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The soil's gamma radiometric signal is known tobe a crucial indicator of the heterogeneity of soil properties,most
likely directly related to themineralogy and geochemistry of the parentmaterial. However,fine-resolution radio-
metric data sourced from geophysical surveys are often not available. In our study area in the Lower Hunter
Valley, Australia, only coarse-scale (based on 2 km line spacing) aerial radiometric maps are available. An alter-
native solution could be to implement a ‘smart’ ground-based gamma-ray survey when detailed radiometric in-
formation is required on larger extent. Thework presented here therefore details a vehicle-borne gamma-ray soil
survey conducted in the Lower Hunter Valley to investigate if a proximal soil sensing device with a footprint
much smaller than airborne gamma-ray spectrometers can be employed for regional extent mapping, and still
capture the soil's fine-scale heterogeneity. To do so we designed an algorithm for the delineation of irregular
transects (drive-lines) based on ancillary environmental information, intended to be used specifically for
Wide-Ranging Exploratory Surveys (WIRES) at the regional scale. The WIRES algorithm creates transects from
randomised starting points that terminate at boundary points; the path is defined with directional constraints
that collectively ensure that the environmental variability within the domain of study is accessed and sampled.
The design was delineated for the entire 220 km2 study area. In this exploratory work we surveyed a sub-
catchment of the area (≈15 km2) to trial the feasibility of WIRES. We produced radiometric maps based on a
regression-kriging approach. An external validation of the maps showed good results. We also validated the
maps produced with existing detailed radiometric maps across a landholding (≈140 ha) that is situated within
the sub-area investigated in this study. Both surveys were comparable, which gives us useful insights into under-
standing the scaling properties of the geophysical properties of soil across environments.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

On-the-go proximal soil sensing techniques are an invaluable re-
source to resolve spatially, a number of environmental phenomena.
Such information can enrich our knowledge of the variability of soil
landscapes across a location of interest. The resultingfine-resolution en-
vironmental data are often used as ancillary information for digital soil
mapping to provide the necessary ‘environmental’ information to spa-
tially predict soil characteristics.

One of the on-the-go proximal soil sensing instruments that has been
utilised for geophysical surveys over the past decades have been passive
gamma-ray spectrometers. These record the amount of radioactive iso-
topes in the soil based on the principle that each gamma ray photon re-
lates to a discrete energy window which is characteristic of the source
isotope (Minty et al., 1998). Radiometric mapping therefore predomi-
nantly reflects the variation of the amount of naturally occurring radioiso-
topes of potassium (40K), uranium (238U-series) and thorium (232Th-
ckmann).
series) as they produce high-energy gamma-rays with sufficient intensi-
ties to be picked up by the detector (IAEA, 2003). Gamma rays emitted
from the soil correspond to the concentration of these radioisotopes in
the top 40 cm of soil (Wilford et al., 1997). Generally, their intensity is di-
rectly related to the mineralogy and geochemistry of the parent material
and its degree of weathering (Dickson and Scott, 1997). Radiometric sur-
veys, mainly aerial-based, have therefore been used initially for uranium
exploration and geological mapping on a large scale (Wilford and
Minty, 2006). But these geophysical surveys have also been utilised
more frequently over the years to map soils and regolith distribution
and in turn to understand soil landscape processes on a regional scale.

More explicitly, radiometricmaps have been used successfully to de-
tect the spatial variation of soil across the landscape, in relation to soil-
forming materials and to distinguish between the intensity of
weathering of the material (Cook et al., 1996; Wilford, 2012; Wilford
andMinty, 2006). They have also been employed to improve our under-
standing of soil erosion and deposition in the landscape bymapping the
occurrence of the man-made radioisotope 137Cs in surface soils (Scheib
and Beamish, 2010; Stockmann et al., 2012). In addition, radiometric
data have been used to identify site-specific soil properties when
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calibrated with field data such as Aeolian dust additions to topsoil
(Cattle et al., 2003), soil texture and Fe contents of the surface soil
(Viscarra Rossel et al., 2007), and absence or presence of gravel
(Taylor et al., 2002). Radiometric information of the soil landscape is
therefore a crucial explanatory variable of the heterogeneity of soil
properties in digital soil mapping efforts (McBratney et al., 2003). How-
ever, even though radiometric information is seen as a highly valuable
asset for improving theprediction of the soil's spatial distribution, radio-
metric data are often not readily available continuously at a fine resolu-
tion across a wide range of spatial scales.

