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Spatial Scaling for Digital Soil Mapping

Pedology

Humans are a dominating force on Earth (Crutzen, 2002). From anthro-
pogenic forcing, we are seeing in many parts of the world, soils being 
degraded, or through intensive agriculture, have been stripped of vi-

tal nutrients to adequately support significant yields (Sanchez, 2010). The criti-
cal functions of soils—provisioning of food, fiber, and ecological support in an 
increasingly populous world—are threatened as a result. To address the manifold 
issues of soil degradation and nutrient depletion, a broad community of scientists, 
policy developers and land managers are increasingly turning to the soil science 
community for relevant and comprehensive information about the status of soils.

We are at a critical time where targeted and objective decision making is of 
the essence, which in turn needs to be complemented with quantitative modeling, 
monitoring, and measurement of particular soil services and functions. Digital soil 
mapping is currently experiencing a precipitous growth from a purely research en-
deavor to something akin to operational status (Grunwald et al., 2011). The reasons 
for this of not difficult to surmise— using a combination of sparsely populated leg-
acy soil datasets and numerical inference, populating continuous spatially explicit 
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We describe in this paper, a broad overview of spatial scale concepts and 
scaling procedures that are specifically relevant for digital soil mapping 
(DSM). Despite the recent growth and operational status of DSM, one exist-
ing and foreseeably growing issue for users of digital soil information is 
the inequality of spatial scales between what is required and what is actu-
ally available to adequately address soil-related questions posed from within 
and from outside the soil science community. In the absence of conducting 
new soil survey or not being able to acquire the original legacy soil informa-
tion (soil point data) as a means of creating user-specified soil information 
products, spatial scaling provides a useful solution. Spatial scaling for DSM 
involves changes in map extent, grid-cell resolution, and prediction sup-
port. We review in this paper the different forms of spatial scaling, which 
are described in terms of changes to grid spacing and prediction support. 
Fine-gridding and coarse-gridding are operations where the grid spacing 
changes but support remains unchanged. Deconvolution and convolution are 
operations where the support always changes which may or may not involve 
changing the grid spacing. While disseveration and conflation operations 
occur when the support and grid size are equal and both are then changed 
equally and simultaneously. Some possible and existing pedometric methods 
are described for implementation of each scaling process, as is an extended 
example for performing convolution where the support changes yet the reso-
lution remains the same.

Abbreviations: AtoP, area-to-point; DSM, digital soil mapping; GCMs, general circulation 
models; P1, panel 1, P2, panel 2; P3, panel 3; P4, panel 4.
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soil information databases can be achieved efficiently, and with 
quantifiable measures of quality or certainty (Lagacherie, 2008).

Currently the availability of digital soil information prod-
ucts encompasses a hierarchy of spatial scales which include 
global, continental, national, region, farm, and field extents 
(Grunwald et al., 2011). On a whole, we may not be experienc-
ing a scarcity of comprehensive soil information; rather it is a 
question of whether the information that is available is relevant 
or compatible to meet the objectives of a given project or policy 
directive for a given mapping domain. The incompatibility large-
ly stems from scale dissimilarity between what is required and 
what is available. Soil information may be available at one spatial 
scale, but may be required either at a finer or coarser scale and 
may even be required at a different support or volume (Papritz 
et al., 2005). For example, digital soil maps created from point 
support measurements (soil cores, pits, etc.) will generate point 
support maps which may not be of any use when a policy direc-
tive requires the support of predictions to be blocks or a speci-
fied land unit size. In the absence of new soil survey, to support 
the creation of tailored soil information products, we see there is 
substantial value and efficiency in using existing soil maps as the 
basis for implementing either upscaling or downscaling methods.

Concepts of spatial downscaling and upscaling have and 
will continue to have considerable traction in soil science. For 
example, Finke et al. (1998) detail the breadth of issues with 
many examples concerning spatial scale in the soil and water sci-
ences domain. McBratney (1998) made some suggestions for a 
number of possible approaches for upscaling or downscaling soil 
information problems. Similarly, Bierkens et al. (2000) devel-
oped and presented a general framework in the form of a deci-
sion tree to detail processes and their models for solving various 
spatial-scaling problems. Issues of scale incompatibility are not 
unique to the soil science domain either. In climatology research, 
outputs of climate simulations from general circulation models 
(GCMs) cannot be directly used for hydrological impact studies 
of climate change because of a spatial scale mismatch (Bloschl, 
2005). The grid resolution of GCMs is generally in the order of 
hundreds of kilometers. In contrast, the resolution at which in-
puts to hydrological impact models are needed is in the order of 
10s or 100s of square meters. Practitioners in the remote sensing 
domain also, to understand the underlying geophysical process 
of some atmospheric or environmental variables, often use two 
of more instruments which measure the same processes, but mea-
sure it at different spatial supports (Nguyen et al., 2010). As a 
consequence, spatial-scaling methods are required to combine 
both information sources for making optimal inferences of the 
underlying process. Spatial scaling, as an operative procedure 
is essentially an inference of spatial processes at one resolution 
from data at another resolution; which in spatial statistics is of-
ten called the “change-of-support” problem (Cressie and Wikle, 
2011). The change-of-support problem presents many statisti-
cal challenges (Heuvelink and Pebesma, 1999) and has been re-
viewed in Gotway and Young (2002) with other important con-
tributions from Cressie (1996) and Fuentes and Raftery (2005).

