
Geoderma Regional 7 (2016) 38–48

Contents lists available at ScienceDirect

Geoderma Regional

j ourna l homepage: www.e lsev ie r .com/ locate /geodrs
Mapping soil organic carbon content over New South Wales, Australia
using local regression kriging
P.D.S.N. Somarathna ⁎, B.P. Malone, B. Minasny
Faculty of Agriculture and Environment, Department of Environmental Sciences, The University of Sydney, New South Wales, Australia
⁎ Corresponding author.
E-mail address: sanjeewani.pallegedaradewage@sydn

(P.D.S.N. Somarathna).

http://dx.doi.org/10.1016/j.geodrs.2015.12.002
2352-0094/© 2015 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 26 September 2015
Received in revised form 16 December 2015
Accepted 16 December 2015
Available online 24 December 2015
Various digital soil mapping techniques ranging from simple linear models to complex machine learning tech-
niques have been employed for soil organic carbon (SOC)mapping.When SOCmapping over a large region is re-
quired, the usual approach has to employ amodel calibrated for thewhole area. An alternative is to use a series of
locally calibratedmodels to map smaller areas that collectively cover the large region of interest. The accuracy of
the SOC products generated by these two approaches can potentially vary. However, performance of whole-area
calibratedmodels versus locally calibrated models in mapping SOC of large extents has seldom been explored in
detail, particularlywith respect to the type ofmodel being employed. Our study aims to fill this gap by evaluating
the SOC prediction performance of three common models, multiple linear regression (MLR), Regression tree
model; Cubist and Support Vector Regression (SVR) that are calibrated locally and for the whole study area.
This study was carried out using eight identified local areas in New SouthWales (NSW), Australia and across the
whole state entirely. Every model was calibrated separately for each local area and for the entire state. The local
and whole-area models were validated using the same test data set over 50 realizations. In particular, local pre-
diction accuracy of whole-area calibratedmodels was compared to that of locally calibratedmodels. The models
were tested separately for the standard soil depth layers including 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm; 60–
100 cm. The results show that SVR models have a superior performance out of three tested models for all stan-
dardized depth layers. In general the local models outperform the whole-area models for all three testedmodels
with respect to the accuracy of predictions. All models displayed area specific performances proving the impor-
tance of inclusion of prevailing local conditions in SOCmodelling andmapping. Therefore,we introduce amoving
window approach where a hybrid series of locally calibrated models and a whole-area calibrated model can be
used against using one calibratedmodel for themodelling very largemapping extents.Movingwindowapproach
provides more accurate results having the lowest error compared to the whole-area model. Also it provides the
least biased predictions. Therefore, this novel approach provides a promisingway of increasing the efficiency and
accuracy of digital soil mapping.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Soil organic carbon (SOC) is one of the most researched soil proper-
ties due to its importance in agronomic sustainability (Reeves, 1997)
and carbon sequestration potential. Carbon sequestration is seen as
the best solution to reduce atmospheric carbon where both agriculture
and the environment are benefited. Consequently, several global and
national policy initiatives that revolve around the carbon sequestration
potential of SOC have come to the forefront (O'Rourke et al., 2015). A
carbon offset scheme known as the Carbon Farming Initiative (CFI) in-
stigated in Australia is a perfect example. Such programs rely on accu-
rate estimates of SOC content over the spatial extent of interest which
ey.edu.au
can be represented by a baseline SOCmap. SOCmappinghas been great-
ly benefited by Digital soil mapping (DSM). During the last decade, var-
ious DSM techniques ranging from simple linear models to complex
machine learning techniques have been employed for SOC mapping
(Minasny et al., 2013).

These techniques include, kriging (Cambule et al., 2014; Dai et al.,
2014), co-kriging (Odeh et al., 1995; Phachomphon et al., 2010), regres-
sion kriging (Mora-Vallejo et al., 2008; de Brogniez et al., 2014; Dorji
et al., 2014; Piccini et al., 2014), Linear mixed models (Rawlins et al.,
2009; Karunaratne et al., 2014), machine learning techniques such as
Artificial neural networks (Minasny and McBratney, 2002; Malone
et al., 2009; Zhao et al., 2010), Support Vector Regression (Ballabio,
2009), Regression tree models, such as Cubist (Adhikari et al., 2014;
Miklos et al., 2010; Rossel et al., 2014) and Random forests
(Wiesmeier et al., 2011; Subburayalu and Slater, 2013; Hengl et al.,
2015) and Generalised Additive Models (GAM) (Poggio et al., 2013; de
Brogniez et al., 2014).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geodrs.2015.12.002&domain=pdf
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Foregoing techniques and models can be seen employed at various
scales ranging from small farm areas to larger regional and continental
extents for SOCmapping.When the requirement is tomap SOCof a larg-
er area, the preferred approach has to use a single calibrated model to
map the entire area. Alternatively, a series of locally calibrated models
can be used to map small areas that collectively cover the large region
of interest where there is a fairly reasonable sampling density or the
usage of hybrid series of local and whole-area calibrated models for
the areas with dense and sparse observation points respectively. The
latter approach is very uncommon in DSM literature to the best of our
knowledge. These two approaches coupled with different model types
such as multiple linear regression (MLR) Cubist and Support Vector Re-
gression (SVR) could produce results that are of varying accuracies. Per-
formance of suchmodels in predicting SOCover large spatial extents has
seldom been compared with respect to whole-area and locally calibrat-
edmodels. Therefore, this study aims to examine the SOC prediction ca-
pability of MLR, Cubist and SVR with respect to local versus whole-area
model training and application. The study is carried out using eight
identified local areas for the localized studies in the state of NSW and
a whole area study covering all of NSW. Based on the results, we make
recommendations on the best combinations of model type and spatial
extent used for calibration.
2. Methods