Whilst Australia has a continental coverage of remotely-sensed ra-
diometric data at a nominal resolution of 100 m, it is composed of a
patchwork of aerial surveys that range in information content (Minty
et al., 2009). For example, flight line spacing could be as little as
100 m or greater than 1500 m (Percival, 2010). Where detailed aerial
survey has been completed, the radiometric data is invaluable for digital
soil mapping. Conversely, where coarse aerial survey (2 km line spac-
ing) has been completed, as in our study area of the LowerHunter Valley
(around 32.83°S 151.35°E), Australia the radiometric information con-
tent is low and consequently is unable to capture local soil heterogene-
ities. In addition, financial cost is the main primary impediment for
conducting a user-specified detailed aerial or ground-based survey in
the entire study area of the HunterWine Country Private Irrigation Dis-
trict (HWCPID). An alternative solution to this however could be to im-
plement a ground-based or vehicle-borne gamma-ray survey when
detailed radiometric information is required on the regional scale (up
to 30 km2). Recently, Viscarra Rossel et al. (2014) conducted a gamma
radiometrics survey along widely separated transects using a mobile
proximal soil sensor over a 100 km2 region in Tasmania and the
resulting radiometricmaps appeared to accordwellwith ancillary infor-
mation of the surveyed region. However, to survey a location of interest
efficiently with a vehicle-borne spectrometer, an optimal drive-line
route is required that (ideally also) takes ancillary environmental infor-
mation into account. This is relatively simple to implement for a small
landholding (up to ~100 ha) where surveying is based on closely-
spaced parallel driving lines of 10–30 m in width (McBratney and
Pringle, 1999). In precision agriculture, RAVEN navigation devices
(Raven industries, Sioux Falls, South Dakota, USA) are used for example
to navigate and to ensure overlapping drive lines coverage of the sur-
veyed area. In addition, Geographic Information Systems such as ESRI's
ArcGIS offer the shortest or optimum path algorithms that advise on
best driving routes along pathways but in general cannot be used
when off-road sampling transects are required. These also take no
existing environmental information of the area of interest into account.

The work presented in this study explicitly details a vehicle-borne
gamma-ray soil survey conducted in the Lower Hunter Valley to inves-
tigate if a ground-based proximal soil sensing device with a footprint
much smaller than airborne gamma-ray spectrometers can be
employed for regional extent mapping, and still capture the soil's het-
erogeneity. The difference in footprint sizes is predominantly a function
of altitude from the soil surface. To do sowe designed a ‘sampling’ algo-
rithm that creates irregular transects throughout a region for ‘optimal’
off-road navigation through the landscape based on ancillary environ-
mental information that is intended to be used specifically for Wide-
Ranging Explanatory Surveys (WIRES) at the regional scale.

2. Materials and methods

2.1. WIRES — an algorithm for Wide-Ranging Exploratory (soil) Surveys

We designed an algorithm for automatically generating drive-line
transects called WIRES, which is an acronym for WIde-Ranging Explor-
atory (soil) Survey. Afigurativemeaning of the algorithm is the arrange-
ment and bending of wires across a landscape. The algorithm is a
custom-built function computed using the R programming language
(R Development Core Team, 2008) that can be made available upon
request. To generate one transect, theWIRES algorithm follows the gen-
eral format:

1) Define the area to be surveyed with an outline polygon. Make a con-
figuration ofm points across the land area to be surveyed. The selec-
tion of points could follow any type of sample design, for example,
simple random or stratified simple random designs (de Gruijter
et al., 2006), or even conditioned Latin Hypercube sampling
(Minasny and McBratney, 2006).

2) Form a Delaunay triangulation of these points. Fig. 1 shows a con-
trived example of 25 random points and the subsequent triangula-
tion of these.

3) Select a point at randomwithout replacement. In Fig. 1, this point is
labelled A. Points on the convex hull of the configuration are howev-
er not permitted to be sampled, as these form the termination sites
of a formed transect and are labelled X on the second plot. The verti-
ces of the outline polygon then form the terminals of the transects.

4) Determine the nearest point to A at random. In Fig. 1, this point is la-
belled B.

5) Form a triangle ABCwith the neighbouring points of B. In Fig. 1 there
are 3 neighbouring points: C1, C2, and C3.

6) Select the neighbouring point whichmaximises the angle at Bwhich
ensures a maximum projected distance away from point A to avoid
path repetition. Using measured distances and cosine rules, the se-
lected neighbouring point on the example is C2.

7) Transect is drawn following the triangulation lines from point A,
through B, to point C. Point B is now labelled new point A, and
point C is now labelled new point B.

8) Go back to step 5, and repeat until point C becomes one of the termi-
nation sites, whichmarks the end of a transect. The final transect can
be seen on the second plot of Fig. 1.