The motivation for this paper is the idea that spatial soil in-
formation should be available as per the specifications of the user. 
One way to achieve these ends is via spatial-upscaling and -down-
scaling methods, for which, in terms specifically for DSM, are de-
scribed herewith. First, some fundamental concepts of scale are 
detailed in the context of DSM. Second, we describe some (not 
exhaustive) existing pedometric techniques or processes that may 
be implemented for the spatial scaling of digital soil maps. Lastly, 
we describe some considerations and possible suggestions with 
regards to equating the uncertainties and validating the outputs 
that are generated from spatial-scaling procedures.

THeORy
The Digital Soil Map Model

The raster model is seen as a useful data structure in which 
to embed comprehensive and spatially explicit digital soil infor-
mation, where each pixel or grid-cell (the single unit entity of a 
raster), which has a spatially explicit location, contains a value 
for a given target soil attribute (Hengl, 2006). Digital soil maps 
have three spatial-scale entities: extent, resolution, and support 
for which Western and Bloschl (1999) termed the scaling triplet 
when discussing spatial-scaling issues for hydrological modeling. 
Map extent is the areal expanse or coverage of a mapping domain, 
such that the map could be a soil map of the world, a country, a 
region, or a particular farm. Resolution is the grid-cell spacing 
or pixel size of the raster. A map made up of pixels which have 
dimensions of 10 by 10 m is a map with a resolution of 10 m. 
While support is likened to a volume or area. This could either 
be points—which have no defined area or volume, but generally 
consist of a soil core or a pit—or blocks (which have a measur-
able area and/or volume). Bishop et al. (2001) crystallized these 
fundamental concepts in their description of a generic soil map 
model. This model consists of a soil variable, which is estimated 
with some uncertainty. This variable is predicted onto grid-cell 
spacing, G that has a support B which could be a point or a block 
(Fig. 1).

As Bishop et al. (2001) described, the soil map model 
equates to a raster model when G is equal to B (block support 1 
of Fig. 1). Because B has some definable dimensions or support, 
the value attributed to it represents an averaged value for that 
area or volume. When B is very small, the map model is essen-
tially a grid of points; the support in this case is a point (point 
support of Fig. 1). While both examples described above have 
different soil map models, if they have the same G, they will have 
the same raster model. However, they are fundamentally differ-
ent because they have different supports; the values attributed 
to the pixels mean different things and have different statistical 
properties. For further complexity, B may even be bigger than G, 
which is quite common in situations where block kriging is used 
(block support 2 of Fig. 1). A situation where this would be used, 
as discussed by Bishop et al. (2001), is where a map producer 
using block kriging may want a dense coverage of information 
(finely spaced G), but to reduce the uncertainty of prediction, 
may choose a much larger B than G.
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Spatial Scaling of Digital Soil Maps
The problem is this: A soil map is acquired from a given 

source (source map) which could be an online repository, 
a colleague, or a map archive etc. The spatial-scale specifica-
tions (while in the same mapping extent) of the source map 
are mismatched to the desires of the map user. The constraints 
to efficiently solving this problem are that we cannot use the 
data which were used to make the source map (because it is not 
available) nor can we go out into the field to collect new data 
(it may be too expensive or impractical to do so). Therefore 
one option is to implement some form of spatial upscaling or 
downscaling, which is dependent on the specifications of the 
desired product.

First, adjustments to map extent can and usually are cou-
pled with increasing or decreasing the grid-cell spacing to up-
scale or downscale, respectively (McBratney, 1998). Yet upscal-
ing and downscaling as descriptive procedures for spatial scaling 
in reference to the generic soil map model, may be too general in 
meaning. For example, spatial downscaling a source point support 
soil map that has 1-km grid-cell resolution to destination point 
support map that has 90-m grid-cells is quite different— from a 
practical and geostatistical point of view (Dungan et al., 2002)—
to downscaling to 90-m grid-cell resolution when the block size is 
defined as 90 by 90 m. The first situation could be crudely referred 
to as a point-to-point spatial-scaling procedure, while the second 
is a point-to-block. Aggregation and disaggregation also have an 
equivalent meaning to upscaling and downscaling in soil science 
(Bierkens et al., 2000). Yet these terms are also used frequently to 
describe procedures for combining or separating traditional soil 
map class/units, respectively. Therefore, in this paper we describe 
spatial scaling for DSM in reference to the four contrived digital 
soil maps represented on Fig. 2. All four maps have the same 
spatial extent. Panel 1 (P1) and Panel 2 (P2) are the same raster 
model, but different soil map models. The grid spacing is the 
same but in P1, the support is a point, while in P2 the support 
is a block where B has dimensions equal to G. The situation 
is the same when comparing Panel 3 (P3) with Panel 4 (P4). 
Obviously P1 has finer grid spacing than P3 and it should be 
assumed that in the hierarchy of spatial scales P1 is below P3, 
meaning a smaller spatial scale and in reality may or may not 
have a smaller extent. It is also to be assumed that P1 and P2 
exist on the same level of the spatial-scale hierarchy.

