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Abstract. Until recently, Tasmanian environmental modelling and assessments requiring important soil inputs relied
on conventionally derived soil polygons that were mapped up to 75 years ago. In the ‘Wealth from Water’ project, digital
soil mapping (DSM) was used in a pilot project to map the suitability of 20 different agricultural enterprises over 70 000 ha.
Following on from this, the Tasmanian Department of Primary Industries Parks Water and Environment has applied
DSM to existing soil datasets to develop enterprise suitability predictions across the whole state in response to further
expansion of irrigation schemes. The soil surfaces generated have conformed and contributed to the Terrestrial Ecosystem
Research Network Soil and Landscape Grid of Australia, a superset of GlobalSoilMap.net specifications. The surfaces were
generated at 80-m resolution for six standard depths and 13 soil properties (e.g. pH, EC, organic carbon, sand and silt
percentages and coarse fragments), in addition to several Tasmanian enterprise-suitability soil-attribute parameters.

The modelling used soil site data with available explanatory state-wide spatial variables, including the Shuttle Radar
Topography Mission digital elevation model and derivatives, gamma-radiometrics, surface geology, and multi-spectral
satellite imagery. The DSM has delivered realistic mapping for most attributes, with acceptable validation diagnostics and
relatively low uncertainty ranges in data-rich areas, but performedmarginally in terms of uncertainty ranges in areas such as
the World Heritage-listed Southwest of the state, with a low existing soil site density. Version 1.0 soil-attribute maps
form the foundations of a dynamic and evolving new infrastructure that will be improved and re-run with the future
collection of new soil data. The Tasmanian mapping has provided a localised integration with the National Soil and
Landscape Grid of Australia, and it will guide future investment in soil information capture by quantitatively targeting areas
with both high uncertainties and important ecological or agricultural value.
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uncertainty.
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Introduction

Until recently, Tasmanian environmental modelling and
assessments requiring important soil inputs relied on
subjectively derived soil polygons that were mapped up to
75 years ago. Commencing in 2009, numerous irrigation
schemes commissioned by the state government have been
initiated across much of Tasmania’s agricultural land, primarily
to intensify and diversify agricultural and horticultural production,
and capitalise on the state’s favourable climate and soils to ensure
food security and economic prosperity (Kidd et al. 2012b,
2014a, 2014b). This current and impending land-use change is
driving the need for improved spatial soils data as functional
modelling parameters to assess suitability, and identify potential
environmental degradation hazards. Most modellers require
two-dimensional, continuously varying representations of soil

attributes known as surfaces. These have historically been
derived from the ‘legacy’ soil mapping polygons, with values
extracted from modal profiles or classes where qualitative soil
description with soil chemical and physical properties has been
subjectively associated to similar landscapes. However, improved
computing power and spatial modelling techniques have allowed
substantial enhancements and generation of three-dimensional
(3D) soil-attribute grids, which have now been developed for
the whole state.

Digital soil mapping

In 2010, the Tasmanian Department of Primary Industries Parks
Water and Environment (DPIPWE), in conjunction with the
Tasmanian Institute of Agriculture (TIA) and the University
of Sydney, undertook a quantitative enterprise suitability
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assessment (ESA) for 20 different enterprises in two pilot
areas totalling 70 000 ha as part of the ‘Wealth from Water
(WfW)’ project (Kidd et al. 2012b, 2014b; Webb et al. 2014)
(http://dpipwe.tas.gov.au/agriculture/investing-in-irrigation). The
suitability rule-sets required detailed soil-attribute and climate
inputs identifying the most limiting factor (Klingebiel and
Montgomery 1961) to derive four suitability classes. Owing
to the inappropriate scale, quality and format of the available
legacy-soil information, it was necessary to collect new spatial
soil information at the appropriate resolution and in a format that
better provides soil-attribute values, rather than type or class.

A digital soil mapping (DSM) methodology was chosen
as the optimum approach to generate this new soil resource,
enabling a quantitative assessment and reduced subjectivity and
associated uncertainties of prediction (McBratney et al. 2003).
There is now sufficient published literature outlining the benefits
and appropriate methodologies of DSM to make this a valid
scientific approach for development of operational government
products. The success and interest generated by the WfW ESA
has led to the generation of new soil-attribute mapping for
the whole of Tasmania using the DSM ‘scorpan’ approach
(McBratney et al. 2003), based on existing legacy-soil site
data and available spatial scorpan soil-forming factors. The
scorpan environmental correlation premise is defined as:

SP ¼ f ðS, C,O, R, P, A, NÞ ð1Þ

where the soil attribute of interest at various depths (the soil
property at a given site, SP), is a function (f) of the available
spatial soil-forming factors (covariates), where S is available soil
data, C is climate (rainfall and temperature), O is influences
of organisms (land use and management, vegetation), R is relief
(terrain shape and elevation), P is parent material (geology), A is
landscape history or age (geological age), and N is the spatial
location of the calibration points.

New soil attribute surfaces were generated as Version 1
raster-based maps of a planned, evolving suite of products to
be updated as new soil information is collected. The maps were
produced at 80-m resolution (equivalent to the 3-s Shuttle Radar
Topography Mission (SRTM) digital elevation model; Gallant
et al. 2011) for standard depths and soil attributes with upper and
lower predictions (Table 1), and comply with the Terrestrial
Ecosystem Research Network (TERN) Soil and Landscape Grid
of Australia (www.tern.org.au/), and Globalsoilmap.net (GSM)
programs (Arrouays et al. 2014; Grundy et al. 2012). They have
been uploaded as a regional, stand-alone contribution to the
National Soil and Landscape Grid of Australia, and integrated
with the national grids by prioritising the areas for inclusion
where predictions have the lower uncertainty (www.csiro.au/
soil-and-landscape-grid). The suite of products will inform state-
wide ESA as well as a range of current and future environmental
modelling scenarios. By using the size and distribution of the
uncertainties, the spatial reliability of the surfaces can be assessed
to encourage and guide future investment in the collection of land
resource and soil data by targeting important environmental or
agricultural productivity areas with high uncertainties.

The aims of this study are therefore to: (i) generate a suite
of multi-depth soil attribute surfaces and mapped estimates of
uncertainty across the whole of Tasmania at 80-m resolution;
and (ii) present the methodology and associated modelling
diagnostics as accompanying documentation to the Version
1.0 products.

Methods and materials

Study area

Tasmania, as Australia’s southern-most and only island state,
has a cool-temperate climate, with mean annual rainfall
averaging >1800mm year–1 in the west, to <450mm year–1

in the central Midlands (Australian Bureau of Meteorology
2014), driven by the central-plateau rain-shadow effect

Table 1. Tasmanian spatial covariates

Scale, resolution Reference, source

Remote-sensing
LandSat persistent green areas 80m (processed) SAGA GIS (System for Automated Geoscientific

Analyses, www.saga-gis.org), LandSat
Imagery 2009

Integrated gamma radiometrics—geology (radioactive nuclides:
K, U, Th, total dose)

80m (processed) Base products (Mineral Resources Tasmania and
Geoscience Australia)

Climate
Mean annual rainfall 80m (processed) DPIPWE, Bureau of Meteorology, Australia
Mean annual temperature 80m (processed) DPIPWE, Bureau of Meteorology, Australia

Terrain
SRTM DEM-S 80m 3Arc Second Digital ElevationModel, adaptively

smoothed (Geosciences Australia)
Slope, eastness index, northness index, curvatures (plan and

profile), topographic wetness index (TWI), multi-resolution
valley bottom flatness (MR), multi-resolution ridge top flatness
(MRRTF), vertical desistance to chanel network (VDCN),
altitude above channel network (AACN), TCI_Low (lowland
exaggeration), topographic position index (TPI), mid-slope
position (MSP), terrain ruggedness index (TRI), SAGA
wetness index (SWI)

80m SAGA GIS (System for Automated Geoscientific
Analyses, www.saga-gis.org)
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(Davies 1967). Population is ~500 000, with agriculture being
one of the most economically important activities. Area is 68
401 km2, with a diverse range of soils and landscapes and
associated native flora and fauna.

Dominant soils and land uses
Some of the most productive soils in Australia are derived

from Tertiary basalt on the north-west coast, and the north-east
around Scottsdale, used for intensive vegetable and alkaloid
poppy cropping and some dairying. These Red Ferrosols (Isbell
2002; Nitisols or Acrisols, IUSS Working Group WRB 2007)
are fertile, well structured and freely draining (Spanswick and
Kidd 2000), and relatively high in organic carbon (Sparrow et al.
1999; Cotching et al. 2009; Cotching and Kidd 2010; Cotching
2012). The Midlands (from Launceston to Hobart) is another
important agricultural area for Tasmania, supporting cereal
cropping, alkaloid poppies, and grazing beef and sheep. The
area is predominantly associated with duplex soils (sharp change
in texture between the A and B horizons), many of which are
sodic (exchangeable sodium percentage >6). These classify as
Sodosols (Isbell 2002; Solonetz or Lixisols, IUSS Working
Group WRB 2007). Primary salinity is evident in small,
localised break-in-slope and depression areas in the lowest
rainfall areas of the Midlands (Kidd 2003).

Soils formed from Jurassic Dolerite cover much of the state
(Kirkpatrick 1981), consisting of undulating low hills and
mountainous areas of stony Brown Dermosols (Isbell 2002;
Lixisols, IUSS Working Group WRB 2007) supporting grazing
on foot-slopes, native and plantation forestry, and conservation
(Cotching et al. 2009). Sandy coastal plains provide grazing,
dairy and cropping in the far north-west and north-east, forming
Aeric, Acquic and Semi-acquic Podosols (Isbell 2002; Podzols,
IUSS Working Group WRB 2007) (Cotching et al. 2009).
Perennial horticulture (mainly apples) is common in the Huon
Valley (south of Hobart), and is proliferating as emerging stone-
fruit and viticulture industries in many other parts of the state.