9) Go back to step 3 to generate more than one transect.

There is a maximum to how many transects can be created for a
given number of point locations. This number is generally m minus
the number of convex hull points. It is not necessary to know the num-
ber of convex hull points, as the standard procedure is to instructWIRES
to generate n transects, and let the algorithm run until it terminates
(there are nomore A points to sample). After this, a filtering step is per-
formed to remove redundant transects, those which are identical to an-
other transect. With the remaining transects, a random sample
(without replacement) of size n (for example an integer which is 10%
ofmmay be a useful rule of thumb) is taken. This sampled composition
of transects constitute the proposed survey design of a given area under
study. By fact or nature of the design, there will be situations where the
route of a particular transect will follow (and not just intersect), for
some part, the route of another. The consideration here is that each
transect is unique, but if overlapping of transects becomes apparent at
any stage, it is only required to explore the overlapping route once.

2.2. Study area

We implemented and tested theWIRES algorithm for the creation of
drive-line transects of 100 m or more in width for regional extent
gamma-radiometric mapping in the Lower Hunter Valley, NSW,
Australia. This area of study covers approximately 200 km2 and encom-
passes the localities of Pokolbin and Rothbury (32.83°S 151.35°E)which
are approximately 140 km north of Sydney, NSW, Australia (Fig. 2). The
study area is situated in a temperate climatic zone, and experiences
warm humid summers, and relatively cool yet also humid winters, re-
ceiving on average, just over 750 mm of rainfall annually.

The underlying geology is predominantly Early Permian, with some
Middle and Late Permian formations (Fig. 3). Detailed reviews and addi-
tional maps of the geology can be found in Hawley et al. (1995). The
soils across the study area, or composition thereof is quite variable,
but in general terms are weathered kaolinitic and smectitic soils, of
light to medium clay textures. The dominant soil groups are Luvisols



Fig. 1. These plots show the Delaunay triangulation based on 25 randomly placed points. The first plot diagrammatically shows the selection of points A (random point selection),
B (nearest neighbour of A), and C (point at which maximises the angle at B from a formed triangle of the three points). Here there are 3 possible points, but C2 meets the criteria best.
A transect is drawn and algorithm continues until a convex hull point (X) is reached, and then terminates (second plot).
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and on topographic high Calcisols (IUSS Working Group WRB, 2007).
Further information regarding the soils can be found in Kovac and
Lawrie (1991) and Malone et al. (2011). Landuse across the study area
Fig. 2.HunterWine Country Private IrrigationDistrict (HWCPID) study area in respect to its loca
scale radiometrics survey is also shown (red outline).
is predominantly composed of dryland agricultural grazing systems,
followed by an expansive viticultural industry. Whilst most of the land
has been dedicated for these uses, tracts of remnant natural vegetation
tion inNewSouthWales (large box) andAustralia (small box). The location of the regional-

image of Fig.�2


Fig. 3. Geology units of the regional-scale survey area (Source: Hunter Coalfield Regional 1:100,000 Geology Map (Glen and Beckett, 1993)).
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(dry sclerophyll forest) are apparent, particularly towards the south-
western area which is bordered by Broken Back Range, Werakata Na-
tional Park situated to the east, and some areas situated in the northern
extents.
2.3. Implementation of the WIRES algorithm

We based our selection of number of points used in WIRES on the
size of our study area (Hunter Valley Wine Country Private Irrigation

image of Fig.�3
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District — HWCPID) and the average landholding or parcel size. Based
on a cadastral layer of the study area, the average parcel size was iden-
tified to be approximately 0.1 km2 (10 ha). To establish a point configu-
ration we assumed a sampling density as being equal to: A/N, where A is
the size of the study area of about 200 km2 andN is the average parcel size
of 0.1 km2 — thus the sample point configuration was set to 2000 points.
Our intention next was to arrange the configuration of points across the
area in an appropriate manner. For this we performed conditioned Latin
Hypercube sampling (Minasny and McBratney, 2006) of size m (2000)
of a number of environmental covariates, namely digital maps of
25 m pixel resolution. The following covariates were used in the sam-
pling design: eastings and northings, elevation, landcover classification
(Stabile, 2011), compound topographic index (SAGA Geographic Infor-
mation System), a soil drainage index (Malone et al., 2012), mapping of
marl presence (Malone et al., 2014), clay content of the subsoil (Malone
et al., 2014), pH of the subsoil (Malone et al., 2014), and gamma radio-
metric total count (originally at 250 m resolution; Minty et al., 2009).
With the cLHS, the algorithm optimises the sampling to ensure that the
full distribution of each variable used is adequately sampled. The result
being that the entire (known) environmental space will be sampled.