The spatial-scaling categories are summarized in Table 1 
and is to be interpreted by deciding first which soil map model 
suits the source map with a corresponding row selection. This 
is followed by a column selection of the digital soil map model 
that is the desired scale destination of the new map. The row 
and column coordinate pair then refer to the nature of scaling 
required to perform the process. We believe that all methods of 
scaling for DSM can be summarized by three main categories:

1. Fine gridding and coarse gridding: These 
are situations where G changes but B remains 
unchanged. Examples of fine gridding are situations 
where spatial scaling requires moving from P3 to 

P1 (Fig. 2; P3→P1). While coarse-gridding situations 
involves P1→P3 spatial scaling.

2. Disseveration and conflation: These are situations 
when B and G are equal and both are changed equally and 
simultaneously. Examples of disseveration are situations 
where a P4→P2 spatial scaling is required. While conflation 
situations involve P2→P4 spatial scaling.

3. Deconvolution and convolution: These are situations 
where B always changes which may or may not involve 
changing G. However when both B and G are equal and 
changed simultaneously, the changes are not equally 
applied. Convolution processes always involve an 
increase in B, with the examples being P1→P2, P1→P4, 
P3→P2, P3→P4 spatial-scaling operations. While 

Fig. 1. Generic soil map model. Support of predictions is point when block 
B is very small. Block support prediction occurs when B has some defined 
areal value. Block support 1 is when B equal grid spacing G. Block support 
2 is when B is greater than G. B may be larger than grid spacing. (adapted 

from Bishop et al. 2001).

Fig. 2. exemplar soil map models. Panel 1 (P1) and Panel 2 (P2) have the same 
grid spacing yet P2 is on block support (where block size is equal to the grid 
spacing), P1 is on point support. Similarly for Panel 3 (P3) and Panel 4 (P4) 
except the grid spacing is larger.



www.soils.org/publications/sssaj 893

deconvolution always involves a decrease in B such as 
P2→P1, P2→P3, P4→P1 or P4→P3 spatial scaling.

Pedometric Spatial-scaling Methods  
for Digital Soil Mapping

When considering the hierarchy of spatial scales recognized 
for soil (Hoosbeek and Bryant, 1992), the i-levels of interest in 
the DSM would be global (i+6), continental (i+5), region (i+4), 
watershed (i+3), farm (i+2) and field (i+1) extents. With these 
spatial extents in mind, this section will explore in more detail, 
some pertinent concepts and subsequent pedometric procedures 
for performing soil spatial scaling (for DSM). For reference, 
Table 2 details a number of real examples from the soil map-
ping literature where implementation of different spatial-scaling 
techniques examples have occurred. We summarize each study 
by stating the type of spatial scaling that was implemented, based 
on the categories we have described; the area of the mapping 
domain (extent); the resolution and support of the source and 
destination soil map information; and the target variable which 
underwent spatial scaling. For most of the examples, spatial scal-
ing was not explicitly stated nor the intended purpose or focus 
of their investigations. Yet the methods they describe—either to 
map soil, or use soil information that underwent some sort of 
spatial scaling as a means of investigating other environmental 
phenomena—exemplify a variety of different pedometric ap-
proaches for implementing spatial scaling.

Fine Gridding and Coarse Gridding
The most common spatial-scaling methods encountered in 

DSM would be either fine gridding or coarse gridding. These are 
spatial-scaling methods where the grid-spacing G changes with-
out any change of the support, that is, B remains constant. Fine 
gridding is a downscaling problem. Alternatively, coarse gridding 
is an upscaling problem.

Fine gridding requires some form of point interpolation or 
spatial prediction. A stochastic process such as ordinary punc-
tual (point) kriging may be used to interpolate onto the finely 
resolved grid nodes. See Isaaks and Srivastava (1989) for more 
theoretical details of ordinary kriging. Assuming the mean is un-
known, the values at the interpolated point locations (fine reso-
lution points) are treated as random variables and are estimated 
from surrounding point predictions at the coarser scale. The or-
dinary punctual kriging predictor is:

( )0
1

 ( ) ˆ
N

i i
i

Z x z xl
=

= ∑  [1]

where ( )0Ẑ x   is the value of the target variable 
at unvisited location x0 which is predicted from 
a weighted linear combination of N number of 
neighboring point observations z(xi) at the coarser 
scale with weights li. To ensure an unbiased esti-
mate, the weights from the vector l (which is of 
length N) are made to sum to 1, and are obtained 
by solving the ordinary kriging system:
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where g is semi-variance, obtained from the fitted variogram of 
the attribute of interest. The length-N vector s contains the semi-
variances between the coarse-scaled points and the fine-scaled 
point x0 and has the structure:
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The kriging variance is equated as:

2
0( )ˆ Txs l=s   [5]

For DSM, the value of z(xi) will often be uncertain, such 
that the exact value will not be known. These uncertainties 
could be measurement or prediction errors and need to be ac-
counted for in the kriging system. Kriging with uncertain data 
was introduced by Delhomme (1978) and the method requires 
some modification of the standard ordinary kriging equations. 
However, to do this we need to assume: (i) The errors are uncor-
related; (ii) the errors are not correlated with the target variable; 
and (iii) the variance of the errors is a known quantity and varies 
from point-to-point (Delhomme, 1978). Under these assump-
tions, following the formulations from Christensen (2011) the 
semi-variance elements (i, j) of the matrix A can be modified on 
the off-diagonals, that is, where i ¹ j to:

Table 1. Coordinate table of scaling processes based on attributes of source 
map and scale attributes of destination map.