The state’s west and south-west have large areas of
ecologically important conservation land, much of this with
World Heritage Area (WHA) listing. These are mainly
wilderness areas of rainforest, peatlands and moorlands, from
button-grass plains to rocky skeletal mountain ranges. The areas
contain vast areas of peat soils, extremely high in organic carbon
and matter (Organosols, Isbell 2002; Histosols, IUSS Working
Group WRB 2007).

Legacy soil information

Much of Tasmania’s historical soil information takes the
form of reconnaissance-level soil surveys undertaken by
CSIRO Division of Soils, Adelaide, between 1940 and 1967,
consisting of soil mapping at a scale of 1 : 63 360, reports, site
descriptions and analytical samples. These maps and reports
were updated and correlated by the DPIPWE between 1997
and 2001, and re-published at a scale of 1 : 100 000 (Spanswick
and Kidd 2001). Additional soil mapping was undertaken by
DPIPWE in 1993 for a 1 : 100 000 map sheet in the South Esk
region (Doyle 1993), and as 1 : 100 000 scaled land-capability
mapping of the important agricultural areas through most of the
1990s (Grose 1999). Additional ad hoc 1 : 100 000 surveys have

been undertaken by Forestry Tasmania in some of the state-
forest areas (Forth, Pipers and Forester map sheets), as well as
several minor, more detailed surveys in various agricultural
parts of the state. Most of the state’s legacy-soil mapping has
involved assigning soil type (as the dominant soil profile class,
i.e. a grouping of similar soil properties, described values,
parent material and topographic position into a modal or
typical conceptual soil based on soil attribute ranges) or soil
associations, where a dominant soil is assigned to a polygon,
described as in association with other unmapped minor soils,
based on a regularly repeating landscape pattern (Spanswick
and Kidd 2001; McKenzie et al. 2008). Figure 1 shows the
extent of the correlated 1 : 100 000 soil maps, and existing soil
database sites.

Most of this mapping was on agricultural land; however, vast
but very important ecologically sensitive areas of the Southwest
WHA remain relatively unmapped or sampled. These areas are
vulnerable to land-use and climate change in terms of threatened
species and carbon storage (Tasmanian Climate Change Office
2012). In addition, the agriculturally important north-west
Ferrosols are under-represented in the legacy mapping.

The DPIPWE soil database holds ~5500 soil sites,
descriptions, analytical data and field observations of varying
quality. These sites formed the basis for the soil survey
descriptions and associated mapping, as well as other ad hoc
monitoring or environmental assessments.

The only other available soil-related mapping is Land Systems
of Tasmania, available for the entire state at a nominal scale
of 1 : 250 000, a series of mapping and reports developed in
the 1980s based on existing soil mapping, geology, terrain,
rainfall and vegetation (Richley 1978; Pinkard and Richley
1982; Davies 1988; Pemberton 1989). This is essentially in
accordance with the SOTER (World Soils and Terrain Digital
Soils Database) approach (Land andWater Development Division
1993; Oldeman and Van Engelen 1993), where each land-system
polygon is conceptually delineated on the basis of these repeating
environmental characteristics, with minor components split on
topographic position, vegetation and/or brief soil descriptions.
Through an expert process, DPIPWE have assigned modal
soil profiles to these minor unmapped components, which have
been attributed and uploaded to the Australian Soil Resources
Information System (ASRIS) (www.asris.csiro.au) as most likely
soil properties of standard depths for percentage area estimates of
minor components.

For any Tasmanian environmental modelling or assessments
requiring important soil attribute information as inputs, the
1 : 100 000 polygonal soil mapping was the only major source
of soil information available in many agricultural areas.
Elsewhere, it was necessary to rely on the coarse and
conceptual land systems. Where soil types or associations
were mapped, it was first necessary to determine the range or
averaged soil property or descriptive value from the conceptual
soil type or profile class, and then determine an area-weighted-
mean by each polygon, for each major and minor unmapped
soil (subjectively estimated) component. This was difficult
where no estimate was available of minor soil component area.

The age of the Tasmanian legacy soil mapping and its
continued usage by decision makers confirms that investment
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in soil information infrastructure is worthwhile, and of positive
cost–benefit.

Calibration sites

Site data, including spatial reference, soil attribute of interest,
and upper and lower depths, were extracted from the DPIPWE
Natural Values Atlas (http://dpipwe.tas.gov.au/conservation/
development-planning-conservation-assessment/tools/natural-
values-atlas) soils database, and cleaned to remove obvious
errors, (e.g. invalid attribute values, depths, or coordinates).
Database sites were sourced from a variety of different projects,
areas and uses and over a wide temporal range. For example,
sites from CSIRO soil reconnaissance mapping from the
1930s to 1950s, land-capability sites from the 1990s and
2000s, and the more recent ESA (Kidd et al. 2012a, 2012b,
2014b). Consequently, the remaining sites have a wide range of
spatial precision, chemical analyses methodology, and surveyor
descriptions. It was important therefore to ensure that analytical
methodology was consistent, removing unreferenced sources
and applying transfer-functions where known methodology
relationships have been developed. Temporal variability was
not considered for the Version 1.0 outputs; hence, they
essentially show the average soil-property condition over time
in Tasmania, as per GSM specifications (Arrouays et al. 2014). It
is acknowledged that there would be high temporal variability
for surface soil attributes such as pH, electrical conductivity
(EC) and organic carbon percentage, which are highly affected
by land use and management. Subsoil values are less prone to
change (McKenzie et al. 2002), therefore producing more stable
modelling. However, site numbers were insufficient to use more
recent data (e.g. over the last decade); this will be re-assessed for
future version updates as additional legacy data are incorporated,
or from new field-sampling campaigns.

Spatial clustering may also be evident with the majority of
database sites, most of which were located using a purposive
‘free-survey’ approach (National Committee on Soil and Terrain
2009) and could therefore not adequately represent the entire
covariate feature space (Carré et al. 2007b). In cases where the
underlying range of covariates is not adequately sampled, de-
clustering approaches are generally not effective; a de-biasing
approach is more beneficial (Pyrcz and Deutsch 2003). For
the Version 1.0 undertaking, no attempt was made to remove
sites because of clustering or bias. It was assumed that more
intensively sampled areas would provide the opportunity to
develop better target covariate relationships, potentially
lowering uncertainties in these areas. Modelling bias towards
more intensively sampled areas is inevitable in these situations
but is intuitively less problematic where a data mining approach
is used, because there is no geostatistical component within the
modelling process.

An average nearest neighbour analysis (ANNA) of an example
dataset (coarse fragments) (using ESRI ArcGIS 10.2) resulted in
a nearest neighbour ratio (NNR, observed mean distance divided
by expected (random) mean distance); Clark and Evans 1954;
Ebdon 1985; Mitchell 2005; Pinder and Witherick 1972) of <1.0
(0.25), implying that the site data are not random, but spatially
clustered (as expected). It is expected that other soil-attribute
training datasets will also be spatially clustered because many
of these are from the same field observations. De-clustering or de-
biasing will therefore need to be considered in future Version
1.0+ updates as more data become available to train the DSM
models, along with whether this is strictly necessary for a data
mining, rather than a classical geostatistical approach.

Mass-preserving depth-splines (Malone et al. 2009, 2011)
were fitted to the site data for each horizon sample to produce
calibration data for the appropriate standard depths (0–5, 5–15,

Fig. 1. Tasmania—location and legacy soils data.
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15–30, 30–60, 60–100 and 100–200 cm), as per the Soil and
Landscape Grid of Australia specifications, a superset of the
GSM specifications (Arrouays et al. 2014); and 0–15 cm for the
ESA requirements (Kidd et al. 2012b, 2014b).

Covariates

Table 1 shows the spatial covariates (scorpan soil-forming
factors, McBratney et al. 2003) chosen to model each soil
attribute. These were selected using those covariates most
correlated (i.e. important in explaining the soil property value
at a given location) in the original ESA DSM pilot project (Kidd
et al. 2014b). However, this mapping had now encompassed
the entire state, and covariates that were more globally relevant
needed to be considered. Hence, mean annual rainfall and
temperature were added. Rainfall was considered especially
important for Tasmanian soil formation owing to the
previously mentioned west–east rainfall trend across the state,
and the associated diversity of soil formation (Cotching et al.
2009).

Terrain

For elevation and the associated terrain derivatives (R, relief, as
in scorpan; McBratney et al. 2003), the 3-arc-second SRTM
DEM was used (Gallant et al. 2011) and projected. This was
re-sampled to 80-m resolution due to the southern latitudes of
Tasmania, determined as the optimum resolution to re-project
the surfaces accurately back into the required geographic
coordinate system. It was necessary to produce the surfaces
using the Australian Map Grid (GDA94, Zone 55) because some
covariate algorithms did not work in the geographic system (e.g.
SAGA Wetness Index, SAGA GIS 2013), and this was the
standard coordinate system required for the Tasmanian
publically accessible spatial internet portal (www.theLIST.tas.
gov.au). Several additional terrain derivatives were incorporated
into the state-wide modelling, including TCI-Low (SAGA GIS
2013), which exaggerates low-lying relief by relatively
highlighting terrain detail in low-inclined regions (Bock et al.
2007). This was considered important for differentiating the

subtle terrace formations existing in areas of the Launceston
Tertiary Basin (Doyle 1993; Kidd 2003). Eastness and northness
indices were also generated and incorporated into the modelling
to avoid the potential ‘confusion’ where values such as 3598
and 18 are spatially very close but at opposite end of the covariate
value range in terms of modelling inputs.