With the configuration of points arranged, theWIRES algorithmwas
set to generate 2000 transects (Fig. 4). After the algorithm terminated,
redundant transects were removed, then a random sample (without re-
placement) of 200 was taken. These 200 transects collectively formed
the design of the survey intended for measuring and subsequent map-
ping of gamma radiometrics across the study area (Fig. 4).
2.4. Ground-based radiometric survey

As detailed previously, the design of the ground-based survey was
delineated for the entire 200 km2 study area of the HWCPID. We sur-
veyed a sub-catchment of the area of approximately 15 km2 which is
underlain by a range of differing geological units (refer to Fig. 3) to
trial the feasibility of WIRES (Fig. 5).

The radiometric survey was carried out in autumn 2013 using a
vehicle-borne RSX-1 gamma detector consisting of a 4 dm3 Sodium–
Fig. 4.Mapof theHWCPID study area, showing the conditioned LatinHypercube Sampling (cLH
aswell as the selected transects (200 transects). Two of the 200 delineated transects are highligh
study area. The location of the regional-scale radiometrics survey is also shown (red outline).
Iodine crystal (Radiation Solutions Inc., Mississauga, Ontario, Canada),
and mounted on a six-wheeled field vehicle. Positional data were re-
corded with an integrated Trimble GPS. As seen in Fig. 6, it was neces-
sary to adjust the vehicle path in the field, on-the-go, because of
obstacles in the pathway of the delineated WIRES transects (such as
fences, buildings, dense forest areas and water bodies) as well as re-
stricted access to some of the properties falling within our study area.
Although constrained by the requirement to adjust drive-lines on-the-
go, we succeeded in covering most of the WIRES-delineated transects
throughout the regional-scale study area. We also collected additional
radioelement measurements on any necessary detours from the delin-
eated driving lines aswe captured the information continuously instead
of only takingmeasurements once we arrived at a drive-line transect or
node.

The RSX-1 collects a spectrum at 1 Hz using 1024 channels of 3 keV
width in the range of 0 to 3000 keV. Radiometric information (Regions
Of Interest of the Total Count, Potassium, Uranium and Thorium) was
derived using the integrated software of the gamma spectrometer
(RadAssist, Version 3.13, Radiation Solutions Inc.). ROI outputs were
pre-processed to eliminate outlier sampling points employing Principal
Component Analysis (PCA) for outlier detection based on Mahalanobis
distance as outlined in Filzmoser and Reimann (2003). After outlier re-
moval, the sampling density of the regional-scaled survey equated to 45
sampling points per hectare with a range in drive-line spacing of
80–650 m. To reduce the sampling size or number of point-based soil
observations used in the digital soil mapping approach, we divided
our study area into a regular grid of 5m pixels, followed by the delinea-
tion of one radiometric measurement for every 5m pixel by calculating
the mean of the radiometric point measurements falling onto that par-
ticular 5 m pixel.
2.5. Radiometric mapping and measures of quality assessment

We generated radiometric maps of the regional-scale survey,
showing the spatial distribution of the Total Counts (TC, cps), Potassium
(K, cps), Uranium (U, cps) and Thorium (Th, cps) based on a regression
S) point configuration (2000 points or nodes), Delaunay triangulation based on cLHS points
ted here to demonstrate the length and delineation of theWIRES transects in theHWCPID

image of Fig.�4


Fig. 5. Location of the regional-scale radiometric survey as well as the fine-scale radiometric survey within the HWCPID.
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kriging modelling approach (McBratney et al., 2003). We chose regres-
sion kriging as it is a common predictionmethod in digital soil mapping
that utilises all local (environmental) information available. Its predic-
tion performance has also been demonstrated to perform best when
compared to for example co-kriging approaches (Odeh et al., 1995).
We used step-wisemultiple linear regressionwhere the target variables
Fig. 6. Drive line transects of the regional-scale survey configured using WIRES. The
at each point along theWIRES transects (ROI) were modelled against a
suite of environmental covariates determined from 25 m rasters of ter-
rain attributes and soil physical and chemical properties (refer to
Table 1). Model equations determined using this approachwere extrap-
olated on a regular 25 m grid that encompasses the total extent of the
regional-scale survey area. Assuming that the mean of the residuals of
vehicle path used to take proximal soil sensing measurements is also shown.

image of Fig.�5
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Table 1
Environmental covariates used in the step-wise multiple linear regression models. Terrain attributes were derived from a digital elevation model on a 25 m raster using the open source
Geographic Information System SAGA. Detailed descriptions of the delineation of the soil physical and chemical properties can be found in Malone et al. (2014).