Support and 
(resolution)

Destination
So

ur
ce

Points (fine) Blocks (fine) Points (coarse) Blocks (coarse)

Points (fine) Convolution Coarse gridding Convolution
Blocks (fine) Deconvolution Deconvolution Conflation

Points (coarse) Fine gridding Convolution Convolution
Blocks (coarse) Deconvolution Disseveration Deconvolution
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where σ2is the measurement error variance. The g*is a bias ad-
justed semi variance which is detailed further on. The ith ele-
ment of the s vector is modified to:

( ) ( )2
*

0th of element of = , +  
2

i
i

x
i x x

s
gs  [7]

Note that for Eq. [6] and [7] the measurement error vari-
ances are halved because we are dealing with semi-variances. 
Also, bear in mind these adjustments are only valid when the 
target variable is not correlated with the error variances. While 
more problematic, Christensen (2011) formulates a method for 
dealing with correlated error variances for kriging with uncertain 
data which is based on using variance-stabilizing transformations 
as proposed by Box and Cox (1964).

Bias adjustment of the semi-variances essentially means cor-
recting the variogram for the measurement errors. This is done by 
calculating the spatial average of the error variances ( )2

=1

1 N

i
i

x
N

s
 
  

∑ , 
then subtracting this average from the variogram (Christensen, 
2011). In practice, a semi-variogram is fitted to all z(xi) from 
which the variogram parameters of the nugget, partial sill and 
range, denoted as cZ, vZ,and rZ, respectively, are obtained. To 
correct the variogram we simply subtract ( )σ∑

N

i
i

x
N

2

=1

1  from cZ. In 
general the range and partial sill are unaffected by the bias cor-
rection (Christensen, 2011). Occasionally the estimated nug-
get may be less than the averaged measurement error variance. 
When cz– ( )

1

N

i=

σ∑ ix
N

21  < 0, the nugget for the adjusted semi-var-
iogram can be set to zero and the adjusted partial sill can be set to 

( )
1

N

i=

- σ∑Z Z iv c x
N

21
+  so that the sill (sum of the nugget plus partial 

sill) is still reduced by ( )
1

N

i=

σ∑ ix
N

21  (Christensen 2011).
Other forms of fine gridding may involve the use of fine-

scaled environmental covariate data, such as that derived from a 
digital elevation model or some remote sensing platform. Using 
the coarser-scaled target variable estimates as pseudo-observa-
tions, and the fine-scaled covariates as predictors, a determin-
istic empirical or data mining approach could be implemented. 
McBratney et al. (2000) provides an extensive review of such 
scorpan-based spatial soil prediction methods. Combining both 
deterministic and stochastic processes through a regression-
kriging approach is also another viable option; the method of 
which is detailed by Odeh et al. (1995). There is a good logical 
consistency in transfer between the hierarchies of spatial scales 
using available covariate information; we know that the varia-
tion of soil properties depends on factors such as parent mate-
rial, climate, land use, and topography. These factors all operate 
at different scales and therefore influence soil processes and soil 
variation at different spatial scales (Addiscott, 1993).

Coarse gridding is an upscaling problem and is popularly 
practiced within Geographical Information Science (GIS) envi-
ronments through such operations as re-sampling fine-gridded 
data to a coarser resolution. Nearest-neighbor samplings, in ad-
dition to averaging and smoothing spline-type operations, are 

popular re-sampling methods. One must be careful that, in the 
context of coarse gridding, B remains constant in the scaling pro-
cedure. Therefore in the context of the soil map model, regard-
less of whether an averaging or smoothing spline re-sampling 
procedure is used, the upscaled soil information product will 
still be on point support. Effectively, coarse gridding is analo-
gous to throwing some data away (which without good reason is 
generally undesirable). The purpose of this may be because of a 
computer memory saving reason; or to align a series of different 
spatial maps to a common resolution; or that a particular map at 
a fine scale is difficult to interpret and by performing coarse grid-
ding, the map becomes more general (and interpretable).

Deconvolution and Convolution
Manipulations of scale that involve changing the support 

coupled with or without changing the grid spacing involve ei-
ther deconvolution or convolution. Convolution is an upscal-
ing problem because all situations entail increasing the support 
of the predictions, for example, point-to-block operations. 
Deconvolution is a downscaling problem where always the sup-
port size is decreased, that is, block-to-point operations. For both 
convolution and deconvolution, changing the support is always per-
formed, but changing the grid spacing is not always necessary.