Remote sensing

Gamma radiometrics and geology
Gamma radiometrics were shown to be an important predictor

of many soil properties within the ESA pilot work (Kidd et al.
2014b), as well as DSM activities elsewhere (Cook et al. 1996;
McKenzie and Ryan 1999; Dobos et al. 2000; Viscarra Rossel
et al. 2014). The Tasmanian products show, in addition to total
count (TC), the proportions of radiometric uranium (U),
potassium (K) and thorium (Th), which in combination can
help to identify areas of deposition (e.g. alluvial) areas, as well
as areas of denudation (e.g. mountain ranges) (Pain et al. 1999;
Taylor et al. 2002; Erbe et al. 2010; Herrmann et al. 2010). This
effectively relates to the parent material (P, from scorpan;
McBratney et al. 2003), and the landscape history (A from
scorpan; McBratney et al. 2003).

However, only partial radiometric coverage existed for
Tasmania, covering ~50% of the state (Fig. 2). In addition,
the other important parent material covariate, geology, was only
available at a scale of 1 : 250 000 as a state-wide coverage
(Fig. 2), producing mapping ‘artefacts’ (unrealistic mapping
anomalies, see Discussion). A large representation of the state’s
geology was covered by the existing radiometrics; therefore,
it was decided to ‘model’ and extrapolate the existing products
into unmapped areas to allow its use as a potential spatial
covariate. Initially, this was undertaken by regression tree
modelling (Cubist, RuleQuest Research, Empire Bay, NSW;
Quinlan 2005), using terrain derivatives as covariates, and TC,
U, K, and Th as separate calibration datasets from the existing
radiometric coverage, using each raster-cell as a training point;
30% of pixels were ‘held-back’ to use as validation data.

Fig. 2. Existing and extrapolated gamma-radiometrics, Tasmania (potassium).
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However, initial surfaces did not adequately reflect some
known geological formations in the extrapolation zones, for
example, granitic landscapes in mid-west Tasmania. The
1 : 250 000 geology (Mineral Resources Tasmania 2008) was
incorporated as an additional covariate into the regression
tree modelling, which produced more realistic geological
extrapolation. The geology class was used as conditions or
partitioning rules for all surfaces (TC, U, K, Th) (Fig. 2,
extrapolated K). The final surfaces were tested as both a
‘stand-alone’ product, introducing an integrated ‘geology-
radiometrics’ covariate, and also by ‘stitching’ the original
radiometrics back into each surface, and tested in initial DSM
modelling as a covariate. Improved DSM outputs were achieved
by using the integrated geology-radiometrics surfaces in
their entirety as covariates and replacement for the 1 : 250 000
geology, producing realistic DSM modelling outputs in terms of
known soil–landscape relationships, also with improvements to
modelling diagnostics. The benefits of this approach meant that
we were able to use the existing radiometric-terrain–geology
relationships, extrapolate these to non-mapped parts of the state,
and reduce the mapping artefacts produced by using the broad-
scale geological mapping (see Discussion). It could be argued
that this might introduce potential circularity and modelling
weakness in the DSM because terrain derivatives were used as
spatial covariates in the DSM modelling as well as in the
radiometric extrapolation. However, the radiometric extrapolation
was able to provide a measure of the terrain and associated parent
material relationship that would otherwise be missed by using
terrain alone as a modelling covariate, and generally improved
validation diagnostics.

Vegetation: persistent greenness
Persistent greenness, that is, areas that highlight where

vegetation is ‘green’ for longer periods of the year were
generated as an index using LandSat imagery (Yang et al.
2001) and re-sampled to 80-m resolution. This not only
explains the vegetation components of the soil-forming factors
(O, organism in scorpan), but is also useful in identifying ‘land
use’, which has also been shown to explain the variability of soil-
property mapping using DSM (McBratney et al. 2003). This
covariate could explain soils and properties that have a higher
nutrient status or water-holding capacity.

Climate

Mean annual temperature and rainfall were generated by using
existing Bureau of Meteorology and ESA climate loggers (Webb
et al. 2014) and incorporated as the climate soil-forming factor
covariates (C in scorpan). This was undertaken using terrain
covariates intersected with 20-year average rainfall and
temperature values to form the training dataset, and regression-
kriging to estimate the values spatially. Again, these covariates
were generated using terrain (raising the potential conundrum
of data circularity); however, they were also found to be important
explanatory datasets and provided model inputs in terms
of topographic variations of temperature and rainfall with
improved modelling diagnostics. Where modelling artefacts
(see Discussion) were introduced as a result of rainfall
‘banding’, variations in prevailing weather patterns, in terms of

rainfall and terrain, were investigated, with rainfall divided by
windward–leeward wind effects (SAGA GIS 2013) found to be
a good explanatory soil-forming variable for organic carbon. This
approach reduced mapping artefacts while maintaining strong
modelling diagnostics.

Modelling

A raster stack of all covariates was generated and the target
variable (each soil property and depth) individually intersected
with the covariate values to provide the calibration and validation
data. All modelling was undertaken in R (R Development
Core Team 2014), using regression tree (specifically the Cubist
R package (Quinlan 2005; Kuhn et al. 2012, 2013). The
regression tree method is a popular modelling approach for
many disciplines (Breiman et al. 1984), and has been widely
used with DSM (McKenzie and Ryan 1999; Grunwald 2009;
Kidd et al. 2014a). The Cubist package develops the regression
trees by first applying a data-mining approach to partition
the calibration and explanatory covariate values into a set of
structured ‘classifier’ data. The tree structure is developed by
repeatedly partitioning the data into linear models until no
significant measure of difference in the calibration data is
determined (McBratney et al. 2003). A series of covariate-
based rules (conditions) is developed, and the linear model
corresponding to the covariate conditions is applied to produce
the final modelled surface. For this modelling exercise, the model
controls were set to allow the Cubist algorithm to determine the
optimum number of rules to generate.

A perceived benefit of the regression tree (Cubist) approach is
that there is no need to select the most important covariates
before modelling (e.g. by stepwise linear regression). This is
because only those covariates that have some covariance
with the target variable are chosen by the Cubist data mining,
with non-correlated covariates excluded from the regression
tree conditions and linear models within the partitions. This
is a useful time-saving measure when predicting multiple
soil attributes from the same covariates. Similarly, principal
component analysis (PCA), often used to de-correlate covariates
in some modelling approaches (Hengl et al. 2007), was not
deemed necessary, due to the Cubist data-mining capabilities.
Use of PCA of covariates would also diminish the regression-
tree model interpretability; that is, end-users are able to observe
how each covariate is used in the models. Testing has also
indicated little need to ‘normalise’ or transform target data to
normal distribution with the Cubist methodology, making little
difference to outputs and diagnostics, again mainly due to the
powerful data mining capabilities.

Uncertainty
Leave-one-out cross-validation (LOOCV) was applied to the

Cubist model to generate rule-based uncertainties, using only
those covariates forming the conditional partitioning of each
rule, following Malone et al. (2014). LOOCV can be beneficial
for smaller datasets (Kohavi 1995), and therefore useful within
this DSM exercise, because some regression-tree rule-based
conditions might not contain sufficient data points for use
with alternative cross-validation approaches (such as random
holdback). The LOOCV, applied to an individual Cubist model
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for each rule, effectively produced a mean value for each
regression-tree partition, with the upper and lower 5% and
95% quantiles of the prediction variation providing the lower
and upper prediction uncertainty values, respectively, at the 90%
prediction interval (PI). An example regression-tree rule is
shown below (Rule 1, for clay percentage, 30–60 cm), with
‘n’ data points meeting the Rule 1 condition.

If Th� 3.69, and DEM� 198, and MrRTF� 4.85, then:

Clayn�1 ¼ ð�0:19� TCÞ þ ð�2:1� KpcÞ þ ð�0:7�MrRTFÞ
þ ð�0:13�MrVBFÞ þ ð�0:385� PGÞ þ 0:26

� Slopeþ ð�28� TCI LowÞ þ ð�0:26� TRIÞ
þ 0:23� TWIþ 1:44� Thþ ð�0:7� UppmÞ þ 57:43

where Clay is clay (%), TC is total radiometric count, Kpc is
radiometric K (%), MrRTF is multi-resolution ridge-top flatness
and MrVBF is multi-resolution valley-bottom flatness (Gallant
and Dowling 2003), PG is persistent-greenness, Slope is slope
(%), TCI_Low is topographic classification index (lowlands),
TRI is terrain ruggedness index, TWI is topographic wetness
index, Th is radiometric Th (ppm) and Uppm is radiometric
U (ppm), and each data-point held back is sequentially applied
for validation of each loop.

Initially, a random hold-back of 30% of the training data
was used for validation; however, re-running the models
with different random hold-backs produced variations in
predictions, uncertainties and modelling diagnostics, implying
model sensitivity to the data variance. To reduce this potential
modelling bias, a k-fold cross-validation approach was
implemented (Rodriguez et al. 2010), where one-tenth of the
data was randomly held back, and the modelling looped 10 times
using a different tithe of the data held back for validation of
each iteration. The k-fold cross-validation approach has been
widely used in DSM when available training data are limited
or no independent validation data are resourced (Grimm et al.
2008; Hengl et al. 2014; Martin et al. 2011). Each data point is
held back only once, meaning that every item of the training data
is tested. The final prediction and upper and lower values for each
surface cell are then produced. This is done by taking the mean
from each of the ten k-fold model outputs, as well as the mean
validation diagnostics, determining R2, root-mean-square error
(RMSE), bias and concordance (Lin 1989), and the percentage of
validation values within 5% and 95% PI (i.e. the ‘prediction
interval coverage probability’, expected to be at 90% where
modelling uncertainty is optimal; Malone et al. 2014). This
approach effectively reduces bias and tests modelling variance,
with studies showing that 10-fold cross-validation is the optimum
number of k-folds to test adequately all parts of the training
data and model sensitivity to the full training-data range (Kohavi
1995). It is anticipated that generating the rule-based estimates of
uncertainty within each regression-tree partition, then averaging
by k-fold cross-validation to reduce modelling bias, will produce
a better understanding of which landscapes have better predictions
of soil property variability than relying on an average k-fold
cross-validation uncertainty estimate across all regression tree
partitions and covariates.