Total Counts (cps) Potassium (cps) Uranium (cps) Thorium (cps)

Environmental covariates
Eastings and northings
Clay content subsoil
pH subsoil
Analytical hillshading
Altitude above channel network
Aspect
DEM
Gamma radiometric total count
mid-slope position
Planar curvature
Profile curvature
Slope
Terrain ruggedness index

Eastings and northings
Clay content subsoil
pH subsoil
Analytical hillshading
Altitude above channel network
DEM
Gamma radiometric total count
mid-slope position
Planar curvature
Profile curvature
Compound topographic index
Slope
Terrain ruggedness index

Eastings and northings
pH subsoil
Analytical hillshading
Altitude above channel network
Aspect
DEM
Gamma radiometric total count
Planar curvature
Profile curvature
Compound topographic index
Slope
Terrain ruggedness index

Eastings and northings
Clay content subsoil
pH subsoil
Analytical hillshading
Altitude above channel network
DEM
Gamma radiometric total count
mid-slope position
Planar curvature
Profile curvature
Compound topographic index
Slope
Terrain ruggedness index
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the regression is zero, simple kriging was used to interpolate the resid-
uals. Interpolation was based on locally fitted variograms of the resid-
uals, and kriging which was implemented using the VESPER software
(Minasny et al., 2006). The regression predictions were added to the
kriged residuals resulting in final (regression kriging) predictions
of the radiometric target variables. Due to the number of data
used for modelling in this study, the standard universal kriging algo-
rithms were computationally unfeasible. Consequently we opted for
the more computationally efficient regression modelling, then treat-
ment of the residual type procedure. The advantage of this process for
this particular study was that we were able to investigate the spatial
structure of the residuals via locally fitted variogram models. Subse-
quently to derive 95% prediction intervals for each target variable, we
estimated the overall standard error of the regression kriging predic-
tions by taking the square root of the summed prediction variances
Fig. 7. Calibration and validation dataset use
(s2) from both, the MLR model and kriged residuals. The standard
error at each grid cell was used to calculate the subsequent 95% predic-
tion limits.

To test the model performances, we split our dataset in a validation
and calibration dataset (refer to Fig. 7).We left out 30% of the total num-
ber of 13 transects that have been surveyed to be included in the valida-
tion dataset which equated to 20% of the total radioelement sampling
points. We then used the statistical measures of the R2 and RMSE
(root mean square error) to assess the accuracy of the predictions, and
the prediction interval coverage probability (PICP), which is described
in Malone et al. (2011), as an accuracy assessment of the associated
uncertainties.

Another assessment of the quality of the estimated radiometric
maps was to compare them with existing fine-resolution radiometric
maps (refer to Fig. 5) surveyed for the intention of precision soil
d in the digital soil mapping prediction.

image of Fig.�7
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management across a landholding of approximately 140 ha in autumn
2012. This landholding is located within the WIRES surveyed sub-
catchment (Stockmann et al., 2012). These fine-scale maps (10 m grid
resolution) of the ROI were derived from a detailed ground survey of
Fig. 8. Radiometric maps of the Total Counts (cps). The predictions generated using the regres
proach of the fine-scale survey (b.2) are shown. In addition, the lower (a.1 and b.2) and upper
30mdrive-line spacing (with a samplingdensity of 278 samplingpoints
per hectare) using ordinary point kriging from locally fitted variograms.
The resultant kriging prediction variances were used to estimate the
95% prediction intervals at each 10 m grid point.
sion kriging digital soil mapping approach of the regional survey (b.1) and the kriging ap-
(c.1 and c.2) predictions intervals (PI) are shown.

image of Fig.�8
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To compare the regional-scale 25 m resolution radiometric
maps with those intended for precision land management (10 m
resolution), we performed fine-gridding (using nearest neighbour re-
sampling) of the regional-scale map predictions and their prediction
limits to 10 m resolution (Malone et al., 2013). To compare the
Fig. 9. Radiometric maps of Potassium (cps). The predictions generated using the regression kri
the fine-scale survey (b.2) are shown. In addition, the lower (a.1 and b.2) and upper (c.1 and c
now equally resolved maps, we used the following four quantitative
measures:

(1) PICP 1— Prediction Interval Coverage Probability 1. This is amea-
sure determining the percentage of points of the fine-scale
ging digital soil mapping approach of the regional survey (b.1) and the kriging approach of
.2) prediction intervals (PI) are shown.

image of Fig.�9
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mapping where the predicted value (e.g. Fig. 8.b.2) falls within
the upper and lower prediction limits of the regional survey
(e.g. Fig. 8.a.1 and Fig. 8.c.1).