Convolution Problems
There are a few different forms of convolution. First, there 

is P1→P4 spatial scaling. Here the grid spacing increases in ad-
dition to an increase in the support of the predictions. Because 
each block has many point observations, convolution could in-
volve averaging the point observations contained within each 
block or pixel (Bierkens et al., 2000), such that:

=1

1 ( ) 
HN

H i
iH

Z z x
N

= ∑  [8]

where the prediction Z with support H is obtained as an average 
of all z(xi) within H. The variance is then computed as:

( )2 2
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1ˆ  [ ( ) ]  
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H i H
iH

Z z x -Z
N

s
=

= ∑  [9]

It is necessary to indicate the variance so as to derive a con-
fidence interval about the block average, because the estimate 
is based only on a limited (not exhaustive) number of points. 
However the derivation of a confidence interval is based on 
the assumption that the N points are independent and that the 
sample mean follows a normal distribution. Brus and de Gruijter 
(1997) state that independence can be created through random-
ization of the point locations. For P1→P4 processes the distribu-
tion of the points will not be randomly distributed; they will in 
fact be regularly spaced points. This means that the spatial cover-
age of points within each block may be useful in the practical 
sense of deriving a meaningful block average, yet the suitability 
of this method from a statistical view is not optimal. While not 
optimal, the suitability of implementing this particular P1→P4 pro-
cess will rely on having many (e.g., >50) points within each block.
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When there are not a sufficient number of points within 
a block, ordinary block kriging could be used (Burgess and 
Webster, 1980). It is such that block kriging rather than punctual 
kriging computes the mean value of a target variable in a region V 
of area H that centers on a point at x0. The block kriging estima-
tor is defined as:

( )0
=1

( ) ˆ  
N

H i i
i

Z x z xl= ∑  [10]

The predictor Z with support H is obtained from a weighted 
linear combination of N neighboring point observations z(xi). 
The weights (li) are obtained by solving the block kriging system 
which is the same as that for ordinary punctual kriging. In these 
cases fine-scaled point observations will be upscaled to the area 
of H, which will be set to the dimensions of the pixels. However, 
one difference between point and block kriging is the nature of 
the s vector, such that:
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where γ  is the average semi-variance between z(xi) and x0 which 
is the block and is the integral:

( ) ( )1, , dx i i
H

x H x x
H

g g= ∫
 

[12]

where g(xi, x) denotes the semi-variance between the point 
xi and a point x inside the block. The block kriging variance is 
equated as:

( ) ( )2
0ˆ ,  x H Hs l g= -Ts  

[13]

where ( ),H Hg  is the within-block averaged semi-variance value.
Different convolution problems are those that involve 

P1→P2 or P3→P4 scaling. Consider the situation where a digi-
tal soil map may be available at point support where each pixel 
value represents a single point within the areal extent of the pixel 
(usually the central node). Without additional sampling, it may 
be necessary to know what the average of the target variable is 
across the entire area of each pixel. In this situation, a change of 
support is required, yet a change in the grid spacing is not ap-
plied. We propose that this type of problem could be solved via 
block kriging. Such that, to increase the support of a point map 
all that is required is to set the block size H equal to the grid 
spacing. An example of this is detailed in the following section.

Block Kriging example of Panel 1→Panel 2 Processes
The g radiometric signal of thorium was collected us-

ing a proximal sensing device across fields of a particular farm. 

Observation of thorium concentration in mg/kg was made onto 
a regular grid of points with 5 m spacing (point support map), 
and is shown on Fig. 3. Each independent observation also has 
some quantitative value of the measurement error given as a vari-
ance which is on average 1.4 mg/kg. This measurement error is 
due to the instrumentation, meaning that the errors are spatially 
uncorrelated, and are not correlated with the target variable con-
centration.

The aim of the example is to create new maps on block sup-
port with resolutions of 20, 50, and 80 m, meaning that the block 
sizes are 20 by 20 m, 50 by 50 m, and 80 by 80 m, respectively. 
The reason why three increasingly larger resolutions are used is 
for comparative purposes in assessing the quality the outputs of 
the P1→P2 procedure.

Using the 5-m point map, a simple way to generate block 
support maps at these desired resolutions and supports is to aver-
age all the observations within each block. This particular proce-
dure is in fact a P1→P4 process (described previously). Because 
there is some uncertainty about the 5-m spaced observations, we 
may arithmetically determine the average estimate of thorium 
concentration in each block as:

2=1

2=1
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s
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∑
 [14]

where HZ  is the weighted averaged value of a block, NH is the 
number of point observations of the target variable zi within 
each block, and with measurement error variance 2

is . The vari-
ance of HZ  can be estimated by:

Fig. 3. Five-meter point support thorium concentration (mg/kg) map.
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Figure 4 shows the block support maps in P1a, P1b and P1c. 
The spatial average of the var( )HZ  was 2 × 10–3, 7 × 10–4, and 
5 × 10–4 for the 20-, 50-, and 80-m maps, respectively. We could 
consider these maps as the “true” block support maps and use 

them to compare with the outputs of the P1→P2 process, which 
is described now.

First, using the 5-m point support map, coarse gridding 
(P1→P3) was performed to generate new maps. For example, to 
create the 20-m point support map we sampled the 5-m map at 
grid nodes every 20 m apart and so on. Block kriging based on 
locally fitted variograms of the nearest 200 sample point support 
observations is used to create the desired block support maps 
where the support H is set to the same size as the map resolu-
tion. However, because there is uncertainty about the true val-

ues of all zi expressed as prediction or 
measurement error variances, there is a 
need to modify the standard ordinary 
block kriging equations. We can assume 
the error variances are independent of 
zi and carry out what was described for 
punctual kriging with uncertain data, 
by modifying the A matrix and s vec-
tor accordingly which are formulated in 
Eq. [6] and [7], respectively. Similarly 
the variogram of zi is adjusted to correct 
for the bias due to measurement errors 
where the spatial average of the error 
variances  

 
 

∑ 2

=1

1 N

i
i

s
N

 is subtracted from the 
variogram (Christensen, 2011). Because 
block kriging is being used, the ith ele-
ments of the s vector is modified to:

( )
2

0th of element of s , +  
2
i

i
si x xg=   [ 1 6 ]

The block kriging variance is equated as 
in Eq. [13].