Three 80-m resolution raster surfaces of mean prediction
with mean upper and lower predictions were generated for each

soil property at the 90% PI, for each depth. Diagnostics for
each model k-fold were recorded and averaged, as well as the
individual regression-tree models, documenting variable usage,
rule-sets, and linear model coefficients.

Continuous and categorical data
The regression-tree modelling was used for continuous

datasets and soil properties, such as clay and sand percentages,
pH, organic carbon percentage, and EC (1 : 5 soil–water
suspension; Rayment and Lyons 2011). The method was also
used for qualitative description data, such as coarse fragment
(CF) (>2mm) class estimates and soil drainage class, as per Kidd
et al. (2014a), where the ordinal categorical classes were treated
as a continuous data. Where the CF classes (National Committee
on Soil and Terrain 2009) correspond to stone percentage ranges
(Table 2), the final raster surfaces were stretched between each
class range to correspond to the percentage range. For example,
Class 2, corresponding to a continuous modelled range 1.5–2.5,
was stretched between these values to a range of 2–10%, using the
R Raster Package (Hijmans and van Etten 2012) (Table 2). For
CF, this approach produced better modelling diagnostics and
mapping outputs than modelling median CF percentage values
as the target variable, or using decision trees DT class modelling.

Regression kriging
To reduce the unexplained spatial variability of the DSM

modelling, regression kriging (RK) was tested to model
residual spatial autocorrelation. RK is effectively a hybridised
modelling approach that incorporates regression modelling
with the interpolated model residuals, which has been shown
to improve model performance in DSM (Odeh et al. 1995;
McKenzie and Ryan 1999; Hengl et al. 2004, 2007). For this
study, residual model estimates from the regression-tree
procedures underwent simple kriging and the output was
incorporated into the final surfaces. However, testing the
spatial semi-variance of the regression-tree output residuals for
many soil properties did not show strong spatial autocorrelation.
Various modelling types and sill and nugget ranges applied to the
semi-variogram settings did not produce good semi-variogram
fits. The RK approach also drastically increased model processing
time, needing to krige the entire state individually for >10 000 000
cells for each soil property and depth, in addition to the time taken
to fit each variogram model manually. Because of the increase
in modelling time, offset against the marginal improvements in
testing surface validations, it was decided to desist with RK for the
Version 1.0 surfaces.

Table 2. Coarse-fragment (CF) class index with percentage stretch

CF class CF per cent
range

Continuous index
raster range

New ‘stretched
value’

0 0 0 0
1 <2 0–1.5 0–2
2 2–10 1.5–2.5 2–10
3 10–20 2.5–3.5 10–20
4 20–50 3.5–4.5 20–50
5 50–90 4.5–5.5 50–90
6 >90 5.5–6 90–100
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Pedotransfer functions

Pedotransfer functions (PTFs) are correlation relationships
developed to predict a soil property from other existing soil
property datasets (McBratney et al. 2002), and were used where
there was insufficient training data for certain soil attributes.
The PTFs were applied to predicted surface values (and upper
and lower predictions), rather than applying the PTFs to the
individual points as modelling target variables. This approach
was favoured, mainly to reduce DSMmodelling errors due to the
incorporation of the PTFs unexplained soil attribute variability
into the RT process; and because many sites did not necessarily
have all required soil property PTF inputs, which would
ultimately reduce the number of training points available for
the RT DSM modelling.

Electrical conductivity of saturated paste
Very few available sites have data for the required soil

property ECse (EC of a saturated paste, 1 : 1 soil–water);
hence, this was generated by applying the PTF from Peverill
et al. (1999) (Eqn 1):

ECse ¼ EC1:5 � ð500þ 6� 0:59þ 0:016� ðclay%1:5ÞÞ=
ð30:34þ 6:57� 0:59þ 0:016� ðclay%1:5ÞÞ

ð1Þ

where EC1:5 is EC in a 1 : 5 soil–water suspension (Rayment
and Lyons 2011), and clay% corresponds to the predicted clay
values for each cell.

Bulk density
There was also very few available data points with any bulk

density (BD) values. A PTF calibrated using Australian data
from Tranter et al. (2007) was used, which incorporates the
predicted sand and organic carbon percentages for each cell
value (Eqns 2 and 3). First, a mineral density was predicted as a
function of sand and depth:

BDmin ¼0:842þ 0:097� logðdepthÞ þ 0:0057� sand

þ ðsand� 44:72Þ2 � ð�0:0000845Þ ð2Þ

where BDmin is BD of the mineral soil fraction (g cm–3), depth
is mid-depth of layer (cm), and sand is sand percentage. The final
BD estimate is determined by incorporating the effect of soil
organic matter through Eqn 3 (Adams 1973):

BD ¼ 100=ðOM=0:223 þ ð100� OM=BDminÞ ð3Þ
where BD is final BD estimate, and OM is organic matter
content, estimated from:

OM ¼ 1:72� OC ð4Þ
where OC is predicted organic carbon percentage. This does not
take into account any land-management influences on BD (such
as compaction), but is considered a reasonable approximation of
the most likely state, as influenced by the mineral, overburden,
and organic matter (Tranter et al. 2007).

Silt content
Silt percentage was initially modelled for all standard depths

using the DSM regression tree approach, and compared against

calculating the predicted silt percentage value for each raster cell
by subtracting clay and sand percentages from 100 (Eqn 5):

Silt% ¼ 100� ðsand% þ clay%Þ ð5Þ
It was decided to use the calculated silt percentage surface

from Eqn 5 as the final Version 1.0 products, because the sand
and clay modelling diagnostics were generally superior to the silt
modelling, and would also remove the potential problem
whereby the combined predicted particle-size products were
>100%.

pH
Available pH measurements were used as a 1 : 5 soil–water

suspension (Rayment and Lyons 2011), with insufficient data
using the CaCl2 suspension to form state-wide models based on
these measurements. The pH in CaCl2 can also be predicted from
the pH in water surfaces by using PTFs, such as from Henderson
and Bui (2002) and Minasny et al. (2011), which incorporate
information on soil EC.

Effective soil depth and depth to rock
Effective soil depth (or plant-exploitable depth) (Arrouays

et al. 2014) was considered as the depth of soil-database
descriptive sites to the upper value of any layer that
corresponded to a C horizon (weathered substrate), rock, or
hard pan (National Committee on Soil and Terrain 2009). The
values were used as continuous target variables (in cm) within the
standard regression-tree approach. Depth to rock was modelled as
above, using depth to any horizon with an ‘R’ (rock) designation.

Expert validation and data release

All surfaces were assessed within DPIPWE by departmental
soil scientists to determine whether there was general agreement
with historical mapping and state-wide soil–landscape
knowledge. Figure 3 shows an example map (Burnie Map
Sheet, Spanswick and Kidd 2000) with polygons generally
aligning with surface sand percentage. The surfaces are
publically available on the TERN web portal (www.clw.csiro.
au/aclep/soilandlandscapegrid/index.html), where they can be
further appraised by relevant soil–landscape experts around the
country. Table 3 summarises the produced DSM surfaces and
methodology for predictions.

Results

The DSM outputs and modelling diagnostics are presented
here as individual soil attributes, with brief surface and
subsoil comments.

Clay content

Clay percentage surfaces were generated using site data with
particle size analyses (PSA) values for each horizon. In total,
1288 sites were available with clay percentage PSA, with
values generated by the depth-spline interpolations for most
horizons. The averaged k-fold modelling diagnostics are shown
in Table 4.

For surface layers (0–5 cm), modelling diagnostics were
fair, with concordance values of 0.51 and 0.36 and RMSE
10.6% and 12.1% for calibration and validation, respectively.
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However, validation diagnostics were better for subsoil
predictions (60–100 cm), with 0.28 and 17.0% for
concordance and RMSE, respectively. Validation values were
generally at or near expected prediction interval ranges (at
the 90% confidence limit (CL)), with 89% validating within
these limits for both example depths (or within 90% when
accounting for standard deviations). The validation RMSE
standard deviations were 1.4% and 1.5%, respectively, for
these surface and subsoil depths (~12% of the mean value),
implying that a broad range of training and validation values

has marginal effect on the k-fold model variations and diagnostic
outputs.

Figure 4 shows surface (0–5 cm) clay percentages for the
state, which generally agrees with known regional soil–
landscape relationships, for example, low clay in sandy
coastal areas, and higher surface clay percentages in the clay-
loam topsoils of the north-west Ferrosols (Isbell 2002). From
the k-fold diagnostics, many of the terrain derivatives, including
elevation (DEM), altitude above channel network (AACN),
valley depth, multi-resolution valley bottom flatness (MrVBF),

Fig. 3. Variations in surface sand percentage, and correlation with existing mapping (Burnie).

Table 3. Summary of digital soil-mapping surfaces
RT, Regression tree; PTF, pedotransfer function. Standard depths (cm): 0–5, 5–15, 15–30, 30–60, 60–100, 100–200. Uncertainties are to the 90% prediction

interval (5th and 95th per cent quantile)

Soil property No. of depths (cm) Value Method No. of surfaces

pH 7 (standard + 0–15) pH units, predicted, lower, upper RT 21
EC 7 (standard + 0–15) dS m–1, predicted, lower, upper RT 21
ECse 7 (standard + 0–15) dS m–1, predicted, lower, upper PTF 21
Sand 6 (standard) %, predicted, lower, upper RT 18
Clay 7 (standard + 0–15) %, predicted, lower, upper RT 21
Silt 7 (standard + 0–15) %, predicted, lower, upper PTF 18
Organic carbon (OC) 7 (standard + 0–15) %, predicted, lower, upper RT 21
Coarse fraction (CF) 7 (standard + 0–15) %, >2mm, 2–200mm, >60mm, >200mm,

predicted, lower, upper
RT 30

Effective depth 1 (depth to) cm, predicted, lower, upper RT 3
Available water content (AWC) 7 (standard + total profile) m–3 m–3, predicted, lower, upper PTF 11
Bulk density (BD) 6 (standard) Mg m–3, predicted, lower, upper PTF 18
ExCa 1 (0–15) cmol kg–1, predicted, lower, upper RT 3
ExMg 1 (0–15) cmol kg–1, predicted, lower, upper RT 3
Drainage 1 (total profile) Class, predicted, lower, upper RT 3
Depth to sodic layer 1 (depth to) cm, predicted, lower, upper RT 3
Depth to duplex clay 1 (depth to) cm, predicted, lower, upper RT 3
Total 218
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and northness are important predictors of surface-soil clay
percentage. The integrated radiometrics-geological layers are
also important explanatory variables, especially K and Th. This
is demonstrated, for example, by the seventh k-fold model
variable usage, with similar usage statistics in other iterations
and depths (Fig. 5). Rainfall was initially found to be an important
predictor, but was removed from the clay modelling because
of the introduction of unrealistic mapping artefacts within the
prediction surfaces for most depths (see Discussion).