(2) PICP 2 — Prediction Interval Coverage Probability 2. Similar to
PICP 1 except this measure calculates the percentage of points
Fig. 10. Radiometric maps of Uranium (cps). The predictions generated using the regression kri
the fine-scale survey (b.2) are shown. In addition, the lower (a.1 and b.2) and upper (c.1 and c
of the regional-scale mapping where the predicted value (e.g.
Fig. 8.b.1) falls within the upper and lower prediction limits of
the fine-scale mapping (e.g. Fig. 8.a.2 and Fig. 8.c.2).

(3) Zero enclosure. This measure estimates the percentage of points
where in consideration of the prediction intervals of both fine-
ging digital soil mapping approach of the regional survey (b.1) and the kriging approach of
.2) prediction intervals (PI) are shown.

image of Fig.�10
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scaled (e.g. Fig. 8.a.2 and Fig. 8.c.2) and regional-scaled mapping
(e.g. Fig. 8.a.1 and Fig. 8.c.1), there is no overlap. A value closer to
zero is ideal as this means that the predictions (with associated
uncertainties) have some overlap.
Fig. 11. Radiometric maps of Thorium (cps). The predictions generated using the regression krig
the fine-scale survey (b.2) are shown. In addition, the lower (a.1 and b.2) and upper (c.1 and c
(4) SMDR — Simulated mean distance of realisations. This is a
standardised mean distance measure of randomly simulated
values from the distributions at each point from both regional-
and fine-scaled surveys. Taking into account the prediction
ing digital soil mapping approach of the regional survey (b.1) and the kriging approach of
.2) prediction intervals (PI) are shown.

image of Fig.�11


Table 2
Validation statistics from regression models with covariate information alone and regres-
sion kriging models for each of the studied ROIs.

ROI Regression model Regression kriging model

R2 RMSE R2 RMSE PICP

Total Count 0.38 71.44 0.54 60.73 88
Potassium 0.26 9.54 0.40 8.56 90
Thorium 0.23 3.92 0.35 3.60 92
Uranium 0.18 2.72 0.23 2.82 92
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intervals, essentially for each radiometric map, at each point, a
Latin Hypercube sample (n = 500) from the associated predic-
tion distributions was taken. Each sample was scaled (according
to the standard deviation), and then the standardised Euclidean
distance calculated between the two simulated values. The
mean of all the Euclidean distance realisations was the measure
of SMDR at the subsequent point. Maps of the SMDR for each ra-
diometric map were produced (Fig. 12), where values close to
zero indicate similarity between regional-scaled and fine-scaled
predictions. Alternatively, the higher the value, the less similar
the predictions between both surveys.
3. Results and discussion

3.1. Implementation of WIRES in the field

It would be useful to have some additional information about the ca-
dastral units of the study area to improve the implementation of the
WIRES-informed regional radiometrics survey in the field. For instance,
Fig. 12.Maps of the simulatedmean distance of realisations (SMDR) for each radiometricmap, T
similarity between the regional- and fine-scaled predictions. On the other hand, the higher the
knowledge of the location of gates along fence lines (where in place)
would improve the efficiency of delineating the vehicle path in the
field and therefore reduce the surveying time significantly. However,
the need for adjusting the vehicle path during the survey and not know-
ing readily how to proceed with arriving back onto the WIRES-
delineated drive-lines was not necessarily an impediment as continu-
ous radiometric readings were taken. Therefore, radiometric informa-
tion of the studied landscape was still acquired which ultimately was
the overall purpose of this proximal soil sensing survey.
3.2. Radiometric maps derived based onWIRES-delineated sampling points

Radiometric maps of the regional survey produced using regression
kriging based on soil observations acquired through the WIRES drive
line transects are shown in Fig. 8a.1–c.1 (Total Counts), Fig. 9a.1–c.1
(Potassium), Fig. 10a.1–c.1 (Uranium) and Fig. 11a.1–c.1 (Thorium). In
addition, the environmental covariates used in the multiple linear re-
gressionmodels can be found in Table 1. Validation statistics are report-
ed in Table 2. Here, we report validation statistics from regression
models with covariate information alone and regression krigingmodels
for each of the studied ROIs. Adding the kriged residuals improved pre-
dictions noticeably as these introduced additional and useful spatial
structurewhichwas unable to bemodelled using the environmental co-
variates only. Spatial radiometric patterns seen in Figs. 8 to 11 are thus
mainly inherited in the kriged residuals.