Panel 2 of Fig. 4 shows the maps 
that resulted from block kriging with 
uncertain data for each of the three reso-
lutions and supports. For a comparative 
exercise, block kriging without including 
the uncertainties using the standard or-
dinary block kriging equations was also 
performed and the maps are shown in 
P3 of Fig. 4. While quite similar to the 
true block support maps, including the 
measurement error variances into the 
kriging equations resulted in smoother 
representations of thorium concentra-
tion at each of the three supports. The 
spatial average of the kriging variances 
from kriging with the uncertain data 
were 3 × 10–2, 6 × 10–2, and 9 × 10–2 
for the 20-, 50-, and 80-m maps, respec-
tively. The spatial averages of the krig-
ing variances when not including the 
error variances was 2 × 10–3, 3 × 10–2, 
and 5 × 10–2 for the 20-, 50-, and 80-m 

Fig. 4. Block support maps of thorium concentration where support size equals grid-cell size 
(resolution)- (a) 20 m, (b) 50 m, and (c) 80 m. Panel 1 (P1): true blocks created directly from 5-m 

point support map with a P1→Panel 4 (P4) process-weighted averaging. Panel 2 (P2): P1→P2 

process (Block kriging with uncertain data). Panel 3: P1→P2 process (Block kriging without 
including uncertainties).
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maps, respectively. Essentially what these results represent is that 
for P1→P2 processes, the uncertainty increases with increasing 
resolution and support size. Logical also is the fact that the un-
certainties are higher when kriging is performed using uncertain 
data compared with when the data are assumed to be without er-
ror. In any case the spatial averages of the kriging variances from 
both methods were higher than found for the true blocks, which 
is to be expected.

The plots in Fig. 5 illustrate the 
similarity of the maps resulting from 
kriging with uncertain data with the 
true block maps. With 20-m blocks, 
concordance (Lin, 1989) was quantified 
as 0.97 while the root mean square er-
ror of prediction (RMSE) was found to 
be 0.25. This indicates a high degree of 
similarity between the true and predict-
ed map. By not including the measure-
ment error variances however, both the 
true and predicted maps are very close 
to identical where a concordance of 
0.99 and RMSE of 0.13 was quantified. 
Similarly with the 50-m blocks, the map 
resulting from kriging with uncertain 
data is a very good representation of the 
true block map (concordance = 0.95, 
RMSE = 0.29). With 80-m blocks the 
concordance was found to be 0.93 and 
RMSE was 0.31. At these two supports 
(50 and 80 m), kriging without uncer-
tain data resulted concordance of 0.98 
between the predicted block support 
maps and the true block map, while the 
RMSE was 0.17 and 0.20, respectively.

From this example of a P1→P2 
process, block kriging tends to work 
better when smaller supports and reso-
lutions are used. This is because more 
data close to the location where a pre-
diction is to be made is available. This 
type of phenomena has previously been 
reported in Costanza and Maxwell 
(1994). When uncertain data are used 
for kriging, the resulting maps will 
be smoother than when they are not. 
Empirically from this example, this is 
because more weighting (from the krig-
ing weights) is assigned to points further 
away from the location where a predic-
tion is to be made.

Further Convolution Problems
Convolution problems could also 

involve situations where one requires 

a process for scaling from P3→P2. The purpose for these pro-
cesses may be that in addition to requiring point predictions to 
be expressed on an areal support, the target variable information 
is needed at a finer resolution to what is currently available. It is 
possible to achieve this directly through such methods as ordi-
nary block kriging or universal block kriging. Because there is a 
need to describe the variation of a target variable at a finer resolu-
tion, ordinary block kriging would suit in situations where no 

Fig. 5. Comparisons between true block maps with maps from block kriging with uncertain data (a) 
20 m, (b) 50 m, and (c) 80 m. Comparisons between true block maps with maps from block kriging (d) 
20 m,(e) 50 m, and (f) 80 m.
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available covariate information is available. A preferable alterna-
tive is where covariate information is available, for which univer-
sal block kriging or kriging with external drift would be suited. 
Universal kriging may be described as some spatial process which 
comprises both stochastic and deterministic components and 
represented by the general model:

( ) ( )
=0

 ( ) 
K

k k
k

Z x a f x xe= +∑  [17]

The deterministic component is represented in the above 
equation by a set of functions (usually first or second order 
polynomials), fk(x), k = 0, 1, …, K, and unknown coefficients ak 
which need to be estimated based on the relationship between 
the target variable and covariates. The e(x) term is the stochastic 
field with zero mean. A block universal kriging estimate of a tar-
get variable centred by a point x0 based on N point observations 
at neighbouring sites is: 

( )0
0 0

 ( ) 
K N

H k i k i
k i

Z x a f xl
= =

= ∑∑  [18]

where li are the kriging weights. More detail regarding universal 
kriging can be found in Webster and Oliver (2001).