Sand content

There were 461 sites available with PSA for sand percentage.
Modelling of sand percentage produced slightly better
calibration–validation diagnostics than clay percentage in terms
of concordance. For example, surface sand percentage (0–5 cm)
had values of 0.71 and 0.54 for calibration and validation,
respectively; however, RMSE was slightly higher, with 17.3%
and 21.1% for calibration and validation. This implies that the
modelled data fitted better around the observed v. predicted 1 : 1

Table 4. Clay percentage modelling diagnostics (averaged k-folds)
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

Depth Calibration Validation % Within
(cm) RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

0–5 Mean 10.6 0.36 –0.95 0.51 12.1 0.19 –1.08 0.36 88.7
s.d. 0.3 0.04 0.14 0.04 1.4 0.09 1.07 0.07 3.0

0–15 Mean 11.2 0.32 –1.18 0.48 12.4 0.18 –1.29 0.35 88.6
s.d. 0.5 0.06 0.25 0.07 1.2 0.08 1.59 0.08 3.3

5–15 Mean 11.7 0.31 –1.34 0.46 13.0 0.16 –1.42 0.33 89.4
s.d. 0.3 0.04 0.13 0.05 0.9 0.07 1.28 0.07 2.5

15–30 Mean 14.9 0.31 –1.56 0.46 16.4 0.18 –1.71 0.34 88.7
s.d. 0.3 0.03 0.18 0.03 1.0 0.06 1.79 0.06 2.8

30–60 Mean 16.0 0.25 –0.23 0.40 17.6 0.13 –0.48 0.28 89.1
s.d. 0.4 0.04 0.28 0.05 1.4 0.07 1.45 0.08 3.9

60–100 Mean 15.7 0.26 –0.19 0.40 17.0 0.14 –0.09 0.28 89.4
s.d. 0.4 0.04 0.22 0.06 1.5 0.09 1.89 0.11 2.4

100–200 Mean 14.4 0.29 –0.57 0.45 16.1 0.14 –0.59 0.30 88.6
s.d. 0.4 0.03 0.29 0.05 1.5 0.08 2.31 0.08 3.6
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Fig. 4. Surface (0–5 cm) clay percentage.
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line of fit (Lin 1989) but were more dispersed around this line,
resulting in higher RMSE values (Table 5). Sand percentage
diagnostics were generally similar with all depths.

As expected, the sand percentage is inverse in appearance to
the clay percentage mapping, being relatively high in coastal
zones, and low in areas of expected high-clay soils, as per the
clay percentage mapping examples (Fig. 6). Some under-
prediction of sand percentage might be evident in beach areas
where close to 100% is expected, mainly due to the lack of
available coastal sites with PSA.

In terms of covariate usage, the DEM and several derivatives
were important explanatory variables, as well as radiometric

K. Model performance in terms of validation values within the
upper and lower PI were slightly worse than clay percentage,
ranging from 85.0% to 89.6% (90% CL), but were all within the
90% range if taking standard deviation into account. A standard
deviation of 7.4% for validation within the 90% CL implies that
moderate modelling sensitivity to the calibration data, due in part
to the smaller sample size, and potential data outliers.

Silt content

Silt percentages for all depths was calculated from the clay
and sand percentage surfaces, and is therefore reliant on the
modelling diagnostics of those surfaces.

Fig. 5. Example covariate usage, clay percentage.

Table 5. Sand percentage modelling diagnostics (averaged k-fold)
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

Depth Calibration Validation % Within
(cm) RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

0–5 Mean 17.3 0.55 1.21 0.71 21.1 0.34 1.89 0.54 85.0
s.d. 1.3 0.07 0.81 0.05 2.3 0.13 2.58 0.11 7.4

5–15 Mean 17.8 0.53 0.96 0.69 22.3 0.29 0.46 0.50 85.0
s.d. 1.4 0.07 0.79 0.06 1.8 0.13 3.11 0.12 4.5

15–30 Mean 20.2 0.47 1.34 0.64 23.8 0.28 1.08 0.48 86.0
s.d. 1.4 0.07 0.93 0.06 3.2 0.12 2.54 0.11 7.2

30–60 Mean 20.4 0.47 –1.03 0.64 24.4 0.25 –2.10 0.45 88.5
s.d. 1.3 0.07 0.95 0.07 2.6 0.14 5.07 0.13 3.5

60–100 Mean 21.6 0.40 –1.41 0.57 24.6 0.23 –1.56 0.42 89.6
s.d. 1.0 0.05 1.08 0.06 2.2 0.10 4.28 0.09 5.3

100–200 Mean 22.4 0.37 0.47 0.54 27.9 0.08 –0.15 0.26 85.9
s.d. 1.9 0.10 1.26 0.10 4.3 0.09 5.62 0.11 8.1
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pH

There were 1440 sites with laboratory pH available (Rayment
and Lyons 2011) for all or some horizons. Surface-modelling
diagnostics were generally poor; for example, the 0–5 cm
surface had a concordance of 0.30 and 0.16, and RMSE of 0.6
and 0.7, for calibration and validation, respectively. However,
modelling diagnostics generally improved with depth in terms
of concordance, with calibration–validation values of 0.75 and

0.65 at a depth of 60–100 cm, (Table 6). The models generally
validated within the 90% CL, most ~89%.

Visually, there is a prominent west–east trend in pH, with
lower values (more acidic) in the high-rainfall western areas, and
higher values (more neutral to alkaline) in lower rainfall areas
(in the central Midlands rain-shadow). This is reflected in the
covariate model usage for all k-folds, with rainfall being one of
the most important variables in terms of conditions and model
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Fig. 6. Surface (0–5 cm) sand percentage.

Table 6. pH modelling diagnostics (averaged k-fold)
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

Depth Calibration Validation % Within
(cm) RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

0–5 Mean 0.6 0.19 –0.04 0.30 0.7 0.05 –0.03 0.16 88.1
s.d. 0.0 0.04 0.01 0.06 0.1 0.04 0.05 0.06 2.6

0–15 Mean 0.6 0.22 –0.05 0.33 0.6 0.09 –0.05 0.22 88.9
s.d. 0.0 0.08 0.01 0.09 0.1 0.04 0.04 0.07 3.8

5–15 Mean 0.6 0.18 –0.05 0.30 0.7 0.08 –0.06 0.21 89.8
s.d. 0.0 0.02 0.01 0.02 0.0 0.03 0.05 0.03 2.5

15–30 Mean 0.6 0.42 –0.02 0.59 0.7 0.23 –0.02 0.43 88.9
s.d. 0.0 0.03 0.01 0.03 0.1 0.10 0.05 0.09 2.6

30–60 Mean 0.7 0.55 –0.01 0.71 0.8 0.42 0.00 0.61 90.0
s.d. 0.0 0.04 0.01 0.03 0.1 0.09 0.09 0.07 2.0

60–100 Mean 0.8 0.60 0.00 0.75 1.0 0.45 0.01 0.65 88.8
s.d. 0.0 0.04 0.02 0.03 0.1 0.06 0.09 0.05 3.7

100–200 Mean 0.9 0.60 –0.03 0.75 1.1 0.41 –0.05 0.61 87.2
s.d. 0.0 0.04 0.03 0.03 0.1 0.07 0.14 0.05 3.4
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usage. High pH values were also evident around some coastal
areas, due to seashell-fragment deposition. Figure 7 shows
subsoil pH (60–100 cm).

Electrical conductivity

There were 3522 sites available with EC of a 1 : 5 soil–water
suspension (Rayment and Lyons 2011). Surface-modelling
diagnostics (0–5 cm) were very poor, with calibration and

validation concordance both 0.02, and RMSE of 0.30 dS m–1.
Subsoil modelling (60–100 cm) was an improvement, with a
concordance of 0.64 and 0.47 for calibration and validation,
and RMSE of 0.30 and 0.29 dS m–1 respectively. The subsoil
EC values were higher than surface values; hence, the RMSE
were not as large in relative terms. Most surfaces validated at or
near the required 90% CL (Table 7).

Visually, there was relatively little variation in surface EC
across the state, with small, localised areas of higher EC showing
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Fig. 7. Subsoil (60–100 cm) pH.

