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a b s t r a c t

A programme scripted for use in an R programming environment called dissever is presented. This

programme was designed to facilitate a generalised method for downscaling coarsely resolved earth

resource information using available finely gridded covariate data. Under the assumption that the

relationship between the target variable being downscaled and the available covariates can be

nonlinear, dissever uses weighted generalised additive models (GAMs) to drive the empirical

function. An iterative algorithm of GAM fitting and adjustment attempts to optimise the downscaling

to ensure that the target variable value given for each coarse grid cell equals the average of all target

variable values at the fine scale in each coarse grid cell. A number of outputs needed for mapping

results and diagnostic purposes are automatically generated from dissever. We demonstrate the

programs’ functionality by downscaling a soil organic carbon (SOC) map with 1-km by 1-km grid

resolution down to a 90-m by 90-m grid resolution using available covariate information derived from

a digital elevation model, Landsat ETMþ data, and airborne gamma radiometric data. dissever

produced high quality results as indicated by a low weighted root mean square error between averaged

90-m SOC predictions within their corresponding 1-km grid cell (0.82 kg m�3). Additionally, from a

concordance between the downscaled map and another map created using digital soil mapping

methods there was a strong agreement (0.94). Future versioning of dissever will investigate

quantifying the uncertainty of the downscaled outputs.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The spatial scale at which earth resource information is
required is often mismatched to the scale at which it is available.
One way of harmonising the ‘‘what is required’’ with the ‘‘what is
available’’ is the application of either upscaling or downscaling
methods. The focus of this study is on the application of a general
method for downscaling. Scale in the context of cartography is
difficult to define. In terms of digital information products
however, scale is better replaced by terms such as grid cell
resolution and spacing (McBratney et al., 2003). Thus down-
scaling can be defined as a process involving the transfer of
information from a coarser to a finer scale or resolution by either
mechanistic or empirical functions (Bierkens et al., 2000).

Downscaling has particular traction in climatology research
(IPCC, 2001) where outputs of climate simulations from general
circulation models (GCMs) cannot be directly used for hydro-
logical impact studies of climate change because of a scale
mismatch (Wilby et al., 1998; Bloschl, 2005). The grid resolution
ll rights reserved.

griculture, Food & Natural

ilding, NSW 2006, Australia.

B.P. Malone).
of GCMs is generally in the order of tens of thousands of square
kilometres. In contrast, the resolution at which inputs to hydro-
logical impact models are needed is on the order of tens or
hundreds of square kilometres. Studies by Schomburg et al.
(2010) and Wilby and Wigley (1997) detail a number of
approaches for downscaling GCM model output for use in driving
finer scaled soil–vegetation-transfer or hydrological models. In
other related environmental research fields, Liu and Pu (2008)
aimed to enhance land surface temperature (LST) products using
coarsely resolved satellite thermal infrared (TIR) imagery. The
statistical method for downscaling used by Liu and Pu (2008) was
originally developed for disaggregating zonal census counts by
Harvey (2002). Both Merlin et al. (2009) and Yu et al. (2008) set
about downscaling soil moisture data retrieved from remote
passive-microwave radiometer systems to finer resolutions in
order to generate more compatible input for land surface and
climate modelling. McBratney (1998) also discuss a number of
potential applications for downscaling with particular reference
to soil information.

Most downscaling methods can be categorised into two
classes: empirical or mechanistic. Generally for either class, the
problem of downscaling involves reconstructing the variation of a
property at a fine resolution, given that only the value at the
coarser resolution is known (Bierkens et al., 2000). Earlier studies
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from Tobler (1979) and, more recently, Gotway and Young (2002)
detail the downscaling approach that maintains the mass balance
with the coarse scaled information known as the equal-area or
pycnophylactic property. These could be simplified as approaches
that attempt to harmonise the arithmetic average of the property
values at the fine scale with the single property value at the
coarse scale.