2.1. Study area

The study area is the state of New South Wales (NSW), Australia
which covers approximately 810,000 km2. The Great Dividing Range
which runs approximately north to south in the east has amajor impact
on the State's distribution of rainfall that results in four distinct climatic
zones. The area to the west of the Great Dividing Range which repre-
sents majority of NSW has an arid to semi-arid climate. The average an-
nual rainfall for this area ranges from 150 mm to 500 mm. The climate
along the flat, coastal plain east of the dividing range varies from cool
oceanic to humid subtropical from south to far north of the state. The
area has a higher annual rainfall ranges from 800 mm to 2000 mm.
(StormyWeather, Bureau of Meteorology). About 65% of the area is oc-
cupied by grazing lands which comprises of both native and modified
pastures. The nature conservation areas which accounts for around
7.6% of the of total land use are mostly located in the eastern coastal
areas. Dry land crops occupy about 9% of the area, while about 7% of
Fig. 1. (a) Spatial distribution of the sampling points in NSW
the land isminimally used. (Catchment Scale Landuse data, Department
of Agriculture, Australia).

2.2. Data sets and data processing

2.2.1. Soil data
SOC data consists of the University of Sydney research data and the

Terrestrial Ecosystem Research Network (TERN) data that are collected
by different institutions for various purposes. Therewere 5386 observa-
tion sites in total. The data were clustered as they came from different
survey projects from 1995 to 2014. The observed SOC content is given
by the g/100 g. Since the distribution was positively skewed, the data
was log-transformed for modelling procedures. The spatial distribution
of those sampling points within the study area is shown in Fig. 1.

2.2.1.1. Harmonizing observed soil profile data. The sampling depths of
the soil profiles were different to each other. For further analysis of
data, it is imperative to have a common depth interval range across all
sampling points. Malone et al. (2009) generalized and extended the
quadratic splinemodel of Bishop et al. (1999) and formulated a smooth-
ing spline function for vertical prediction of soil properties into specified
common depth interval range.

The smoothing parameter (λ) of the quadratic spline function
(Malone et al., 2009), is a determinant of the accuracy of prediction. It
is crucial to find out the best λ value that minimizes the prediction
error. Therefore, 506 sampling points which have more than 4 layers
of measurements were selected to find out the best fitting λ value.
The weighted average of the first two layers and the third and fourth
layers were calculated to form two layers for each profile. Those values
were then used to predict SOC values for the original sampling depths
with respect to a series of λ values (0.00001, 0.0001, 0.001, 0.01, 0.1,
0.5, 1, 2, and 5). The λ value which gave the minimum mean squared
error (MSE) value was selected as the best smoothing parameter.
Then, the depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–
100 cm) corresponding to the digital soil mapping specifications of the
GlobalSoilMap project (Arrouays et al., 2014) were used as the harmo-
nized depth intervals for spatial prediction models of SOC.

2.2.2. Environmental covariates
The content and the spatial distribution of SOC in an ecosystem are

driven by the environmental factors such as climate, underlying litholo-
gy, topography, fauna and flora. Introduced by Jenny (1941), this con-
cept was generalized and formalized by McBratney et al. (2003) as the
, Australia, (b) histogram of observed SOC in log scale.
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SCORPAN model, which is the basis for contemporary digital soil map-
ping (DSM). Since the introduction of the SCORPAN spatial soil predic-
tion function (SSPF) concept, there has been a significant interest in
using the model (sorpan-SSPF) all over the world for generating soil in-
formation from sparse data sets (Lagacherie, 2008). Following SCORPAN
a number of environmental covariates were selected as the auxiliary
variables along with point data for the prediction of SOC at unsampled
locations. These environmental covariates included Landsat 7 satellite
information, average annual rainfall, average annual evapotranspira-
tion, average annual temperature, digital elevation model (DEM) and
gamma radiometric data.

2.2.2.1. Landsat 7 — 2012 image (30 m). The Landsat 7 satellite is
equipped with the Enhanced Thematic Mapper Plus (ETM+) which is
a multispectral scanning radiometer that detects 7 spectral bands
in the visible and near-infrared wavelengths. The band ratios b3/b2,
b3/b7 and b5/b7, were derived. These are more commonly referred as
soil enhancement ratios (Malone et al., 2009). Further, Normalised Dif-
ference Vegetation Index (NDVI) which is defined as the ratio between
(b4 − b3) and (b4 + b3), was also derived as an approximation to the
vegetation cover. Landsat 7 ETM+ image was taken in the year 2012.