Table 7. Electrical conductivity (dS m–1) modelling diagnostics (averaged k-folds)
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

Depth Calibration Validation % Within
(cm) RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

0–5 Mean 0.3 0.01 –0.05 0.02 0.3 0.01 –0.05 0.02 89.9
s.d. 0.0 0.00 0.00 0.01 0.1 0.01 0.02 0.01 2.0

0–15 Mean 0.3 0.13 –0.04 0.11 0.3 0.06 –0.05 0.02 90.7
s.d. 0.0 0.15 0.00 0.11 0.1 0.15 0.02 0.02 2.3

5–15 Mean 0.3 0.12 –0.04 0.15 0.3 0.04 –0.04 0.06 89.7
s.d. 0.0 0.11 0.00 0.14 0.1 0.04 0.01 0.06 1.8

15–30 Mean 0.2 0.25 –0.04 0.33 0.3 0.08 –0.03 0.18 89.6
s.d. 0.0 0.09 0.00 0.11 0.1 0.06 0.02 0.09 2.2

30–60 Mean 0.3 0.43 –0.04 0.53 0.3 0.17 –0.04 0.31 89.0
s.d. 0.0 0.09 0.00 0.09 0.1 0.09 0.02 0.11 1.9

60–100 Mean 0.3 0.50 –0.04 0.64 0.3 0.29 –0.04 0.47 89.1
s.d. 0.0 0.03 0.00 0.03 0.1 0.12 0.02 0.13 2.1

100–200 Mean 0.3 0.67 –0.04 0.79 0.4 0.31 –0.04 0.52 88.5
s.d. 0.0 0.04 0.01 0.03 0.1 0.15 0.04 0.12 3.0
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surface-expression in evaporation basins and break-of-slope
areas, concentrated in the low-rainfall areas of the central
Midlands, as expected (Kidd 2003). Some coastal areas were
also realistically highlighted as higher EC, and therefore saline
zones. Subsoil EC was generally higher, also highlighting the
well-known, central Midlands primary salinity-prone areas and
naturally occurring saltpans. In terms of covariate usage, most
k-fold iterations showed that elevation, moisture-simulation
terrain derivatives such as topographic wetness index (TWI),
and gamma-radiometric K, were important predictors, along
with mean annual rainfall.

Electrical conductivity (saturated extract)

As per the PTF methodology, ECse for all depths was calculated
by using the clay and EC outputs, and it is therefore reliant on
the modelling diagnostics of those surfaces. Mapping showed
environmentally realistic patterns similar to the EC layers.
Figure 8 highlights the high-level subsoil salinity evident in
the low-rainfall central Midlands.

Soil organic carbon content

There were 1623 available sites with soil organic carbon
percentage (OC) data. These surfaces modelled very well in
terms of calibration and validation diagnostics, with surface
(0–5 cm) concordance values of 0.88 and 0.72, respectively.
RMSE values were 3.5% and 5.0%. Subsoil (60–100 cm) values
for calibration and validation were poor, with concordances of
0.15 and 0.05, and RMSE values of 1.4% and 1.2% (Table 8).

In terms of mapping, OC values were dominated by the
Southwest WHA, which, according to Cotching et al. (2009), is
known to contain very high carbon levels in well-formed peat
soils (Organosols, Isbell 2002). Maximummodelled values were
up to 70% OC in these peats (Fig. 9); however, very few sites
were available within these remote areas. This is a very high
value for the organic carbon component, which implies that
modelling could be slightly over-predicting in these areas. The
most important covariates in most k-folds were rainfall and
terrain-related products. Most depths validated within the 90%
CL with respect to the standard deviation around the averaged
k-fold validation percentages. Future work needs to identify and
map out the peat areas separately.

Coarse fragments content

There were 3469 sites available with CF class estimates
(>2mm), which were modelled as continuous data. Modelling
diagnostics were moderate, producing surface (0–5 cm)
calibration and validation diagnostics for concordance of 0.49
and 0.26, respectively, and RMSE of 1.2% and 1.4%. Subsoil
(60–100 cm) diagnostics were slightly poorer, with RMSE of
calibration and validation of 1.5% and 1.6% (Table 9).

Visually, surface maps (once class estimates were stretched
to corresponding percentage values) showed much higher stone
content in the central highlands and mountainous areas, most
consisting of weathering-resistant Jurassic Dolerite (Fig. 10). The
more important explanatory variables were again radiometrics,
elevation and terrain.
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Fig. 8. Subsurface electrical conductivity of a saturated extract (ECse, 60–100 cm).
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Effective soil depth

There were 1149 database sites available with an effective
soil depth estimation. Moderate modelling diagnostics were
achieved, with concordances for calibration and validation of
0.45 and 0.30, and RMSE of 43 and 47 cm, respectively
(Table 10). Most k-folds were within the 90% CL for
validation.

Visually, mapping showed realistic terrain-related depth,
with shallower soils on ridge-tops and mountain ranges, with

the deepest soils showing as the northern Midlands part of the
Launceston Tertiary Basin, consisting of deep Tertiary
sediments (Fig. 11). Variable usage by the Cubist regression-
tree approach was dominated by most terrain derivatives for all
k-folds, most notably valley depth and TCI-Low.

Additional enterprise suitability surfaces

Additional surfaces were generated for the state-wide ESA:
exchangeable calcium 0–15 cm (exCa), exchangeable
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Fig. 9. Surface organic carbon percentage (0–5 cm).

Table 8. Organic carbon percentage modelling diagnostics (averaged k-folds)
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

Depth Calibration Validation % Within
(cm) RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

0–5 Mean 3.5 0.88 –0.33 0.93 5.0 0.72 –0.36 0.83 89.6
s.d. 0.3 0.02 0.04 0.01 1.8 0.17 0.38 0.10 1.9

0–15 Mean 3.1 0.90 –0.29 0.95 4.4 0.78 –0.37 0.87 89.2
s.d. 0.3 0.02 0.03 0.01 1.7 0.13 0.30 0.08 2.6

5–15 Mean 3.3 0.89 –0.29 0.94 5.3 0.66 –0.24 0.78 89.1
s.d. 0.5 0.03 0.06 0.02 2.4 0.25 0.53 0.18 3.5

15–30 Mean 3.0 0.91 –0.23 0.95 4.4 0.75 –0.19 0.84 88.6
s.d. 0.3 0.02 0.03 0.01 2.3 0.23 0.37 0.15 2.2

30–60 Mean 1.3 0.41 –0.17 0.51 1.4 0.25 –0.18 0.34 89.0
s.d. 0.2 0.18 0.03 0.18 0.8 0.24 0.13 0.22 3.5

60–100 Mean 1.4 0.10 –0.16 0.15 1.2 0.02 –0.15 0.05 89.9
s.d. 0.2 0.06 0.02 0.10 0.9 0.03 0.08 0.07 2.4

100–200 Mean 0.9 0.14 –0.10 0.15 0.8 0.09 –0.07 0.16 90.2
s.d. 0.2 0.21 0.02 0.22 0.9 0.06 0.14 0.12 2.6
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magnesium 0–15 cm (exMg), and depth to sodic layer
(exchangeable sodium percentage (ESP) >6%; Kidd et al.
2014b). Concordances for calibration and validation were 0.49
and 0.33 for exCa, 0.61 and 0.35 for depth to sodic layer, and
slightly poorer at 0.28 and 0.17 for exMg (Table 11). An
additional soil drainage index surface was modelled, as per
Kidd et al. (2014a), based on the qualitative soil drainage
expert-estimate at each site. Concordance was 0.48 and 0.38
for training and validation, and showed good agreement with

expert knowledge of relative soil–landscape drainage patterns
around the state.

Poorly predicted soil attributes

Depth to rock and ECEC (effective cation exchange capacity)
modelled very poorly, with no correlation between the target
variables and available covariates; hence, these surfaces were
not released, and they will require future research to develop.
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Fig. 10. Surface coarse fragments (0–5 cm).

Table 9. Coarse fragment percentage diagnostics (averaged k-folds)
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation; the 100–200 cm layer not applicable to this parameter

Depth Calibration Validation % Within
(cm) RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

0–5 Mean 1.2 0.31 –0.20 0.49 1.4 0.09 –0.21 0.26 88.1
s.d. 0.0 0.05 0.03 0.06 0.1 0.05 0.07 0.08 1.9

0–15 Mean 1.2 0.31 –0.18 0.49 1.4 0.11 –0.17 0.30 88.3
s.d. 0.0 0.04 0.03 0.04 0.1 0.03 0.12 0.05 1.9

5–15 Mean 1.2 0.32 –0.17 0.50 1.4 0.10 –0.15 0.28 87.5
s.d. 0.1 0.06 0.04 0.07 0.0 0.03 0.11 0.04 2.3

15–30 Mean 1.3 0.28 –0.19 0.45 1.5 0.09 –0.19 0.26 88.7
s.d. 0.0 0.02 0.02 0.03 0.1 0.03 0.11 0.05 1.7

30–60 Mean 1.4 0.22 –0.25 0.37 1.5 0.06 –0.24 0.19 89.3
s.d. 0.0 0.04 0.05 0.06 0.1 0.03 0.10 0.05 2.8

60–100 Mean 1.5 0.15 –0.36 0.26 1.6 0.04 –0.36 0.12 89.1
s.d. 0.0 0.05 0.04 0.07 0.1 0.03 0.16 0.07 3.4
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These soil properties are not required for the current ESA rule-
sets for Tasmania.

Discussion

The Version 1.0 Tasmanian soil-attribute maps were developed
using a regression-tree modelling process that has produced
reasonable diagnostics, and realistic mapping in terms of
topographic variation and extent. The regression-tree rule-based
LOOCV approach (Malone et al. 2014) has effectively taken into
account the sensitivity of the linear modelling approach to the

covariate-based conditions, using the variation in modelling due
to the data variance to develop the upper and lower prediction
limits, with 90% confidence. The k-fold cross-validation has
also reduced any modelling bias by using different parts of
the available target data both to calibrate and to validate the
modelling, averaging the outputs to ‘smooth-out’ any extreme
model output variations due to data ‘outliers’.

The Version 1.0 products have been constructed with no
initial attempt to test the environmental conditions (covariate
feature space) that are represented by the existing soil attribute
datasets, or to consider the uncertainties produced by the
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Fig. 11. Effective soil depth (cm).