Linear functions, splines, and general additive models are
examples of empirical methods and can be exemplified by
Ponce:Hernandez et al. (1986) who developed a one-dimensional
mass-preserving spline method for disaggregating soil horizon
data to give a continuous function of the target variable with
depth. Mechanistic approaches have had considerable applica-
tions in climatology research where deterministic regional cli-
mate models are nested into GCMs, which means that the initial
and boundary conditions to drive the regional climate model are
taken from the GCMs (Yarnal et al., 2001). A popular subclass of
empirical and mechanistic downscaling approaches involves
using auxiliary or covariate information (Wilby and Wigley,
1997). An implicit assumption when using this auxiliary informa-
tion is that they are strongly related to the target variable, which
is being derived at the fine scaled resolution (for examples, see
Schomburg et al., 2010; Bierkens et al., 2000; Wilby and Wigley,
1997).

The general method presented in this study uses available fine
gridded covariate data to drive the downscaling procedure.
Essentially this procedure is empirical and through iterative
model fitting attempts to maintain mass balance; but rather than
assuming a linear relationship between the target variable and
the covariate data, it is also possible that the relationship can be
nonlinear. Therefore, a generalised multiple regression approach,
which replaces linear combinations of the predictors or covariates
with combinations of nonparametric smoothing or fitting func-
tions is used. This can be achieved with the use of generalised
additive models (Hastie and Tibshirani, 1990). Secondly, it is
assumed that there is an element of uncertainty in the target
variable that is being downscaled. Currently, while downscaling
as a procedure is well established (Wilby and Wigley, 1997), it is
often assumed or implied that there is no associated uncertainty
in the values that are being downscaled. Examples of products
with associated uncertainties include all model-based outcomes
whereby uncertainties will always accompany the predictions, an
example of which are digital soil maps (McBratney et al., 2003).
Alternatively, the target variable could be the product of a
measurement or sensing device for which there will be some
quantifiable measurement and or instrument error. To handle
these uncertainties in the empirical downscaling process, higher
weighting is given to information, which is more accurate than to
information that is less accurate. We present this downscaling
method as a programme and subsequent algorithm called dis-

sever and demonstrate its use in the downscaling of a coarse soil
organic carbon map (SOC) to a finely gridded resolution.
2. Materials and methods

2.1. Algorithm for downscaling

A two-stage algorithm, initialisation and iteration, is used to
downscale existing coarsely resolved target variable data to a
finer resolution and support size, which is determined by the
resolution of the available fine gridded environmental covariates.
The algorithm presented in this study is based on that described
in Liu and Pu (2008), but has been modified to accommodate the
inclusion of target variable uncertainties in addition to function-
ality for modelling nonlinear relationships between a target
variable and the available covariates. The algorithm is called
dissever, meaning disseveration. Disseveration is a downscaling
procedure where the support and the grid spacing are equal and
both are changed equally and simultaneously.

The target variable value at each coarse resolution grid cell is
defined as T̂k, k¼1,y,B; thus B is the total number of coarsely
resolved grids cells across the extent of a particular study area,
and t̂m, m¼1,y,D denotes the estimate of the target variable at
each grid cell at the fine scale. In the spatial context there would
be many m encapsulated by each k, the number of which would
be determined by the resolution of m and will not be consistently
equal, for example, in study areas with nonsymmetric boundaries.
The number of m encapsulated by each k is denoted as E. For the
initialisation stage where the iteration counter l is set to 0, t̂

l

m is
set equal to the value of its encapsulating target variable T̂k. A
weighted nonlinear regression model between t̂

l

m and the suite of
available covariates is fitted to all the grid cells. dissever uses a
weighted generalised additive model (Hastie and Tibshirani,
1990)

t̂m ¼ aþ f1ðx1Þþ f2ðx2Þþ � � � þ fpðxpÞ, ð1Þ

where a is a constant, x1, x2,y, xp are each of the covariate data
sources, and fj are nonparametric smoothing splines that relate t̂m

to the covariates. The model assumes that t̂m is an additive
combination of nonlinear functions of the covariates. Eq. (1) can
be rewritten in the form

t̂m ¼ aþ
Xp

j ¼ 1

fjðxjÞ: ð2Þ

Through an iterative backfitting algorithm all fj are computed,
which are obtained by means of a smoothing of the dependent
variable t̂m against the covariates xj. Justification of the backfitting
algorithm is given by the penalised residual sum of squares (PRSS)
criterion, which through subsequent iterations of the backfitting
algorithm is minimised (Hastie et al., 2001). Essentially the PRSS
can be considered as a smoothing spline approach to estimate the
additive model and is defined as