2.2.2.2. Climatic data (90 m). The raster grids of average annual rainfall,
average annual evapotranspiration, and average annual temperature
were obtained from the Bureau of Meteorology Australia. The average
values are referred to the ten year average from year 2000–2010 for
all aforementioned climatic raster grids.

2.2.2.3. Gamma-radiometric data (90 m). The measurement of naturally
emitted gamma radiation from the ground surface is referred to
gamma radiometric data. “The most commonly detected gamma-
emitters for geophysical purposes are potassium (40K) and Thorium
(232Th) and Uranium (232U). The formation on their relative abundance
provides indirect evidence about the distribution of soil-forming min-
erals in the landscape (Cook et al., 1996)”. The gamma radiometric
data collected by Geosciences Australia was used in the study.

2.2.2.4. The digital elevationmodel (DEM) (30m). From theDEM,first and
second derivatives; slope, Topographic Wetness Index (TWI), (Beven &
Kirby, 1979) covariates were derived. Further, Multi Resolution Valley
Bottom Flatness Index (MrVBF) (Gallant and Dowling, 2003), was also
used as a DEM derived topographic index in this study. Moore et al.
(1993) provides a detailed description of how some or all of these deriv-
atives have been used to derive relationships with the spatial distribu-
tion of various soil properties.

2.2.3. Covariate layers processing and database compilation
The original raster layers from various sources were resampled to

100 × 100 m grid cell resolution using nearest neighbour resampling
method, and all layers were re-projected to a common coordinate refer-
ence system. The pixel values of the raster layers (environmental covar-
iates) that correspond to the coordinates of sampling points were
extracted and compiled in a database.

2.3. The SOC prediction models

Multiple linear regression (MLR) is a simple and frequently used
method in SOC mapping and other DSM activities (Minasny and
McBratney, 2002; Stevens et al., 2014; Phachomphon et al., 2010;
Mishra et al., 2010). Regression tree such as Cubist is also a popular tech-
nique among the DSM community used for SOC and other soil proper-
ties mapping (Lacoste et al., 2014; Rossel et al., 2014; Bui et al., 2009;
Kidd et al., 2014). The use of Support Vector Machines (SVM) models
for SOC mapping has also a growing attention (Ballabio, 2009;
Kanevski et al., 2002). Therefore, these three models were selected for
testing whether the SOC prediction capabilities of models depend on
the extent of mapping. An overview of the method of models selection
is given by Fig. 2.

2.3.1. MLR
The method used for the spatial interpolation is essentially a linear

model (LM). It is assumed that the regression function E (YǀX) is linear,
or the linearmodel is a reasonable approximation. The linear regression
model can be expressed as,

f Xð Þ ¼ β0 þ∑
p

j¼1
X jβ j ð2:2:6Þ

where β0 is the interception of the linear model, Xj represents the aux-
iliary or secondary variables or covariates and βj are the unknown coef-
ficients for the auxiliary variables and p is the number of auxiliary
variables (Hastie et al., 2001). Regression methods explore a possible
functional relationship between the primary variable (soil carbon
content) and explanatory variables (SCORPAN factors).

2.3.2. Cubist model
This is a variation of a Regression treemodel, where the prediction is

based on linear regressionmodels instead of discrete values. The Cubist
model produces a set of “if — then” rules, where each rule has an asso-
ciated multivariate linear model. Whenever a set of covariates matches
a rule's conditions, the associatedmodel is used to calculate the predict-
ed value. The algorithm was first described cryptically by Quinlan
(1992), and further clarified by Wang and Witten (1996), and Holmes
et al. (1999). Briefly, Cubist builds a “tree” by splitting the data based
on the predictors so that it minimizes the intra-subset variation in the
class (Holmes et al., 1999). Then the model associated with each rule
was computed using the conventional linear least-squares regression.
Finally, the linear model is adjusted and simplified to reduce absolute
error. Cubist has been used effectively in various soil prediction and
mapping procedures (e.g., Henderson et al., 2005; Minasny et al.,
2008; Bui et al., 2009; Rossel et al., 2014; Kidd et al., 2014).

2.3.3. Support Vector Regression (SVR)
The present form of Support Vector Machines (SVM) originated

from the work by Vapnik and co-workers developed for the classifica-
tion purposes where two classes are separated by the optimal separat-
ing hyperplane which is obtained by maximizing the margin between
classes' closest points. Support Vector Regression (SVR) is a generaliza-
tion of SVM, and used as a technique for nonlinear classification and re-
gression. The ε-SVR differs from the classic regression due to the use of
loss function to define the borders (hyperplane) of the regression func-
tion. Hence the regression function lies between± ε (maximum error).
Therefore, the loss is equal to 0 if the difference between the predicted
and measured values is less than ε. A detailed explanation of SVM and
SVR can be found in Smola and Scholkopf (2004); Wang et al.
(2009)and Ballabio (2009). It has been used in soil mapping by
Ballabio (2009) and Padarian et al. (2014).