Table 10. Effective soil depth modelling diagnostics
RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

k-fold Calibration Validation % Within
no. RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

K1 42.4 0.35 –7.00 0.48 40.5 0.17 –1.84 0.38 0.91
K2 46.8 0.20 –6.86 0.31 41.0 0.06 –3.29 0.18 0.94
K3 38.8 0.43 –5.59 0.58 58.2 0.02 –8.38 0.16 0.83
K4 44.9 0.23 –7.27 0.34 47.4 0.26 –9.61 0.39 0.86
K5 43.3 0.28 –6.35 0.42 45.4 0.33 –6.13 0.42 0.87
K6 42.6 0.35 –6.94 0.49 37.0 0.17 –0.49 0.37 0.90
K7 41.5 0.33 –5.83 0.49 54.9 0.10 –12.83 0.21 0.90
K8 39.1 0.39 –6.22 0.54 61.7 0.03 –8.37 0.12 0.91
K9 42.6 0.30 –5.52 0.45 50.7 0.13 –7.90 0.28 0.84
K10 45 0.26 –6.78 0.37 37.2 0.32 –5.11 0.48 0.93
Mean 42.7 0.31 –6.44 0.45 47.4 0.16 –6.39 0.30 0.89
s.d. 2.51 0.07 0.63 0.09 8.8 0.11 3.78 0.12 0.04

948 Soil Research D. Kidd et al.



temporal range of the training data. The effects of land use and
management on some soil properties were also not considered
because of lack of available data at the time of modelling, other
than the use of the ‘persistent greenness’ satellite covariate,
which effectively showed land-use patterns in some areas.

Temporal variability

The modelling uncertainty due to the temporal range of the
training data was most apparent as poor modelling diagnostics
and high uncertainty ranges for pH and EC in the top 30 cm of
the output surfaces (0–5, 5–15 and 15–30 cm). The top 30 cm is
generally more variable for many soil properties (McKenzie
et al. 2002) and is more prone to the effects of climate and
land management inputs than deeper subsoil (as most of these
impacts are initially at or near the surface). Hence, the older
site data will not be representative of the conditions identified
by newer, nearby sites, introducing additional unexplained
variability into the modelling. The subsoil diagnostics and
uncertainty ranges were better for pH and EC because these
soil horizons are generally less spatially and temporally variable,
and more ‘static’ than the surface horizons. The temporal range
of the subsoil training data will therefore be less prone to
introducing temporal uncertainty into the models.

Future versions of the products would benefit by introducing
a temporal component into the modelling, for example, only
using soil samples from the past decade, or modelling by decade,
and comparing model diagnostics to determine whether temporal
instability is contributing to the unexplained variability. However,
there were insufficient data for some soil attributes to provide
meaningful training data across such a large area, which could be
addressed by the targeting and collection of new soils data, and the
incorporation of recently accessed additional legacy data.

Mapping artefacts

For some soil property surfaces, especially those strongly
explained by rainfall, good modelling diagnostics were
achieved, but ‘unrealistic’ mapping artefacts were produced;
that is, a sharp change in the continuous attribute was evident at
the boundary of a rainfall isohyet. This was caused by: (i) the
strongly evident west–east trend in mean annual rainfall; (ii) the
relatively sharp change in rainfall with respect to distance, due
to the rain-shadow effects of the central plateau; (iii) the strong

influence of rainfall on Tasmanian soil formation; and (iv) the
data-partitioning effects of the regression-tree approach.

It was decided to test the modelling by removing the
rainfall covariate where these artefacts were being produced,
for example, soil OC percentage. However, in this case,
modelling diagnostics were considerably worse when rainfall
was removed. In an attempt to allow the effects of rainfall to be
incorporated into the regression-tree DSM, covariates were
tested that would better explain the target OC percentage
variability due to rainfall, but without the isohyet effects, and
with better variation with terrain. The index produced by dividing
rainfall by dominant prevailing wind (windward-leeward, SAGA
GIS 2013) effects (to accentuate the rain-shadow areas of the
state) was found to be an important explanatory dataset, and was
effectively able to reduce mapping anomalies, producing more
realistic mapping products showing carbon changing by terrain,
rather than the rainfall ‘smooth-curves’.

For clay percentage, rainfall (as an important covariate for
partitioning the regression trees) also introduced some ‘naturally
unrealistic’mapping artefacts (Fig. 12), which were still evident
when using the above rainfall–wind effect index. By removing
rainfall altogether as a covariate, these artefacts were eliminated
without overly affecting the modelling diagnostics (i.e. the
model calibration-validation quality was not significantly
reduced). For example, the clay percentage predictions for
0–15 cm had an RMSE difference of 0.07% and R2 difference
of 0.01 for calibration, and an RMSE difference of 0.12% and R2

difference of 0.01 for validation. These comparisons could be as
a result of the incidental rainfall formation influences already
inherent within the other covariates used (e.g. terrain, persistent
greenness and radiometrics).

In similar cases, it is necessary to weigh up the modelling
diagnostics and co-variable usage against the final mapping
appearance. Unnatural appearing DSM products could
potentially lose ‘credibility’ with end-users (especially
considering the early resistance to adoption of this science by
the traditional soil science community); therefore, new covariates
will need to be developed that will still capture strong co-variance
without producing artefacts. If reasonably strong and comparable
modelling diagnostics can still be achieved after removing the
covariate in question while producing more ‘naturally appearing’
mapping, it could be argued that this approach is warranted, and
that the other soil-forming factors are still able to explain enough
variability. Another potential solution is to use an alternative

Table 11. Modelling diagnostics for exchangeable calcium and exchangeable magnesium (cmol kg–1), depth to sodic layer and drainage
(averaged k-folds)

RMSE, Root-mean-square error; CC, concordance; CL, confidence limit; s.d., standard deviation

Calibration Validation % Within
RMSE R2 Bias CC RMSE R2 Bias CC 90% CL

ExCa (0–15 cm) Mean 6.3 0.32 –0.81 0.49 7.2 0.15 –0.65 0.33 86.7
s.d. 0.4 0.06 0.15 0.06 1.9 0.09 0.54 0.12 4.4

ExMg (0–15 cm) Mean 4.4 0.19 –1.16 0.28 4.7 0.08 –1.17 0.17 90.3
s.d. 0.2 0.08 0.12 0.11 0.6 0.03 0.46 0.05 2.1

Depth to sodic layer (cm) Mean 0.2 0.45 –0.03 0.61 0.3 0.15 –0.03 0.35 95.5
s.d. 0.0 0.02 0.00 0.02 0.0 0.04 0.01 0.05 1.7

Drainage index (whole profile) Mean 1.0 0.29 0.00 0.48 1.0 0.18 –0.01 0.38 89.3
s.d. 0.0 0.03 0.01 0.03 0.0 0.02 0.05 0.02 1.5

3D 80-m resolution soil-attribute maps for Tasmania Soil Research 949



modelling approach to regression trees, where the models are
continuous and artefacts due to data partitioning are minimised.
Such artefacts are also discussed in the work of Padarian et al.
(2014), who suggested a balance between numerical performance
and a visual representation without artefacts.

Uncertainties

The model diagnostics reported are averaged across all
regression-tree ‘partitions’; therefore, some areas of the state
will have better predictions and lower uncertainties than others.
The relative magnitude of the uncertainties produced for the
different soil attributes at their various depths were reasonable
considering the data density and spatial spread available. A
benefit of the regression-tree rule-based LOOCV approach is
that uncertainties can be viewed spatially, so that end-users
can determine which parts of the landscape have better soil-
attribute predictions. For example, Fig. 13 shows the uncertainty
(upper–lower prediction range) for clay percentage in the top
5 cm. The mapping shows that greater uncertainties (darker
shading, up to 54%, i.e. �27% from the predicted value) are
evident in some coastal areas (where clay percentage is general
lower, and sand percentage is generally higher), whereas lighter
shaded areas have uncertainties as low as 12% (�6% from the
predicted value). The lower uncertainties generally correspond
to parts of the state where more soil-site data exist, as expected.
However, some parts of the state that have low uncertainties
(such as the Central Plateau) also have very few site data,
implying similar environmental (covariate) conditions to the
more data-dense parts of the state, informing these modelled
areas. Based on these similar conditions, the soil-attribute
modelled relationships are extrapolated into data-poor areas,
similar to the ‘homosoil’ concept of extrapolating soil properties
on a global scale (Mallavan et al. 2010).

There would also be inherent uncertainties in each of the
PTFs, which were not considered as part of the Version 1.0
mapping. For future (Version 2.0) surfaces, these will be

incorporated into the spatial modelling uncertainties for each
of the contributing attributes.

The uncertainty mapping can provide a tool for targeting future
soil-sampling exercises, whereby areas of high uncertainty
could be prioritised for sampling if also environmentally or
agriculturally important. However, the spatial distribution of
existing site density should also be considered, ensuring that
the entire Tasmanian covariate-feature space is well represented
(as per Brungard and Boettinger 2010), and that data-poor areas
with low uncertainties are tested for validation and future
refinement of models if necessary.

Some of the Version 1.0 products can have relatively
high uncertainties in some data-poor areas. However, a high
uncertainty (in terms of a raster cell having a relatively large
difference between the upper and lower PI) can still be
useful for environmental modelling or digital soil assessments
(Carré et al. 2007a), depending on where the threshold of
interest occurs within the confidence limits. If a threshold
value is outside the PI range, the end-user can have good
confidence (90% in this case) that the value is higher or
lower than the PI range. However, situations where a
threshold value occurs around the predicted value (between
the upper and lower PI) will introduce a higher level of
uncertainty into the end-user product.

There has been much discussion regarding the development
of standard approaches for generating estimates of uncertainty
within the DSM and GSM community (Heuvelink 2014). As

Uncertainty
clay %

High : 54

Low : 12

Fig. 13. Surface clay percentage (0–5 cm) uncertainties.

Clay % with Rainfall

Modelling artefact

Water

Clay % (0 to 5 cm)
High : 79.2101

Low : 0

Fig. 12. Clay rainfall artefacts.
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such, continued testing and research are still required within
this important element of DSM. The regression-tree rule-based
uncertainty approach used for the development of Version 1.0
Tasmanian products is a preliminary attempt at developing
meaningful uncertainty estimates for Tasmanian soil-attribute
spatial variability, which will also be tested and refined during
future version modelling.