PRSSða,f1,f2,. . .fpÞ ¼
XD

m ¼ 1

wkU t̂m�a�
Xp

j ¼ 1

fjðxmjÞ

8<
:

9=
;

2

þ
Xp

j ¼ 1

lj

Z
ff 00j ðtÞg

2 dtj: ð3Þ

Each of the functions fj is a cubic spline in the covariate xj, with
knots at each of the unique values of xmj, m¼1,y,D. The first term
measures the ‘‘goodness of data fitting’’ or fidelity, the second
term punctuated by the lambda lj term means ‘‘penalties’’ and is
defined by the functions’ curvatures

R
ff 00j ðtÞg

2 dtj. The lj is con-
sidered the tuning parameter which controls the trade-off
between the fidelity term and the penalties. Lastly, wk is the
weighting vector assigned to each t̂m. See Hastie et al. (2001) for
further elaboration of the PRSS. The weighting vector of the GAM
is a measure of the uncertainty that exists or was estimated in the
predictions at the coarse scaled resolutions. On the presumption
that if the uncertainty is known, the weights for each grid cell k

(wk) are simply a vector where the highest weighting is given to
t̂m values that are the most accurate and so forth. In this study,
the weights are the reciprocals of the variances of the coarse-scale
grid-cell means.

dissever then shifts to the iteration stage. At the l-th

iteration, in order to make the average of t̂
l

m estimates of finer

resolution grid cells equal to the value of their encapsulating

coarse resolution grid cell (i.e., to equal T̂k), t̂
l�1
m are updated to t̂

l

m
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using the equation

t̂
l

m ¼ t̂
l�1

m �
T̂k

ð1=mÞ
P

t̂
l�1
m

: ð4Þ

For simplicity the average of t̂
l

m estimates ðð1=mÞ
P

t̂
l

mÞ will be
denoted as t̂

l

k. With the newly adjusted value, a new weighted
nonlinear regression model (GAM) between the t̂

l

m and the suite
of available covariates is fitted to all the grid cells. Iterations
proceed until ð1=DÞ

P
9t̂

l

m�t̂
l�1

m 9 become equal to or decreases
below a given stopping criterion value, SCV (the weights remain
constant throughout). In the present study the SCV was set to
0.001. The algorithm dissever is summarised in Fig. 1.

2.2. Downscaling using dissever

For this study, dissever was scripted in the R programming
language (Ihaka and Gentleman, 1996). It calls up the R package,
gam (generalised additive models) (Hastie, 2011), for the regres-
sion steps of dissever. Operationally, dissever is structured as
a function, which requires two information inputs or objects: a
data table containing the target variable information, associated
weights (if known), and covariate data source information; and
the GAM formula (which is of a ‘‘formula’’ class R object) used for
both the initialisation and the iteration steps.

The form of the table is a data frame of U number of columns
by V number of rows. Each row is a grid cell location within the
area of study. Together all rows correspond to all the regular grid
cell positions in the area of interest at the fine gridded scale.
Generally, columns 1 and 2 of the data table will correspond to
the spatial coordinates. Column 3 is an ordinal data-type column
where each number corresponds to k (1, 2, 3,y,B) from the
coarsely gridded data. There is an obvious row number mismatch
in order to arrange the coarse grid k to fit the corresponding
number of rows at the fine gridded resolution. To overcome this,
the coarse gridded information is fine gridded using a nearest
neighbour resampling approach. Conceptually, this is just a
matter of assigning the coarsely gridded cell values, here k, to
each finely gridded cell it directly encapsulates in the spatial
context. This fine gridding process is repeated also for the values
of the target variable T̂k and their weightings. The fine gridded
attribute values and weightings are situated in columns 4 and 5,
respectively. The remaining columns (6 to U) correspond to each
of the covariate data sources that have been compiled for a
study area.