2.4. Model training and testing

Prior to mapping, the models' performances were tested for both
whole-area and local scenarios. Firstly, theMLR, Cubist and SVMmodels
were trained and validated for the entire study area. Then, the models
were locally trained and tested for selected local regions in order to
compare thewhole-area trainedmodel performances against the locally
trained models. Model performance was evaluated using root mean
squared error (RMSE), correlation coefficient (R2) and Lin's (1989)
concordance correlation coefficient (CCC). Fig. 2 provides schematic
representation of themodel selection procedure for mapping the entire
study area using a single model.



Fig. 2. Flowchart — assessing the model performances and generation of SOC maps for different soil depth layers for NSW.
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2.4.1. Whole-area-model training and validation
Three models: MLR, Cubist, SVR were spatially trained for the

whole area. The performances of these models were tested using 50
realizations of random, 70:30 calibration: testing data splits. Accord-
ingly, each whole-area model was trained and validated for all stan-
dard depth layers independently (Fig. 2). The performance indices
were calculated for each model and for each simulation for all s-
tandard depths.
Fig. 3. Eight local regions in NSW.
2.4.2. Testing whole-area models against the local models
Most of the data points of the study area were concentrated in cer-

tain areas corresponding to the survey areas (Fig. 3). Eight such regions
were identified as the local areas, to test the whole-area calibrated
model performances against the locally calibratedmodels. Each local re-
gionwas given a name based on the location for identification purposes.
A brief description of the eight local regions is given in Table 1. The area
of the local regions ranges from 261 km2 to 13,694 km2 with data
density of 3.02 to 0.03 km−2.

Local models (MLR, Cubist, and SVR) for each local region were
also trained in a similar fashion, with 70% of data used in training
and the held back 30% was used for testing under 50 realizations. The
spatial training and 50 realizations were applied for each model and
for each local area and for each specified depth interval. Also, the perfor-
mances of all whole-area models were tested across the 50 realizations
where the same validation data set used as per in the local models
validation.

2.5. Spatial prediction of SOC for NSW

Weused two approaches for predicting the SOC content acrossNSW.
The first approach was to use a single model calibrated for the entire
study area (New South Wales) to predict the SOC content onto a
100 m grid. The second method is a novel approach where a hybrid se-
ries of local andwhole-area models are used to predict the SOC content
on to 100m grid of the entire study area usingmovingwindows, and is
hereafter referred to as the moving window (MW) approach.

2.5.1. Mapping NSW SOC content using a whole-area model
The best performing whole-area model between MLR, Cubist and

SVR was selected for the mapping of SOC. Then spatially trained
whole-area model with 70% of data was used to predict SOC content



Table 1
Local area.

Regions' given
name

Localities Area
(km2)

Number of
samples

Sampling density
(n km−2)

Lismore Clarence Valley, Richmond Valley, Lismore, Ballina, Byron and Tweed 7096 305 0.04
Kempsey Greater Taree, Port Macquarie-Hastings, Kempsey, Nambucca, Bellingen and Coffs Harbour 10,197 465 0.05
Liverpool Plains Hunter Sire, Liverpool Plains Tamworth, Gunnedah 13,694 686 0.05
Dungog Newcastle, Port Stephens, Maitland, Dungog, Great Lakes and Gloucester 5619 314 0.05
Bega Valley Bega Valley, Snowy River, Cooma-Monaro 9022 386 0.04
Goulburn Kiama, Shellharbour and inland Goulburn, Upper Lachlan Shire, Queanbeyan, and Palerang 12,425 412 0.03
Edgeroi Narrabri 1493 334 0.22
Hunter Valley Cessnock, Singleton 261 789 3.02
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at each grid node of a 100 m grid. Also the model residuals were geo-
statistically modelled to krige values of the residuals (Hengl et al.,
2004) at the same nodes of 100 m grid. Then these interpolated
residuals were added to model predictions to form the final map.

2.5.2. Moving window approach
When it comes to mapping large areas, usually the entire region is

mapped using a single model calibrated for the entire study area. As
discussed above, one could argue that at least for some local areas
such models are less accurate compared to a locally calibrated model,
though this has seldom been tested. A previous study by Sun et al.
(2012) proposed a local regression kriging approach, where by local re-
gression krigingmodelswere calibrated at each pixel or prediction loca-
tion based on a defined number of closest observations. When dealing
with areas of large extent, the approach by Sun et al. (2012) is not fea-
sible. In this study, we used a combination of whole-area model and
local models for locations where the sampling points are abundant
and sparse, respectively for the spatial prediction of SOC content across
the study area.

