in the presence of measurement errors. Confidence limits 
for the RMSE can be calculated as the square roots of the confidence 
limits for MSE, whereby MSE  is assumed normally distributed. For 
calculating the variance of the ME (bias) there is no need to correct for 
measurement error, because no nonlinear transformation is involved 
which means it is automatically accounted for in the standard estima-
tion of the variance.

Imprecision was simply calculated as the square root of the differ-
ence between the MSE  and the squared ME defined as:

 ( )= −
2

IMP MS MEE  [10]

RESULTS AND DISCUSSION
As a preamble to interpreting the output of our proposed 

map quality criteria, there are four general outcomes to consider. 
The first is that the APCP is equal to or very near (above or be-
low) the nominal confidence level and the RMSES is small. For 
this result the predictions and simulations are accurate but more 
importantly, what uncertainty there is, is adequately accounted 
for and covered by the PI. This result is ideal, however the map 
user will need to consider the level of uncertainty they are will-
ing to accept for the given purpose of the map. In the case of this 
study, the purpose may be the optimization of liming where viti-
culture is practiced. Nevertheless, given that the accuracy is quite 
high for this first outcome, logic will generally indicate that the 
uncertainties will also be quite low (narrow prediction intervals). 
The second outcome is the situation where the APCP is as the 
first but the RMSES is large. In this result the mapped predic-
tions are inaccurate, but the PIs manage to account for most if not 
all the known sources of uncertainty. This is not an ideal result, 
because ultimately the map user wants an accurate map and the 
PIs could be considered to be too wide, thus making precise man-
agement decisions difficult for example, the optimization of lime 
inputs. It should be avoided however to interpret a map as being 
either high or low quality without consideration of the intended 
purpose of the map. Nevertheless, this second result is more ideal 
than the third whereby the difference between the APCP and 
the nominal confidence level is large, and the RMSES is high. 
This result indicates an inaccurate map in addition to the pres-
ence of other sources of uncertainty that were not accounted for 
and/or bias. The fourth outcome is where the RMSES is small 
but the APCP is far from the nominal confidence level. Given 
the occurrence of any one of the four outcomes, it then becomes 
necessary to investigate reasons why for example the RMSES is 
large but the APCP is ideal (second outcome) etc. It is therefore 
worth stressing at this point that conventional map quality indi-
cators should also be used as a companion to our proposed crite-
ria because they address explicitly issues of bias and imprecision.

In terms of the results from this study, the PI was computed 
for a 95% confidence level. With this basis, the ideal APCP for 
any of the specified depth intervals should be 95%. Taking into 
account the standard errors of the estimated areal proportions, this 
condition was met at the 0- to 5-cm and 5- to 15-cm depth inter-
vals where proportions of 96 ± 4% and 88 ± 7% were estimated, 
respectively (Table 2). This means that at least to 15 cm, we are 
95% confident the true value of pH falls within the specified PI at 

Table 2. Results of the proposed soil map quality indicators: The areal proportion of the map within the specified prediction 
interval or correctly predicted (APCP) and root mean square error of simulation (RMSES) at each depth increment. Additionally, 
corresponding measures of accuracy (RMSE), bias (ME) and imprecision (IMP) of the given map taking into account only the qual-
ity of the predictions.

Depth, cm APCP RMSES RMSE ME IMP

0–5 96 ± 5% 1.0 ± 0.1 0.6 ± 0.1 0.2 ± 0.1 0.6
5–15 88 ± 7% 1.0 ± 0.1 0.7 ± 0.1 0.3 ± 0.1 0.6

15–30 81 ± 8% 1.0 ± 0.1 0.8 ± 0.1 0.2 ± 0.1 0.7

30–60 74 ± 9% 1.3 ± 0.1 1.0 ± 0.1 0.1 ± 0.1 1.0
60–100 81 ± 8% 1.6 ± 0.1 1.1 ± 0.1 0.0 ± 0.1 1.1
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each prediction node. The RMSES at these depths was found to be 
1.0 ± 0.1 units of pH, indicating that there may be some issues of 
accuracy. However, relative to the RMSES values from 30 cm, the 
predictions toward the soil surface are more accurate. This issue 
of inaccuracy is corroborated with the conventional map quality 
indicators where it can be seen just at the first two depth incre-
ments that there is evidently some positive bias (indicating system-
atic under prediction) within the predictions. More detail of the 
conventional indicators is discussed further on.