It is up to the user to determine, which combination of
covariates to include in the model. The combination of which
can be controlled by selecting the column names, which corre-
spond to the covariate data source required for inclusion. Once
the two objects required for dissever are initialised, it is
activated and will run until the stopping criterion is met or 100
iterations have run, whichever comes first. Once the function
terminates, a number of outputs is created and used for mapping
Initialisation
1. l = 0;
2. Within each k, (m = 1, …, E and k = 1,…, B);
3. Using a generalised additive model, regress  on x , x ,…, x covariates with 

the weights w .
Iteration

4. l = l+1

5. Update the model estimates: 

6. Using a generalised additive model, regress on x , x ,…, x covariates with 
the weights w

7. If  SCV, repeat 4-6; otherwise, iteration terminated.

Fig. 1. The downscaling algorithm written into the dissever programme.
outputs and diagnostic analyses of the downscaling performance.
A table containing the t̂m predictions with appended spatial
coordinates is created as with the estimates of the average of all
fine gridded values ðt̂

l

kÞ within their corresponding coarse grid cell
k. In terms of quantifying the mass balance deviation, iterative
estimates of the weighted root mean square error (wRMSE) are
given between t̂

l

k and t̂k, which is evaluated as the square root of
the estimated weighted mean square error ðwM̂SEÞ:

wM̂SE¼
1PB

k ¼ 1 wk

XB

k ¼ 1

wkðT̂k�t̂
l

kÞ
2: ð5Þ

Furthermore, there are iterative outputs from dissever,
which are essentially diagnostic measures of each GAM fit. The
measures are given in terms of deviance, which is similar to a
residual sum of squares, and the proportion of deviance explained
by each iterative GAM (1�[residual deviance/null deviance]),
which is comparable to the coefficient of determination (R2) from
ordinary least-squares regression. Akaike’s information criterion
(AIC) (Akaike, 1973) is also generated from each GAM, and is a
useful measure for comparing models of differing complexity,
which for dissever would be adjusted (complexity) on the basis
of the number and combination of covariates used for down-
scaling. The AIC is simply a measure of the relative goodness of fit
of a model and is used for comparative purposes whereby the
‘‘best’’ model is the one in which the AIC is minimised. The R
script for dissever with associated materials and instructions
can be obtained from the first author.

2.3. Case study

We demonstrate the use of dissever for downscaling a soil
organic carbon (SOC) map featuring the variation of SOC (kg m�3)
in the top 30 cm of the soil profile around Edgeroi, a 1500 km2

agricultural district in north-western NSW, Australia (30.32S
149.78E). This SOC map has a block support, consisting of 1-km
by 1-km blocks centred on a square grid with a spacing of 1 km,
hereafter referred to as the 1-km blocked map. This map was
downscaled to 90-m by 90-m blocks centred on a square grid
with a spacing of 90 m (90-m blocked map).

The 1-km blocked map was created for the specific purpose of
demonstrating the application of dissever, such that it is the
resultant product of a simple block averaging procedure (within
1-km blocks) of an existing block support map, of the same
support and grid cell spacing as the 90-m blocked map, hereafter
referred to as the 90-m base map. The reason for this process was
to build in a generalised validation whereby the 90-m blocked
map (that resulted from using dissever) could ultimately be
compared with the 90-m base map. Obviously in a true situation
where downscaling would be necessary, such a comparison
would not be possible.

Model-based methods in a digital soil mapping environment
using legacy soil information and spatial interpolation procedures
(McBratney et al., 2003) were used to create the 90-m base map.
Block averaging predictions of the 90-m base map into 1-km
blocks effectively created a product that might be obtained from a
remote-sensing device, or might have been interpolated to this
resolution because of a lack of predictive covariates at finer
resolutions. For the downscaling, the covariates used by dis-

sever were the same as those used to create the 90-m base map.
These included those derived from a digital elevation model
(DEM): elevation, slope (degrees), mid-slope position, terrain
wetness index (TWI), and incoming solar radiation; those derived
from Landsat ETMþ imagery (2009) which included normalised
difference vegetation index (NDVI) in addition to a series of band
ratio derivatives: band 5/band 7, band 3/band 7, and band 3/band
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2; and those derived from airborne gamma-spectrometry infor-
mation, which included the channels that correspond to the
abundances of both radiometric potassium and thorium. All
covariate data sources were resolved to 90-m grid cell resolution.
wk for this study was the inversed variance of each 1-km block
averaged T̂k.
Fig. 2. Top panel: SOC map displaying the variation of SOC in the 30 cm across the Edge

data and a suite of environmental covariates. Middle panel: Upscaled map of the same

block averaging. Bottom panel: Map of the standard errors of predictions resulting fro
3. Results