In this approach,first thewhole NSWwas divided into tiles with size
100 km × 100 km. The delineation of tiles had two offsets (t1, t2). “t1”
Fig. 4. Moving window
was offset 50 km north and east form the “t2”. We used these two
offsets of tiles in a way that they create overlapping areas (Fig. 4).
Then each covariate layer was spilt into 100 × 100 km tiles so that
each tile for each offset has a separate set of covariate layers. Next,
the observation data set was randomly split into 70:30 for model
training and testing of the products. Then, each tile was mapped
with a local or whole-area MLRmodel based on the number of obser-
vation points found within each window. The number of observa-
tions for each tile for modelling is a collection of the observations
within the tile and the observations from nine nearest neighbour
tiles. If the number of sampling points is greater than 50, the model
was calibrated using local observations. Otherwise, the whole-area
model was used for the predictions of the SOC in that particular
window.

When the local model was being used, the residual kriging with a
local variogram was applied (Sun et al., 2012; Whelan et al., 2003),
and prediction variance and the kriging variance were also calculated
and cumulated with the predictions and kriged residuals in order to
increase the accuracy of the final product. Residual kriging was not
applied for tiles where the whole-area model was applied, based on
the assumption that accuracy of the final product will not significantly
tile delineation.



Fig. 5. Flowchart for moving window mapping.
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improve since there are only fewer number of data points inside the
tiles. The prediction of the t1 offset was based on local model predic-
tions for 27 tiles and whole-area model predictions for 29 tiles and for
Table 2
Comparison of performance ofMLR, Cubist and SVR using 50 fold cross validations (70:30 traini
Comparison is based on log (SOC) in log (g/100 g).

MLR-whole-area Cubist-whole-a

RMSE R2 CCC RMSE

0–5 cm 0.82 ± 0.01 0.15 ± 0.06 0.26 ± 0.08 0.81 ± 0.01
5–15 cm 0.79 ± 0.01 0.16 ± 0.05 0.29 ± 0.07 0.77 ± 0.01
15–30 cm 0.92 ± 0.01 0.15 ± 0.07 0.26 ± 0.09 0.89 ± 0.01
30–60 cm 0.96 ± 0.01 0.10 ± 0.07 0.19 ± 0.10 0.94 ± 0.01
60–100 cm 0.96 ± 0.01 0.05 ± 0.08 0.10 ± 0.11 0.95 ± 0.01
Profile average 0.89 ± 0.01 0.12 ± 0.06 0.22 ± 0.09 0.87 ± 0.01
t2 offset 30 tiles were locally predicted and 20 tiles were globally pre-
dicted. Therefore, around 50% of the study area was predicted using
local models in the MW approach.
ng:validation)with standard deviation for thewhole-areamodels for all depth increments.

rea SVR-whole-area

R2 CCC RMSE R2 CCC

0.19 ± 0.05 0.35 ± 0.07 0.79 ± 0.01 0.22 ± 0.05 0.38 ± 0.06
0.20 ± 0.05 0.37 ± 0.07 0.75 ± 0.01 0.25 ± 0.04 0.41 ± 0.06
0.20 ± 0.06 0.35 ± 0.08 0.88 ± 0.01 0.23 ± 0.05 0.39 ± 0.07
0.15 ± 0.07 0.27 ± 0.09 0.93 ± 0.01 0.16 ± 0.06 0.30 ± 0.09
0.08 ± 0.07 0.18 ± 0.10 0.93 ± 0.01 0.11 ± 0.07 0.22 ± 0.09
0.16 ± 0.06 0.30 ± 0.08 0.86 ± 0.01 0.20 ± 0.06 0.34 ± 0.08



Fig. 6. Validation between measured and predicted SOC values for the whole-area models for the 0–5 cm, 5–15 cm depth intervals.
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To create a map for each offset, all tiles from each offset were
mosaiced together. Then the mosaiced SOC maps from each offset
were averaged to produce the final output of movingwindowmapping.
This process was repeated to produce SOC maps for all standardized
depth layers. Then SOC maps for each depth were validated using the
30% validation data set. Fig. 5 provides an overview of the moving win-
dow approach that has been used in our study.
Table 3
Average values of performance indicators alongwith its standard deviation (SD) of the local vali
of R2 values, (c) comparison of CCC values.

(a).

Average RMSE with SD MLR-local MLR-whole-area Cubis

Lismore 1.07 ± 0.07 1.21 ± 0.03 1.02 ±
Kempsey 0.99 ± 0.01 1.17 ± 0.02 0.98 ±
Liverpool Plains 0.66 ± 0.03 0.81 ± 0.01 0.67 ±
Dungog 0.89 ± 0.05 0.94 ± 0.02 0.83 ±
Bega Valley 0.97 ± 0.02 1.15 ± 0.02 0.96 ±
Goulburn 0.78 ± .03 0.85 ± 0.02 0.72 ±
Edgeroi 0.46 ± 0.02 0.58 ± 0.02 0.47 ±
Hunter Valley 0.60 ± 0.01 0.63 ± 0.01 0.59 ±

(b).