Deconvolution Problems
Deconvolution is a downscaling problem which involves 

a decrease in spatial support such as acquiring point estimates 
from areal information. This type of procedure is not uncom-
mon in soil map disaggregation exercises where a map producer 
will require some method to discretize points within polygons 
before generating soil attribute maps (Goovaerts, 2011). Area-
to-point (AtoP) kriging (Kyriakidis, 2004) is one, and a natural 
candidate for implementing deconvolution. Area-to-point krig-
ing is essentially the counterpart of block kriging in that point 
estimates are obtained from areal (block) measurements. In the 
case of digital soil map deconvolution, each pixel is a block where 
the pixel value is some spatially averaged estimate of the target 
variable. The idea of AtoP kriging for deconvolution is therefore 
to use this areal information to discretize point estimates on a 
regular grid spacing as defined by the map producer. The AtoP 
kriging estimate for any given point x0 is expressed as:

( )
1

 ( ) 
K

AtoP 0 k k
k

Z x Z vl
=

= ∑  [19]

where K is the number of areal data Z(vk) encapsulating and sur-
rounding the point x0. Generally, areal data are chosen accord-
ing to adjacency rules, such that the encapsulating areal datum 
and all its adjacent areal data are used for prediction (Goovaerts, 
2010). A key property of AtoP kriging is that it preserves the 
mass-balance or pycnophylactic property of the areal data. The 
mass-balance property means that the average of all discretized 
points within each vk returns the areal value of Z(vk). However, 
the constraint imposed on Eq. [19] is that the same K areal 
data are used for prediction at each location within the block 

vk where the point estimations are required (Goovaerts, 2011). 
Furthermore, because areal or block estimates are used to derive 
point predictions, there is a requirement to know the point sup-
port variogram model. Obviously this is not available but can be 
evaluated in two steps: (i) compute and model the variogram of 
the areal data and (ii) deconvolute the block-support model to 
derive the point support variogram. Goovaerts (2008) proposed 
an iterative deconvolution procedure that seeks the point sup-
port model that, once regularized, is the closest to the model fit 
of the areal data.

Conflation and Disseveration
Scaling problems where both the source and destination 

maps both have some sort of areal support may be conditionally 
approached with either conflation or disseveration. Conflation 
and disseveration procedures deal strictly with processes where 
the support and the grid spacing are equal and both are changed 
equally and simultaneously. In accordance with Fig. 2 conflation 
processes require spatial scaling from P2→P4. A conflation pro-
cess would be performed where given a large project area extent, 
a map producer requires regional predictions of a target variable 
using available fine-scaled areal estimates such as those derived 
for farm extents. Conflation here involves the averaging of the 
fine-scaled areal observations within each coarse-scaled block. 
With this upscaling procedure, while the overall mean of the tar-
get variable across the same map extents will remain unchanged, 
the overall variance will decline as the block and grid spacing si-
multaneously increase. The decline in variance will, with increas-
ing resolution, result in the creation of homogenous maps.

Disseveration is analogous to P4→P2 scaling. Here the re-
quirement is that in addition to needing a method for estimating 
the variation of the target variable at a fine resolution (given that 
only the value at the coarse resolution is known) there is a need to 
maintain the pycnophylactic property whereby the target variable 
value given for each coarse grid-cell equals the average of all target 
variable values at the fine scale in each coarse grid-cell. This addi-
tional requirement of mass preservation is the explicit difference 
between downscaling methods that involve simply fine gridding 
which is essentially a points-to-points procedure and those which 
involve disseveration which is a block-to-block procedure.

An example of where disseveration would be enacted would 
be in a situation where regional estimates of a target variable (at 
block support) are available only at a coarse resolution and there 
is a requirement to generate estimates of this property to a farm 
or even field extent. It is therefore quite reasonable to expect that 
downscaling here also involves a reduction of the areal extent in 
addition to reduction of the spatial resolution.

Methods for disseveration include AtoP kriging as discussed 
previously. Alternatively, when covariate information is avail-
able, iterative processes of model fitting and adjustment (in an 
attempt to optimize the downscaling by preserving the mass bal-
ance) may be used and for which one procedure is described in 
Malone et al. (2012).
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Further Solutions for Scaling Problems
The spatial-scaling processes described so far are specific for 

a given problem. For example, block kriging for P1→P4 process-
es (convolution), point kriging for P3→P1 processes (fine grid-
ding), AtoP kriging for P4→P1 processes (deconvolution) and 
disseveration for P4→P2 processes. Recently however, Gotway 
and Young (2007) introduced a generalized geostatistical frame-
work that in addition to solving the problems of scaling de-
scribed in this paper can also be implemented for other problems 
that cannot be visualized by using the contrived soil maps on Fig. 
2. For example, deconvolution problems that are block-to-block 
processes or problems that involve overlapping supports (which 
are described as side-scaling problems). The idea of Gotway and 
Young (2007) is that data of any kind of support whether it be 
point or block is Z(B) = Z(B1),…, Z(Bn) and prediction of Z(A) 
is of interest. The volumes A and B can be general which allows 
for several different types of scaling problems. For example, 
block kriging is a special case of this method when A is a volume 
or area and Bi are points. If A is a point and Bi is a volume or 
area where A is nested within Bi, the problem becomes one of 
deconvolution and the principals of mass balance are preserved. 
Gotway and Young (2007) detail the statistical inference of this 
framework and its demonstration of use is also given in Young 
and Gotway (2007). Obvious advantages of this framework are 
its versatility for solving a range of scaling problems with one 
method, negating the requirement for resorting to specific solu-
tions for a given problem. Furthermore, measures of uncertainty 
can be obtained for the predictions.