The 90-m base SOC map is shown on the top panel of Fig. 2.
Upscaling this map using the block averaging procedure resulted
in the map on the second panel of Fig. 2 (1-km blocked map) and
the block average standard errors (last panel of Fig. 2).
roi study area produced from the regression kriging procedure using observed soil

target variable with 1-km by 1-km blocks centred onto a 1-km grid produced by

m the block averaging procedure.
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The 90-m blocked map, which resulted from running
dissever, is displayed on the top panel of Fig. 3. The map on
the second panel of Fig. 3 is that of the absolute difference
between the values of the 90-m base map and the 90-m blocked
map, represented as two classes of difference: o2 kg m�3 and
Z2 kg m�3. Based on these two classes about 86% (E140,000) of
the grid cells have an absolute difference of o2 kg m�3. Absolute
Fig. 3. Top panel: Downscaled SOC map created from dissever. Middle panel: Ma

downscaled map (90-m blocked map) and the 90-m base map. Bottom panel: Concord
differences ranged effectively from 0 to 8 kg m�3. The third panel
of Fig. 3 is a plot of the comparison between both fine scaled
maps. Based on this comparison there was a coefficient of
determination (R2) of 90% (concordance: 0.94) between the soil
map predictions and those resulting from the downscaling.

The real goal of downscaling is to reconstruct the variation of
the target variable at a fine resolution within each coarsely
p of the absolute differences (given as two classes of difference) between the

ance plot between the 90-m blocked map and the 90-m base map.
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resolved grid cell. To assess the quality of mass preservation, one
of the diagnostic outputs provided by dissever is a weighted
root mean square error (wRMSE). For this case study the average
deviation between the average of all fine gridded values ðt̂

l�1
k Þ

within their corresponding coarse grid cell ðT̂kÞ was 0.82 kg m�3.
In a scenario running dissever without incorporating the
weightings on the 1-km blocked map value, it was found that
the wRMSE was larger at 1.10 kg m�3. It was also found when
running this scenario that there was a slight improvement in the
R2 (92%) and concordance (0.96) values when comparing the 90-
m base map with the 90-m blocked map.
4. Discussion

The programme dissever was designed to be a general
downscaling algorithm to suit a range of applications where
scaling of information is required. This algorithm aims to deter-
mine the unknown spatial variation of a target variable at a fine
resolution from an existing coarsely resolved map using a suite of
finely resolved covariate or auxiliary data as predictor variables.
Rather than assuming a linear function to describe the relation-
ship between the target variable and the available covariates,
dissever makes the prediction of the target variable based on an
additive combination of nonlinear functions of the covariates,
which is a more general model for estimation of the unknown
spatial variation. However, the GAM is not exclusive to dis-

sever, and the algorithm can be simply modified to accommo-
date a user-defined function. For example, it is possible to replace
this model (GAM) with other deterministic functions, which could
include linear models, neural networks, or regression trees as a
few possibilities. While the current version of dissever allows
the user to input the level of uncertainty associated with the
information being downscaled, accommodating these uncertain-
ties using other deterministic functions has not been investigated.
In the case of dissever, however, if the uncertainties are not
known, downscaling will proceed using equal weights.

The wRMSE provides a quantitative measure to assess the
mass balance deviation between the coarse gridded information
and the downscaled fine gridded information, and the aim in any
project is to minimise it. As discovered in this study, taking into
account the uncertainties of the 1-km blocked map resulted in
differing estimates of the wRMSE; 0.82 kg m�3 as opposed to
1.10 kg m�3. In the situation of using equal weightings, the
wRMSE is essentially a measure of an unweighted RMSE. The
logic of including the uncertainties into the downscaling process
ensures that greater weighting is given to information that is
more accurate and less weighting to less accurate information;
the wRMSE measure also takes this into account.