With increasing depth down the profile an underestimation 
of the uncertainty is observed. For example, at 15 to 30 cm the 
APCP indicates that on average 81 ± 8% of map nodes have PIs 
that cover the true value of pH at that depth interval. At 30 to 
60 cm, the APCP decreased to 74 ± 9%, then increased mar-
ginally at the 60- to 100-cm depth interval (81 ± 8%). At these 
three depth increments the RMSES increased from 1 ± 0.1, to 
1.3 ± 0.1, and finally 1.6 ± 0.1, respectively. Taken as a whole, the 
picture that is quite evident is that with increasing soil depth, the 
accuracy of the predictions decreases along with a growing level 
of uncertainty that is not accounted for.

Observed vs. fitted plots provide a visual guide of the devia-
tion of the predicted values of pH from the colocated measured 
values at each depth interval (Fig. 4a-e). Lin’s concordance cor-
relation coefficient (CCC) derives a quantitative measure and 
considers how well the relationship between the measurements 

(predicted and observed) is represented by a line through the 
origin at an angle of 45°, as would be generated if the two mea-
surements generated identical results (Lin, 1989). The plots (Fig. 
4a-e) show a moderate agreement between the observed and 
fitted values where CCC ranged between 0.44 and 0.30, with 
the strongest predictions at 0 to 5 cm (Fig. 4a). Similarly the ac-
curacy at 0 to 5 cm was 0.6 ± 0.1 and gradually decreased with 
depth to 0.7 ± 0.1 (5–15 cm), 0.8 ± 0.1 (15–30 cm), 1.0 ± 0.1 
(30–60 cm), and 1.1 ± 0.1 (60–100 cm).

What can also be observed from the plots is that at higher 
pHs (>7) there is a systematic under prediction, particular at 15 
to 30 cm, 30 to 60 cm, and 60 to 100 cm (Fig. 4c-e). Bias esti-
mates corroborate this observation approximately where strong 
positive bias (under prediction) was observed for both 5 to 15 
cm (0.3) and 15 to 30 cm (0.2 ± 0.1). For the depth increments 
of 30 to 60 cm and 60 to 100 cm, bias is smaller relative to the 
other depths; however the low accuracy can be attributed mainly 
to the higher level of imprecision at these subsoil depths.

For further analysis, mainly in assessing the quality of the 
uncertainty estimation, Fig. 5a-e shows the deviation of the areal 
proportion of the map correctly predicted at the correspond-
ing confidence levels for each depth increment. The PICP plots 
demonstrate a significant degree of sensitivity with change in 
confidence level. Between the 90 and 40% confidence levels it 
can be observed that the areal proportions demonstrate a pattern 

Fig. 4. Prediction interval coverage probability plots for the areal proportion correctly predicted at (a) 0 to 5, (b) 5 to 15, (c) 15 to 30, (d) 30 to 
60, and (e) 60 to 100 cm.
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of increasing deviation from the desired result. This outcome 
is likely attributed to the bias observed within the predictions 
which has resulted in the bias being transferred to the PIs be-
cause they are empirically derived from the prediction errors. At 
higher confidence levels, the PI performs as it would be expected 
to, and also has the added benefit of being able to buffer the bias 
in the predictions. For predictions that have significant bias, it 
is with decreasing confidence levels that it becomes evident that 
there is some misspecification of the PIs at these confidence lev-
els. The fact that the observed deviations are below the 1:1 line, 
indicates not only some misspecification of PIs, but more impor-
tantly is that the predictions of uncertainty are underestimated. 
In this regard this is better than the alternative where the areal 
proportions for a given confidence level are above the lines which 
would indicate the PIs are unnecessarily wide or in other words, 
an overestimation of the uncertainty.

As expressed in Malone et al. (2011), the aim of calculating 
uncertainties is to account for all perceived or known sources, 
including those associated with our poor understanding of soil 
patterns and processes, and those associated with the model and 
their parameters and model inputs (covariates). Because the ap-
proach to quantifying the uncertainties is evaluated empirically 
(Malone et al., 2011), bias in the predictions will inadvertently 
mean bias will be present also in the estimates of uncertainty. 
This phenomenon was apparent in this study; the problem is that 

we used legacy soil data to generate the map which ultimately 
resulted in prediction bias. Consequently, this bias is reflected in 
the uncertainties as well. Because a probability sample was used 
to validate the pH map and their uncertainties we are able to dis-
cover such bias and subsequently an underprediction of uncer-
tainties. It is not always the case that independent data from a 
probability sample can be used for validation. Data splitting was 
used in Malone et al. (2011). In that study, at confidence levels 
from 5 to 99% there was a near matching proportion of observa-
tions which fitted within their PI for both available water and 
organic C. While a better result per se, it is clear to see that indi-
cators of map quality are more valid when using an independent 
probability sample for validation.