Average R2 with SD MLR-local MLR-whole-area Cubist-l

Lismore 0.02 ± 0.03 0.02 ± 0.01 0.03 ±
Kempsey 0.03 ± 0.01 0.02 ± 0.01 0.04 ±
Liverpool Plains 0.07 ± 0.01 0.09 ± 0.01 0.06 ±
Dungog 0.08 ± 0.01 0.11 ± 0.01 0.06 ±
Bega Valley 0.08 ± 0.01 0.06 ± 0.01 0.07 ±
Goulburn 0.03 ± 0.01 0.07 ± 0.01 0.04 ±
Edgeroi 0.14 ± 0.02 0.06 ± 0.01 0.12 ±
Hunter Valley 0.05 ± 0.01 0.04 ± 0.01 0.05 ±

(c).

Average CCC with SD MLR-local MLR-whole-area Cubist-

Lismore 0.06 ± 0.01 0.05 ± 0.01 0.06 ±
Kempsey 0.08 ± 0.01 0.03 ± 0.01 0.09 ±
Liverpool Plains 0.16 ± 0.01 0.14 ± 0.01 0.12 ±
Dungog 0.18 ± 0.02 0.16 ± 0.01 0.15 ±
Bega Valley 0.19 ± 0.01 0.02 ± 0.01 0.16 ±
Goulburn 0.09 ± 0.02 0.11 ± 0.01 0.07 ±
Edgeroi 0.28 ± 0.02 0.11 ± 0.01 0.24 ±
Hunter Valley 0.13 ± 0.01 0.05 ± 0.01 0.10 ±
3. Results and discussion

3.1. Best smoothing parameter

For continuous soil depth functions, λ value of 0.01 gave the lowest
corresponding MSE among the tested λ values. State-wide average
SOC% values predicted for the harmonized depth intervals (0–5 cm,
dation of thewhole-area and localmodels: (a) Comparison of RMSE values, (b) comparison

t-local Cubist-whole-area SVR-local SVR-whole-area

0.07 1.12 ± 0.03 0.98 ± 0.04 1.08 ± 0.03
0.01 1.10 ± 0.02 0.95 ± 0.01 1.07 ± 0.02
0.01 0.80 ± 0.01 0.66 ± 0.01 0.75 ± 0.01
0.02 0.92 ± 0.02 0.78 ± 0.02 0.91 ± 0.02
0.02 1.10 ± 0.02 0.94 ± 0.02 1.06 ± 0.02
0.02 0.85 ± 0.02 0.71 ± 0.02 0.81 ± 0.02
0.02 0.56 ± 0.02 0.43 ± 0.02 0.51 ± 0.02
0.01 0.59 ± 0.01 0.58 ± 0.01 0.57 ± 0.01

ocal Cubist-whole-area SVR-local SVR-whole-area

0.02 0.07 ± 0.02 0.04 ± 0.02 0.07 ± 0.02
0.01 0.12 ± 0.02 0.06 ± 0.01 0.18 ± 0.02
0.01 0.07 ± 0.01 0.08 ± 0.01 0.16 ± 0.01
0.01 0.15 ± 0.02 0.12 ± 0.01 0.19 ± 0.01
0.01 0.13 ± 0.01 0.10 ± 0.01 0.20 ± 0.01
0.01 0.08 ± 0.01 0.07 ± 0.01 0.14 ± 0.01
0.02 0.12 ± 0.02 0.20 ± 0.02 0.25 ± 0.02
0.01 0.05 ± 0.01 0.08 ± 0.01 0.08 ± 0.01

local Cubist-whole-area SVR-local SVR-whole-area

0.01 0.20 ± 0.03 0.09 ± 0.01 0.23 ± 0.02
0.01 0.19 ± 0.02 0.13 ± 0.01 0.24 ± 0.01
0.01 0.13 ± 0.01 0.17 ± 0.01 0.27 ± 0.01
0.02 0.22 ± 0.02 0.21 ± 0.02 0.26 ± 0.02
0.01 0.05 ± 0.01 0.21 ± 0.01 0.04 ± 0.01
0.01 0.17 ± 0.02 0.14 ± 0.01 0.25 ± 0.01
0.02 0.19 ± 0.02 0.32 ± 0.02 0.34 ± 0.02
0.01 0.09 ± 0.01 0.18 ± 0.01 0.13 ± 0.01



Table 4
Comparison of different mapping approaches using RMSE.

RMSE SVR whole-area model
(100 m)

SV regression kriging
(100 m)

Moving window MLR
(100 m)

Moving window MLRegression kriging
(100 m)

TERN national grid
(100 m)

ISRIC
SoilGrid1k

0–5 cm 0.81 1.07 0.76 0.74 0.93 0.97
5–15 cm 0.73 0.91 0.73 0.71 0.77 0.81
15–30 cm 0.87 0.87 0.79 0.77 1.32 1.14
30–60 cm 0.91 1.10 0.89 0.88 0.96 1.13
60–100 cm 0.95 1.44 0.90 0.89 0.99 1.15
Profile average 0.85 1.08 0.81 0.80 0.99 1.04
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5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm) using this λ value were
3.00, 2.37, 1.50, 0.85, and 0.57% respectively.