 Validation of Soil Information Products 
Generated from Scaling Methods

Some comment is necessary on steps to assess the validity of 
outputs generated from spatial-scaling source digital soil maps. 
This is particularly important in the context that the digital soil 
information may be used for decision making, management, or 
modeling purposes.

It is well established that the spatial prediction of soil is in-
herently difficult. Consequently, the source maps will have some 
level of uncertainty attributed to it. In kind, these uncertainties 
will also propagate through to the destination map, which is add-
ed to the uncertainty associated with the actual spatial-scaling 
procedure. More often than not the uncertainties are very rarely 
included with a source map, which is not ideal. When uncer-
tainties are available, incorporating them into the spatial-scaling 
process is desirable, for example, kriging with uncertain data 
(Delhomme 1978). Furthermore, as described for disseveration, 
the method or program presented by Malone et al. (2012)—dis-
sever—allows one to incorporate uncertainties of the source map 
into the process for creating the destination map.

More generally, an implied and over-arching assumption of 
the spatial-scaling methods discussed is that the behavior of soil 
at large scales is explained by the average of the soil behavior at 
fine scales. This may or may not be upheld in reality or may only 
be relevant at a specific range of scales (Addiscott and Mirza, 

1998). Intuitively the specific range of spatial scales maybe those 
relevant for DSM, that is, i+1 to i+6. Grunwald et al. (2011), 
citing deYoung et al. (2008), does explain however that nonlin-
ear dynamics and alternate states are well known in ecological 
systems, yet they have been poorly investigated in the soil science 
domain. It is beyond the scope of this paper, but a pragmatic way 
to investigate the variance of soil properties at different scales, as 
Pettitt and McBratney (1993) suggests, is by performing nested 
sampling which will additionally help recognize the existence of 
natural hierarchies. Lark (2005) also described the value of nest-
ed sampling for understanding soil processes at different scales. 
Understanding the dynamics of soil processes better at different 
spatial scales will obviously complement efforts when scaling of 
existing soil information is required.

Ultimately, the outputs from spatial scaling will require 
some form of validation to assess their quality. When kriging 
operations are performed, the kriging prediction error provides 
a quantitative and spatially explicit measure of the uncertainty. 
Otherwise, internal validations from diagnostic measures such 
as the coefficient of determination or the RMSE, among oth-
ers, provide some way of assessing the validity of outputs. This 
would be the case if a scorpan model was used for a fine-gridding 
operation; similarly for disseveration with covariate informa-
tion. However these internal validations may be susceptible to 
bias (Brus et al., 2011) and the kriging prediction variances as 
exemplified in the example of convolution (P1→P2) will under-
estimate or oversimplify the true prediction uncertainty.

Brus et al. (2011) propose that to unbiasedly estimate map 
quality, one needs to collect additional samples from the mapping 
domain of interest. The recommendation is that a design-based 
sampling strategy involving probability sampling be implement-
ed. There are associated costs required to implement a sampling 
for validation program, but more importantly there are some 
things to consider in terms of prediction support. For example, 
when the support of observations is a point, the external valida-
tion is not a technically difficult exercise. One just needs to come 
up with an appropriate design and subsequent sampling configu-
ration of N number of points. However, validation of digital soil 
maps with some sort of areal support is less straightforward to 
implement. Lagacherie et al. (2012) pragmatically proposed that 
block averages can be validated by first performing a validation 
(here cross-validation) of a model using the same data on point 
support. The obvious advantage of this is that no new data need 
to be collected. However, probability sampling is more optimal. 
Implementation would require a sample collection at a limited 
number of point locations within randomly selected validation 
supports. The average of the soil variable at these locations would 
be assumed as representative of the entire support unit. The ques-
tion is then, how many samples are required from each block 
support unit? It seems intuitively attractive to sample twice with 
each unit, but it could be argued that more than this is necessary. 
Therefore further research and examples are recommended to 
determine an optimal, efficient, and general scheme for validat-
ing block support maps.
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CONClUSIONS
Tailoring digital soil information products to the specifica-

tions of the end-user is likely to become the norm into the fu-
ture. One important challenge in the soil mapping community is 
how can we use existing soil maps that are not necessarily ideal in 
terms of scale representation. Therefore, it is timely to open the 
discussion in the soil mapping community, first of some general 
spatial scale concepts relevant for DSM. We did this in terms of 
the generic soil map model previously introduced by Bishop et al. 
(2001). We then categorized three main spatial-scaling types that 
vary in terms of changes in resolution and/or prediction support. 
Fine gridding and coarse gridding are operations where the grid 
spacing changes but support remains unchanged. Deconvolution 
and convolution are situations where the support always chang-
es, which may or may not involve changing the grid spacing. 
Disseveration and conflation operations occur when the support 
and grid size are equal and both are then changed equally and 
simultaneously. We have not attempted to describe the full suite 
of pedometric methods that may be used to perform each type 
of spatial scaling. Yet to initiate further discussion we describe a 
few likely candidates for each. Some immediate challenges exist 
in terms of quantification of uncertainties and validation (par-
ticularly of block support maps) of the maps or outputs resultant 
from spatial scaling.
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