From a map producer’s perspective, there is significant 
value in coupling the proposed criteria with those convention-
ally reported for soil map quality. First, the APCP, RMSES, and 
RMSE all indicated an increased uncertainty with soil depth. 
We are more confident in the quality of the soil map at the soil 
surface where the predictions themselves are more accurate, but 
more importantly, the uncertainties of those predictions are also 
adequately accounted for. With increasing soil depth however, 
map quality decreases; there is decreased accuracy and precision 
of the actual predictions, coupled with a systematic underestima-
tion of the uncertainties.

Fig. 5. Plots of the observed soil pH vs. the corresponding digital soil mapped prediction of soil pH and resultant Lin’s Concordance Correlation 
Coefficient (CCC) at (a) 0 to 5, (b) 5 to 15, (c) 15 to 30, (d) 30 to 60, and (e) 60 to 100 cm.
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Overall (at all depths) the issues of bias and imprecision 
need to be addressed to improve the accuracy. Ideally this would 
be done directly by improvement in the modeling of the spatial 
distribution of the soil properties, which would result in a de-
crease of the RMSES. The PI’s would naturally adjust themselves 
accordingly and become narrower in the process.

There are difficulties however with existing methods to 
make improved predictions within a DSM, particularly in the 
subsoil. One difficultly is that soil pH is evidently a dynamic soil 
property, which is likely to change as a result of human inter-
vention such as agronomic practices (Bastida et al., 2008). From 
field knowledge of the study area, we expect however that sig-
nificant change in pH as a result of intervention would only be 
minor. Rather, the difficultly is more the paucity of well known 
and available covariates that are able to describe soil attribute 
variability in the subsurface.

A question that then remains is whether other soil proper-
ties can be validated using the same sampling units used in this 
study? In short, it is not optimal to do so. The procedures for vali-
dation in this study were optimized based on the predictions and 
their uncertainties of soil pH. Because of this, the stratification 
may be inappropriate for other soil attributes (maps) that could 
be validated in this area. The intention of this project was not to 
validate multiple soil attributes; it was more the presentation of 
additional criteria for quantifying map quality. Nevertheless, for 
the sake of efficiency there may be a requirement that multiple 
soil attribute maps need to be validated concurrently. One alter-
native to stratification on the basis of the predictions and their 
uncertainties is compact geographical stratification (Brus et al., 
1999). With this design, the target area is stratified on the basis 
of spatial coordinates. With such a design, the same design-based 
inference could be used as that used in this study (de Gruijter et 
al., 2006). Future studies will obviously need to properly investi-
gate this alternative approach.

CONCLUSIONS
In the course of this paper we first impressed on the need to 

assess the quality of the quantifications of uncertainty in a DSM 
framework as one does for assessing the quality of the predic-
tions alone. Subsequently, we then presented two new criteria 
that collectively address map quality in terms of both the pre-
dictions and their uncertainties. These criteria are largely based 
on the empirical coverage of PIs; our methodology for express-
ing prediction uncertainty. The MSES explicitly deals with the 
prediction accuracy in that it is a modification of the MSE, yet 
includes a measure of the map uncertainty within its formula-
tion. The APCP deals mainly with the quality of the uncertainty 
component whereby we express with a 95% confidence that the 
true value of a soil attribute lies between the two interval limits. 
We used additional samples collected from a probability sample 
to determine unbiased estimates of these quality measures in 
addition to conventional quality measures such as MSE, ME, 
and imprecision. By coupling these two new criteria with con-
ventional measures means more information is gained and for a 

map producer aids in the efforts to improve precision of the map. 
For the map user, greater clarity of decision making regarding for 
example the optimization of inputs (fertilizers etc.), monitoring 
soil changes or ameliorating soil threats can be made. Regardless 
of the purported quality, it is up to the map user to determine 
map’s fitness for use. The criteria we have proposed in this study 
ensure a more objective approach to those decisions.

APPENDIX A
Accounting for Measurement Error  
in Map Validation

Measurements that are used for validation may be so accurate that 
one can safely assume that the effects of measurement error on the vali-
dation results are negligible. That assumption can not be made in this 
study, thus we have to consider the effects of measurement error.