3.2. Model training and validation

3.2.1. The best predictive whole-area model
The calculated RMSE, R2, and CCC values along with their standard

deviation based on the 50 realizations show that SVR has the best
predictive capabilities across all depth layers, while MLR displayed the
least accuracy (Table 2).

Considering the layer-wise prediction, allmodels performed the best
for the top three depth intervals. Between the three layers, the models
have predicted SOC content in the 5–15 cm depth interval with the
greatest accuracy. Scatter plots given in Table 2 illustrate this further,
and highlight the superiority of SVR. Also, it is important to note
that the prediction accuracy subsides for all three models when the
prediction depth increases.
Fig. 7. Zoomed-inmaps for local clusters, (a) whole-area SVR SOCmap of 5–15 cm for Hunter V
5–15 cm for Edgeroi, (d) local MLR SOC map of 5–15 cm for Edgeroi.
The profile average RMSE of all three whole-area models is more or
less similar. This implies that the MLR, Cubist, and SVR whole-area
models have similar prediction capabilities in terms of the prediction
accuracy. However, with regard to both accuracy and the precision of
the predictions, SVR whole-area model stands out since it has compar-
atively higher CCC value (34% ± 8%) than MLR (22% ± 6%), and Cubist
(30% ± 8%). Fig. 6 further confirms that SVR model predictions also
have stronger agreement with the observed values than the other two
models. Therefore, SVR whole-area model was selected as the best
performing whole-area model for the spatial prediction of SOC across
the NSW.

3.2.2. Testing whole-area models against the local models
The RMSE values for all three local model types are constantly

smaller than respectivewhole-areamodels (Table 3). Thus, the accuracy
of local model predictions is higher than the whole-area model
predictions. Further, all model predictions are comparable in terms of
alley, (b) local MLR SOCmap of 5–15 cm for Hunter Valley, (c) whole-area SVR SOCmap of
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prediction accuracy, though the SVR-local models perform slightly bet-
ter than other models for all local areas.

However R2 values of SVR-whole-area models are higher than the
respective local SVR models for all local regions except for Hunter
Valley, while Cubist and MLR models have mixed results. Kempsey,
Bega Valley, Edgeroi and Hunter Valley areas display slightly higher
agreement (R2) between predictions and observed values for local
MLR models than the respective MLR-whole-area models. Cubist-
whole-area models have a better fit with the observed data for all
local regions except Edgeroi and Hunter Valley which are having the
similar R2 values for both local and whole-area Cubist models.

The CCC values for MLR local models are greater than the respective
MLR-whole-area models for all local regions whereas Cubist and SVR
are having mixed results. CCC for Cubist local models for regions Bega
Valley, Edgeroi, and Hunter Valley are higher than the Cubist-whole-
areamodels.Most of the local areas except Goulburn andHunter Valley,
SVR-whole-area models have comparatively higher CCC. Overall, these
results imply that locally calibrated models display a slightly better
fit with the data though the whole-area model performances are
comparable.

Throughout this validation process we also noted that the local re-
gions are having area specific performances. In comparison between
both local and whole-area model validations, Lismore, Kempsey, and
Bega Valley areas exhibit a lower predictability, while Dungog, Edgeroi
and Hunter Valley have a higher degree of accuracy of predictions
despite the prediction model used. This confirms the dependency of
model performance on local attributes in testing and training.

Therefore, these results imply that the importance of using local
models whenever possible in DSM. Thus, we introduced the MW ap-
proach where we used a hybrid series of local and whole-area models
to map the entire study area.
Fig. 8. SOC maps for the top two 0–5 cm, 5–15 cm standard depth layers; (a, b) SVR
3.3. NSW SOC mapping and validation

Given that a) SVR has the highest overall performance, b) MLR has
the highest sensitivity to local conditions, and c) it is always better to
start with the most simple method when testing a new scenario, a hy-
brid series of locally andwhole-area calibratedMLR andwhole-area cal-
ibrated SVR were used separately to map SOC of entire NSW. The
moving window approach was used as opposed to mapping the entire
state at once. Generated maps from both scenarios show a similar spa-
tial pattern of SOC distribution within the state (Fig. 8). It can be clearly
seen that the pattern is highly correlated with the climatic, lithological,
biological and anthropogenic factors of the state (Rossel et al., 2014).
Climate is described as themost influential factor over the state as it de-
termines productivity of biomass and the rate of decomposition of SOC
(Wynn et al., 2006; Bui et al., 2009). This pattern is reflected through the
generatedmapswhere humid coastal areas have a higher percentage of
SOC and it is gradually decreasing towards the arid central desert area.
Considering the vertical distribution of SOC, the spatial distribution
shows a similar pattern. There are artefacts of margins of windows in
the moving window product and this effect is seen on tiles where the
local models are being applied. This can be due to the lack of observa-
tions and covariate effects on the local models which are specific for
each window.