Regression kriging modelling of radiometric total counts was the
best overall where an R2 of 0.54 was observed. It was to be expected
that this model to be the best performing as the total count is an inte-
grated value of the gamma-radiometric spectrum, rather than a specific
ROI as for the other variables. The quantifications of uncertainty for total
otal Counts (a), Potassium (b), Uranium (c) and Thorium (d). Values close to zero indicate
value, the less similar the predictions between both surveys.
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count seem acceptable with a PICP of 88%, although the expectation is
for 95%. For the other ROIs, the validation R2 was 0.40, 0.35, and 0.23
for potassium, thorium, and uranium respectively. The PICPs for each
of the ROIs indicate that the quantifications of uncertainty are reason-
able.Whilstwe expected the performance of themodelling of these var-
iables to be smaller than that for the total count, it is not uncommon in
digital soil mapping to have R2 values less than 0.5. Generally, such re-
sults indicate there to be a paucity of covariates that are available to ex-
plain the spatial variation of a given target variable (Malone et al., 2009;
Odgers et al., 2011). Another factor contributing to themodel uncertain-
ty is the fact that the abundance of the individual radioelements in soil is
low. This is particularly the case for uranium (Rogers and Adams, 1978),
where there is often a low signal-to-noise ratio for its detection across
the environment. Whilst there is future potential to improve the maps
produced in this study as discoveries in remote and proximal sensing
technologies are made, understanding the scaling properties of the ra-
dioelements will aid in predicting their spatial variation at any desired
scale, irrespective of the scale to which the original data was acquired.
Empirical studies relating detailed radiometric survey with more re-
gional survey extent will be beneficial in that regard and should be in-
vestigated in future studies.

From what can be observed however from the produced regional
scale radiometric maps, there is a clear spatial pattern of areas with
low and high radiometric responses. These spatial patterns appear to
be well supported by the ancillary information that we have of the
study area such as the parent material's lithology. For instance, in the
map of the Total Counts (Fig. 8a.1–c.1) as well as the maps of K
(Fig. 9a.1–c.1), U (Fig. 10a.1–c.1) and Th (Fig. 11a.1–c.1), an area of
very low counts in the lower left-hand side of the regional-scaled map
is readily noticeable, surrounded by areas of (marginally) higher counts,
which are most likely related to the change in parent materials the soils
originated from. Low radiometric counts in this particular location of the
study area are most definitely related to the carbonate-derived soils.
Here, soils are underlain by marl — earthy deposits (indurated marine
deposits from the Permian) consisting chiefly of an intimate mixture
of clay and calcium carbonate. As discussed in Dickson and Scott
(1997) carbonate-rich parent materials are known to be low in radioel-
ements and in turn the soils formed from themare expected to have low
radiometric responses. On the other hand, surrounding areas of higher
radioelement content are most definitely related to sedimentary parent
materials containing mudstone, claystone and shale that in general
show a higher response in total radioelement content. During
Fig. 13.Map of the simulated mean distance of realisations (SMDR) for the Total Cou
pedogenesis these geological unitsmayhave also experienced a propor-
tional loss of K and the incorporation and concentration of U and Th into
iron oxides and the fine fraction of soils (Dickson and Scott, 1997).
Radiometric maps show a depletion of K and a slight increase of U
and Th surrounding the Marl-derived soils, presumably due to the ob-
served changes in radioelement concentrations inflicted by intense
weathering.

Spatial patterns of increase in U and Th but loss in K across thewhole
study area are most definitely also related to clay-, as well as iron oxide
and silt-rich soils or argillic units in general. U and Th as discussed above
are associated with the fine fraction of soils that they weather into dur-
ing pedogenesis. Conversely, low readings across the board are related
to the abundance of sand-rich/coarse soil materials. These observed
spatial patterns are in turn also related to the change in geological
units across the study area, ranging from sandstone to siltstone,
claystone and shale dominated parent materials.

As outlined earlier, we also compared the derived regional-scale ra-
diometric maps with fine-scale radiometric maps from a small land-
holding in the survey area to investigate if WIRES is successful to also
capture fine-scale soil heterogeneities. At first glance, the distinct pat-
tern of high and low radiometric responses of the regional survey
maps is (as expected) also clearly identifiable in the fine-scale survey
maps (Fig. 8a.2–c.2, Fig. 9a.2–c.2, Fig. 10a.2–c.2, Fig. 11a.2–c.2), indicat-
ing that WIRES can be employed for the creation of drive-line transects
for regional extent proximal soil surveys. However, to confidently argue
that the soil's fine-scale heterogeneity can be captured, we performed a
radiometric map quality assessment based on geostatistical approaches
making use of several map quality indicators as outlined in Section 2.5
which will be discussed in the following.