 The validation criteria used in this study are areal proportion cor-
rectly predicted, Root Mean Squared Simulation Error, Root Mean 
Squared Prediction error, Mean Error, and Imprecision. All of these, 
except for the Mean Error, involve non-linear transformation of the 
measured pH: a 0/1 indicator transformation for the APCP and squar-
ing for RMSE and Imprecision. This implies that, without the bias cor-
rections as detailed hereafter, the estimates of these ‘non-linear’ criteria 
would be biased. Especially the RMSE would be over-estimated, thus 
punishing the map for errors in the validation data, and all error vari-
ances would be underestimated.

Estimation of the Areal Proportion  
Correctly Predicted

As defined previously the criterion is defined as:

 1APCP  d
s A

i s s
A 

   [A1]

where A is the mapped area, and i(s) equals 1 if the true pH value at 
location s is covered by the PI given by the map at s, and 0 otherwise. As 
we do not possess true pH values, we have no error-free i’s either. Instead 
we have to work with indicator values determined from the measured 
pH values. These indicator values are thus subject to random error and 
denoted here by I(s). Each I(s) follows a Bernoulli distribution with 
expectation π(s), being the probability that a randomly measured pH 
value at s is covered by the PI at s. (The pH measurements are assumed 
to have no systematic error.)

The usual design-based estimator for APCP is:



1 1

1APCP  
hnH

h
hj

h jh

A
I

nA  

    [A2]

where Ah  and nh  are the surface area and sample size of Stratum h, re-
spectively, and Ihj  is the indicator value as determined at the j-th sample 
point of Stratum h. If the pH measurements were error-free, I(s) would 
equal i(s) for all s, and APCP  would be an unbiased estimator. This is 
not so in the present study. To investigate the bias of APCP  we take 
its expectation over the process of measuring, conditional on a given 
sample S:



1042	 SSSAJ: Volume 75: Number 3  •  May–June 2011
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hnH
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m m hj

h jh

A
E E I
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  S

	
1 1

1 
hnH

h
hj

h jh

A
nA


 

    [A3]

The conditional bias due to measurement error thus equals:

    
1 1

1APCP| APCP  
hnH

h
tm hj hj

h jh

A
E i

nA


 

   S  [A4]

where APCPt  is the (hypothetical) estimate based on error-free mea-
surements. We could assess this bias numerically by simulation, but in 
the present case we may assume that it is small enough to be neglected. 
The reason is that the terms phj −ihj tend to be small and, more impor-
tantly, being both positive and negative they will largely cancel out.

Estimation of the error variance of APCP  
The error variance of  APCP  due to sampling and measurement 

error is estimated by:

 ( )
( ) ( )

2 2

2
1 1

AP
1

CP
1

hnH
h

hhj
h jh h

A
V i i

A n n= =

= −
−∑ ∑  [A5]

where 
hi   is the mean of the indicator values in stratum h.

Estimation of the Mean Square Error
The mean squared prediction error is defined as:

  21MSE   ( ) dp
s A

z s z s s
A 

   [A6]

where zp(s) and z(s) are the predicted and true values at location s of the 
target variable, here pH. The MSE is estimated from stratified random 
sample data by:



2

1 1

1MSE  ( )
hnH

h
phj hj

h jh

A
z z

nA  

    [A7]

Applying this estimator to measured values (zm) instead of true 
ones gives:

2

1 1

1MSE  ( )
hnH

h
phj mhj

h jh

A
z z

nA  

    [A8]

Assuming that the prediction error and the measurement error are spa-
tially uncorrelated, this can be rewritten as:

  2 2

1 1

1MSE  ( ) ( )
hnH

h
phj hj mhj hj

h jh

A
z z z z

nA  

    
 
 [A9]

Taking the expectation over both sampling and measuring gives:

  2

1 1

1MSM E  S E
hnH

h
p m p m mhj hj

h jh

A
E E E E z z

nA  

   

	
2MSE m   [A10]

where 2
ms  is the variance of the measurement error. It follows from 

[A10] that the usual estimate [A8] should be diminished with 2
ms  to 

make it unbiased.

Estimation of the Error Variance of MSE
The error variance of MSPE  due to sampling and measurement 

error is estimated by:

      
22 22

2
1 1

1MSE
1

hnH
h

hhj
h jh h

AV d d
A n n 

 
   [A11]

where 2
hjd  is the squared difference between the predicted and the mea-

sured value at location j in Stratum h, and 2
hd  is the stratum mean of the 

squared differences.
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