Soil analyses and predictions

All database analytical data were assessed to ensure that the
methodology and units were comparable. The cumulative
distribution of the datasets was also assessed to identify and
remove obvious data errors. For soil OC, all available data used
were analysed by the Walkley–Black extraction method
(Walkley and Black 1934), or MIR prediction was calibrated
by this measurement. However, this method under-predicts
the OC soil fraction, especially in higher concentrations in
Tasmanian soils (McDonald et al. 2009). This indicates that
potential OC could be underestimated for many of the Tasmanian
forest sites at these locations, resulting in underestimation of
spatial predictions; however, modelling could be over-
predicting OC in peat areas, as observed with the high values
(>60%) obtained in the Southwest WHA landscapes. It would
therefore be advantageous to delineate the peat areas and model
them separately from minerals soils because the environmental
factors affecting OC in peat and mineral soils are different. Future
versions of the DSM products would also benefit from the
incorporation of newly collected OC analyses using the dry
combustion method, and/or developing PTFs to convert the
Walkley–Black OC data to dry combustion methods such as
LECO (Wang and Anderson 1998).

Qualitative estimates

Although most of the surfaces generated were based on
quantitative measurements of soil properties, several soil
properties such as depth-related estimates, CF and drainage
relied on qualitative descriptive data. This was necessary
because inadequate data existed with direct measurements
such as hydraulic conductivity and stone counts. Despite this,
the qualitative integration of expert-based field estimates,
even though from a variety of sources, produced reasonable
modelling diagnostics and meaningful and realistic spatial
variation in terms of soil–landscape relationships. Although
not necessarily linear in relationship, the CF and drainage
ordinal classes can be effectively captured as a continuous
surface index using the regression-tree approach, as
demonstrated by Kidd et al. (2014a), with reasonable validation
demonstrating that the modelling can effectively account for any
non-linearity. Applying the non-linear stretch of the CF percentage
ranges to the ‘indexed-class’ values also produced meaningful
patterns of CF abundance (as discussed in the Results); however,
further validation could benefit from actual stone-count percentage
values and testing within the 90% CL.

National v. regional DSM

The regional Tasmanian Version 1.0 surfaces have been
modelled over a range and distribution of soil properties and
covariate soil-forming factors different from the national TERN

products, and should therefore show different spatial detail and
PI values. All covariates were generated as regional Tasmanian
products, and would potentially have values different from
the national covariates because many terrain derivatives are
produced in relative or index terms, stretched over the
differences and distributions of elevation found within
Tasmania. The differences in local v. national range of each
target variable could also influence model formulation; local
DSM products could have the advantage of forming models
within the local range of conditions, and consequently show
more local variability. However, national models could have
the advantage of extrapolation of additional soil-training data in
similar environmental conditions; for example, the lack of OC
data in Tasmania’s south-west peat areas could be better informed
by the additional carbon site data elsewhere in similar parts of the
country. Further research would inform whether the national and
local products would each benefit from splitting the country into
stratified environmental zones, for example, Tasmania and
Victoria, and re-running the point-driven DSM process within
the more homogeneous environments.

Future work

Legacy data

The Version 1.0 Tasmanian surfaces are considered the
genesis of an evolving product, with modelling scripts written
to automate the addition of site and covariate data. DPIPWE has
undertaken a substantial effort in identifying, digitising and
cleaning a wide range of legacy soil data from a variety of
historical sources, targeting good-quality analytical data, and
areas with a paucity of good site data. To date, ~3500 sites of
varying quality have been identified and will be integrated into
new DSM model re-runs (Version 2.0) as these data are
processed. It is hoped that comparison of newly created
Version 2.0 surfaces against Version 1.0 surfaces, in terms of
mapping differences, uncertainties and model diagnostics, will
clearly demonstrate the value of additional data and potentially
stimulate further investment in collecting new soils data.

Covariates

The integration of the radiometrics and geology was shown
to be an important predictor in many soil properties and
demonstrates the importance of good remotely sensed data,
especially related to parent material. Future work will
also explore the development and integration of improved
covariate layers, including potential LIDAR elevation models
and multi-spectral satellite imagery and derivatives. Incorporation
of fractional groundcover (Muir 2011) and fractional dynamic
land cover (Armston et al. 2009) covariates would also
be beneficial for quantifying potential spatial variations in soil
properties, and as an additional explanatory variable for impacts
of land use on soil attributes. Testing will be done to determine
whether currently used modelling hardware infrastructure
can cope with producing the products at 1-arc-second
(30-m) resolution. Alternative testing will involve building the
regression-tree models with 30-m covariates to increase the
chances of applying an accurate covariate value allocation at
each point, but applying the model to the 80-m covariates to
reduce processing time.
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Modelling

As mentioned as a possible solution to reducing mapping
artefacts, alternative modelling approaches will also be tested,
however, regression tree (Cubist) is strongly favoured because
of the interpretive benefits and transparent outputs. End-users
can clearly see how each covariate contributed to the modelled
soil attributes and better understand the soil-forming
soil–landscape processes occurring in different parts of the
environment. This is lacking in approaches such as artificial
neural networks in soil-property prediction (Zhao et al. 2009)
and random forests (Liaw and Wiener 2002), where model
outputs are less easily interpreted.

Another potential approach is to test the disaggregation of
land-systems mapping, the only state-wide polygon product
available in some areas, which could be split into minor spatial
components of modal soil properties by using an approach
consistent with the DSMART methodology developed by
Odgers et al. (2014). A model-ensemble approach could be
integrated to average the disaggregation outputs with the point-
source DSM modelling, to potentially better inform areas with no
or few soil-site data; this has been beneficial elsewhere (Malone
et al. 2014).

The predictive approach used for the Version 1.0 surfaces
fitted models to each standard depth separately (following
Arrouays et al. 2014), and these are considered 3D in that
there are spatial soil-attribute predictions across the state
through all standard depths to 2m. However, no integration
of vertical data trend was considered or incorporated into a true
3D modelling process, as described by Hengl et al. (2014);
future modelling could benefit from testing such an approach.

Sampling

As an example of how the uncertainties could be used to help
guide future sampling, Fig. 14 shows the combined uncertainty
values for several important soil attributes for an ESA in the Great
Forester–Brid Irrigation Scheme, in the north-east of Tasmania.
Surface soil (0–5 cm) and subsoil (60–100 cm) uncertainty ranges
for pH, clay percentage, ECse and CF were calculated by
subtracting the lower PI from the upper PI values, then
standardised to a range of 0–100 to give an indication of
relative error across both topsoil and subsoil predictions.
Values were then averaged to provide an indication of where
in the landscape uncertainties were highest for more soil attributes.
Figure 14 shows that generally in lower elevations corresponding
to coastal plains and dissected valley systems (Quaternary
alluvium), uncertainties are larger than on the upper slopes
around Scottsdale. This would be due in part to these areas
often containing extreme prediction values, that is, low clay,
low CF, high pH, and high EC, as well as low site-data
density. Future site sampling would be prioritised to areas
of high DSM uncertainties, but ensuring the sampling
distribution is still representative of the covariate distribution.
This could be achieved using a purposive sampling approach
such as Conditioned Latin Hypercube Sampling (Minasny and
McBratney 2006a, 2006b), which could be effectively constrained
following the methodologies described by Clifford et al. (2014)
and Roudier et al. (2012), where the sampling constraint would be
the areas of high DSM uncertainty, rather than access (distance to

roads). Clustering of covariates for a stratified-random approach,
taking into account the covariate distribution of the existing site
data in conjunction with higher uncertainties, would be another
approach, as per Kidd et al. (2015).

Standardised uncertainties could be averaged across all
depths and all soil attributes to guide a sampling campaign
aimed at improving the Version 1.0 products across all areas
and attributes.

Initial uses

After acknowledging the limitations of some areas and attributes
of the Version 1.0 DSM surfaces, some products have already
been requested and incorporated into various environmental or
agricultural modelling scenarios. For example, the clay
percentage and drainage surfaces were used to identify areas
of high ‘pugging’ risk (soil structural damage from cattle in wet
conditions), and ryegrass suitability was modelled using
Tasmanian ESA rule-sets (Kidd et al. 2014b) to identify
areas suitable for ‘winter-finishing’ of beef cattle in Tasmania
(Davey 2014).

Importantly, the Version 1.0 surfaces provide consistent
inputs to environmental modelling and assessment in areas
outside the legacy-soil mapped areas that were previously not
available (without relying on conceptual land systems), with the
additional benefit of providing uncertainty estimates. They are a

± 35.0

± 4.5

Fig. 14. Sampling scenario based on uncertainties.
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first attempt at developing a quantitative spatial soil-attribute
product for all of Tasmania. The authors acknowledge that the
Version 1.0 products should be improved with the addition of
appropriate soil and covariate data; however, the products are
considered an important, foundational soil-infrastructure dataset
for the state, quantifying where soil information uncertainty is
highest, which can guide future investment in data capture.

Conclusions

The Version 1.0 digital soil maps of soil attributes and
uncertainties produced for Tasmania are an important first
step in developing a comprehensive soil infrastructure to
deliver quantitative soil-attribute predictions and modelled
uncertainties at a useful resolution for farm enterprise and
environmental planning. Most soil surfaces were produced
with acceptable modelling diagnostics and uncertainty ranges,
delivering realistic soil–landscape spatial patterns extrapolated
into unsampled areas. The maps have been produced to allow
continuous improvements, with models that have been
automated to accept newly collected soil data and covariates
to generate new versions as required, which should improve
diagnostics and uncertainties in some areas. It is the first attempt
at quantifying the soil properties of Tasmania based on existing
data, which will help to guide future investment in soil data
collection and provide consistent soil-attribute data with
uncertainties to environmental modelling and assessment
activities.
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