3.3. Radiometric map quality assessment

First, it needs to be noted here that in the following, quality indica-
tors are discussed with the view that the fine-scale radiometric
mapping predictions reflect the soil's radioelement content more accu-
rately. This notion is based on the fact that this proximal soil sensing
survey was conducted on a very fine spatial resolution of 30 m (refer
to McBratney and Pringle, 1999).

The radiometric map quality indicators confirm our conclusions
made when interpreting the maps visually at first glance (Table 3 and
Fig. 12), i.e. that WIRES is a reliable tool to be used for creating drive-
line transects for regional scale radiometric surveys. For example, the
nts including the vehicle path used to take proximal soil sensing measurements.
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percentage of any point of the fine-scale mapping where the predicted
value falls within the upper and lower prediction limits of the regional
scale survey is relatively high (PICP 1), ranging from 88%, 94%, 96%
and 98% for the Total Counts (cps), K (cps), Th (cps) andU (cps), respec-
tively. On the other hand, the percentage of any point of the regional-
scale mapping where the predicted value falls within the upper and
lower prediction limits of the fine-scale survey is much lower (PICP
2), with 36%, 42%, 51% and 49% for the Total Counts (cps), K (cps), Th
(cps) and U (cps), respectively, but still reasonable.

Cases of zero enclosure where there is no overlap (considering the
prediction intervals) of both the fine-scaled and regional-scaled map-
ping are rare with a probability of less than 10% for all ROIs. The abun-
dance of close to zero values therefore indicates that the predictions
(with associated uncertainties) aremore-or-less similar. Allmap quality
indicators discussed here confirm or attest that intermediate wide-
ranging drive lines of about 100m in spacingwidth (and beyond) delin-
eated usingWIRES can still capture reasonably well the detail recorded
by densely spaced drive lines of 30 m in width.

To assess the similarity of the regional-scale and fine-scalemaps fur-
ther and to visualize this measure, we calculated the scaled mean
(Euclidean) distance of randomly simulated values from the distribu-
tions at each point fromboth surveys as outlined in Section 2.5, and sub-
sequently called this measure the simulated mean distance of
realisations (SMDR). Maps of the SMDR for each radiometric map
show that generally the predictions between both surveys, fine- and
regional-scaled, are relatively similar with most values close to zero
(Fig. 12). Values larger than zero would indicate dissimilarity. However,
there is a spatial pattern visible in all maps which identifies locations
where the predictions between surveys are more similar than others.
Additionally, one can also clearly locate regions in the SMDR maps of
very high similarity. These regions of high similarity are (as expected)
in similar locations for all radiometric maps (Fig. 12). More explicitly,
comparatively low SMDR values are found in the centre and across the
edges of the fine-scaled study area. These regions of high similarity
seem to coincide with the transect locations of the regional-scaled sur-
vey. As can be seen in Fig. 13, high similarity occurs where vehicle-drive
lines pass through the fine-scaled study area. This result may have been
anticipated as onewould expect the regions of drive-line transect cross-
overs to be the most similar. However, this finding also attests that the
gamma spectrometer that was used in both surveys is very reliable and
consistent with measuring the soil's radioelement content of a location
of interest.

4. Conclusions

The soil's passive gammaemissions are an invaluable asset for digital
soil mapping. We have demonstrated in the work presented here that a
‘smart’ ground-based gamma radiometric survey can be an alternative
when aerial radiometric information is not available at a desired resolu-
tion or not available at all. The sampling algorithmWIRES that was ex-
plicitly developed for this purpose proved to be successful in capturing
fine scale soil heterogeneities as its implementation is based on ancillary
information available for a location of interest. The successful imple-
mentation of WIRES was demonstrated using a range of radiometric
map quality indicators which all confirmed that the radiometric map
predictions (with associated uncertainties) from the regional-scaled
Table 3
Results of the radiometric map quality indicators (PICP = prediction interval coverage
probability).

ROI, cps PICP 1 PICP 2 Zero enclosure

Total Count 0.88 0.36 0.06
Potassium 0.94 0.42 0.03
Thorium 0.96 0.51 0.01
Uranium 0.98 0.49 0.00
and fine-scaled survey are more-or-less similar. We can therefore con-
clude that surveying a location of interest using optimal wide-ranging
transects (≥100 m transect width) is sufficient enough to capture the
soil's (heterogenic) radioelement concentration, and that a detailed
fine-scale, high resolution survey (30 m transect width) may not be re-
quired to be able to measure the variability of soil attributes.
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