It is important to note that the wRMSE does not quantify the
quality of downscaling; merely the deviation of mass balance.
Thus downscaling may lead to poor results in situations where
the fine grid cell variation has not been correctly predicted, even
if the wRMSE is small. Nevertheless, in this study, the wRMSE
appears to be quite acceptable in consideration of the concor-
dance between the 90-m base map and the 90-m blocked map.
This result was to be expected given that the combination of
covariates used to create both maps was the same. This meets one
of the implicit assumptions of downscaling using covariate data
in that they need to be strongly related to the target property,
which is being derived at the fine scaled resolution. The general
features of both maps are comparable and where there was
discrepancy it was predominantly in the order of o2 kg m�3

(absolute difference). Determining some reasons why dissev-

eration of the coarsely resolved soil data was better in some areas
than in others warrants further investigation, but is likely to have
been attributed to the fact that areas where disseveration was
poorest, the uncertainty of the 1-km block map was greatest.
Additional to this factor, expert knowledge of the study area
indicated that areas where disseveration was poorest, there was a
greater spatial variation of the 90-m gridded covariate data inside
each 1-km block. This feature highlights a common limitation of
downscaling in that irrespective of the approach, all the known
variabilities of a target variable is seldom captured at a given scale
(Wilby and Wigley, 1997). It will be useful, however, in further
research and subsequent versioning of dissever to determine a
more sophisticated approach of assessing the uncertainties result-
ing from the downscaling, or in other words quantifying the
confidence of the downscaled predictions. It is perceived cur-
rently that a disadvantage of dissever (and other downscaling
procedures) is that it introduces bias attributed to differences
between the averages of the fine gridded target variable data with
that of the corresponding coarse gridded data. Therefore in
addition to an incomplete knowledge about the variation of the
target variable within each coarse grid cell, there is also this bias
to account for when considering the magnitude of the prediction
uncertainty resulting from downscaling.

With respect to the case study, the information relating to the
covariates was known a priori to the downscaling. Such informa-
tion for the general application of downscaling will obviously not
be available and thus it is up to expert opinion or empirical
analysis to determine suitable covariates to include in dissever.
Empirical analysis is exemplified by the wRMSE measure in
addition to the deviances and AIC estimates that result directly
from the GAM fits. Particularly the AIC and to a lesser extent the
residual deviance both provide an objective tool to the user to
decide which combination of covariates achieves the optimal
downscaling outcome. As explained by Webster and McBratney
(1989) the AIC is the statistical analogue to Occam’s razor,
minimising the AIC results in a fair compromise between good-
ness of fit and parsimony.

Overall, this programme was tested on a dataset with
E175,000 grid cell nodes. With this size dataset, downscaling
terminated after 1–2 h. However, the computational time
required is dependent on the complexity of the GAM used
(increasing or decreasing the number of predictive covariates).
Generally, its usefulness for downscaling has been demonstrated.
There is some expertise required to arrange the spatial data to
generate the input table required by this programme. More
importantly, however, is the necessary technical and theoretical
expertise to decide which auxiliary data sources dominate at the
scale for which the target variable is being downscaled.

In soil science, the ability to disseverate coarsely resolved soil
moisture data from passive-microwave radiometer systems
to1 km or finer for updated soil water status information is the
most intriguing application of this approach.
5. Conclusions

One issue of spatial information is that the scale at which it is
available is often inadequate or does not correspond to the scale
at which it is required. There are established methods for
upscaling and downscaling, which are able to address these
issues. The programme dissever described in this paper is a
new programme that builds on existing empirical methods of
downscaling earth resource information. Principally, while
attempting to maintain the mass balance with the available
coarse scaled information, dissever through an iterative algo-
rithm attempts to reconstruct the variation of a property at a
prescribed fine resolution through an empirical function using
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auxiliary information. The features which differentiate it from
other methods are:
�
 It generalises the multiple regression approach, which replaces
linear combinations of the predictors or covariates with com-
binations of nonparametric smoothing or fitting functions. This
generalised fitting allows the possibility of accommodating
nonlinear relationships between the target variable and the
covariates.

�
 The target variable uncertainties at the coarse scale are

incorporated into the downscaling algorithm, which subse-
quently moderate the outcomes of the downscaled products
and associated measures of mass balance deviation.
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