The validation of SOC whole-area model mapping approach and
the moving window approach shows that the MW approach pro-
duces more accurate predictions than the whole-area model. Also,
it is clearly seen that the incorporation of residual kriging has im-
proved the accuracy of the product in the MW approach (Table 4).
The SVR whole-area model was also tested with the addition of re-
sidual kriging. However, the accuracy of SVR whole-area model pre-
dictions seems to diminish with the addition of residual kriging. This
whole-area model products and (c, d) MLR kriging–moving window products.



Fig. 9. Boxplots comparison of predicted SOC% of various map products with the observed
data.
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can be due to the non-stationary and patchy nature of the sample
point data.

We also looked into zoomed-in maps of local areas. These maps
show that those local models outperformed whole-area models. Fig. 7
depicts maps that are zoomed-in on the Hunter Valley and Edgeroi.
The Hunter Valley local model product shows a more detailed appear-
ance than the whole-area model product. It is proven by lower RMSE
(0.53) for MLR local than the RMSE of SVR whole-area model (0.58)
and Edgeroi is also having a lower RMSE for MLR local (0.41), than the
SVR whole-area model (0.50). The higher accuracy for local areas can
be due to the benefit gained by the local models with the residual
kriging in moving window where the data are fairly stationary and
evenly covering the covariate space. Therefore, for the areas with fairly
high sampling density, the local model seems to be more accurate
(Whelan et al., 2003) as expected. Since it is proven that the SVRmodels
perform better than MLR models, the usage of SVR model in moving
window approach may further increase the accuracy of the product.

Finally we compare our mapping approaches with maps that were
produced at continental and global extents, i.e. the Soil and Landscape
Table 5
Comparison of different mapping approaches using Mean Error (ME).

ME SVR whole-area model
(100 m)

SV regression
kriging

Moving window
MLR

0–5 cm −0.07 0.74 0.02
5–15 cm -0.03 0.52 0.01
15–30 cm 0.05 -0.05 0.01
30–60 cm 0.02 -0.64 0.05
60–100 cm -0.01 -1.08 0.01
Grid National Soil Attributes (90 m) map which is known as TERN
grid (Rossel et al., 2014) and SoilGrids1k (Hengl et al., 2014). The
TERN grid presents the mass fraction of carbon by weight in the less
than 2 mm soil material which is given as SOC% (g 100 g−1). These
maps have been produced using Cubist models with kriging of resid-
uals; The SoilGrids1k is a product of General Linear Models (GLM's)
with log-link function. The SoilGrids1k presents the SOC content in
mid-depth of the standard GlobalSoilMap layers in g kg−1 of soil. The
calculated RMSE for the validation data set shows (Tables 4 and 5)
that the MW approach outperforms all other products and SVR whole-
area model performance is also better than the TERN and SoilGrids1k
grid. When the Mean Error (ME) which is the average difference of
the sum between observed and predicted values, is considered the
TERN and SoilGrids1k tend to have negative values indicating over pre-
diction bias. The localmodel shows thatME values close to zero indicate
the least biased predictions.

Further, we compared the distribution of 30% test data for the vari-
ousmapproductswith the observed data (Fig. 9).MW-MLRKprediction
distribution closely matches the observed data. Also MW-MLRK has a
smaller prediction variance compared to TERN and SoilGrid1k predic-
tions. SVR model has the least prediction variance, as it is a single
model applied for the whole area. The TERN prediction over predicts
with the highest prediction variance as it is an ensemble of 100 boot-
strap realizations. Meanwhile SoilGrid1k under predicts.
4. Conclusions

Overall, this study reveals that SVR models perform the best at
predicting SOC at both whole-area and local extents across all depth in-
tervals. The performance of Cubist is slightly below the SVR at both local
and whole-area extents. MLR showed the least prediction powers in
general.

Nevertheless, all three models were equally sensitive to local condi-
tions, resulting in higher prediction accuracy for some local areas and
lower accuracy for some other areas. Area specific unaccounted covari-
ates in modelling could partly explain this behaviour. This study also
confirms the previous research finding that the performance of models
constricts when the depth of the prediction increases irrespective of the
type of model used.

This study also reveals that the performance of models in mapping
SOC can vary considerably depending on the type of model, the extent
at which the model is trained, and the depth and extent of mapping.
We recommend the use of locally calibrated models for areas with
high sampling density, and whole-area calibrated models for areas
with low sampling density. The moving window approach presented
in this study can be used to map SOC of large areas using a hybrid of
locally and whole-area calibrated models. Also, this moving window
approach considerably reduces the computational time required to
map SOC of large areas especially when the residual kriging is accompa-
nied. It also improves the product accuracy and provides least biased
predictions. There are artefacts produced by the moving window ap-
proach because of the un-even data distribution over space. Future
work will attempt to merge the locally calibrated with the whole-area
maps based on their uncertainty of prediction (Malone et al., 2011).
Moving window MLRegression kriging
(100 m)

TERN national grid
(100 m)

ISRIC SoilGrid
(1 km)

0.03 −0.44 0.04
0.02 -0.19 0.00
0.00 -0.75 -0.31
0.04 -0.26 -0.48
-0.01 -0.28 -0.35
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