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• INLA-SPDE used to predict skewed and
non-skewed environmental variables.

• The model performance of INLA-SPDE
was equivalent to REML-LMM.

• INLA-SPDEwas able to estimate the pdfs
of model parameters and responses.

• INLA-SPDEwas as robust as REML-LMM
with sparse datasets (e.g. 40–60).

• INLA-SPDE can be applied in environ-
mental monitoring and management.
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Understanding the uncertainty in spatial modelling of environmental variables is important because it provides
the end-users with the reliability of the maps. Over the past decades, Bayesian statistics has been successfully
used. However, the conventional simulation-based Markov Chain Monte Carlo (MCMC) approaches are often
computationally intensive. In this study, the performance of a novel Bayesian inference approach called Integrat-
ed Nested Laplace Approximation with Stochastic Partial Differential Equation (INLA-SPDE) was evaluated using
independent calibration and validation datasets of various skewed and non-skewed soil properties andwas com-
pared with a linear mixed model estimated by residual maximum likelihood (REML-LMM). It was found that
INLA-SPDE was equivalent to REML-LMM in terms of the model performance and was similarly robust with
sparse datasets (i.e. 40–60 samples). In comparison, INLA-SPDE was able to estimate the posterior marginal dis-
tributions of themodel parameters without extensive simulations. It was concluded that INLA-SPDE had the po-
tential to map the spatial distribution of environmental variables along with their posterior marginal
distributions for environmental management. Some drawbacks were identified with INLA-SPDE, including arte-
facts of model response due to the use of triangle meshes and a longer computational time when dealing with
non-Gaussian likelihood families.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the uncertainty in spatial modelling is important be-
cause it provides the end-users with the reliability of the maps
(McBratney, 1992; Bishop et al., 2006; Minasny and McBratney, 2016;
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Rong et al., 2017). Over the past decades, various sources of uncertainty
have been identified associated with the spatial models, input data, an-
alytical errors and instrumental noises (Heuvelink et al., 2006; Nelson
et al., 2011; Chen et al., 2014).Much effort has been taken to understand
and minimise the analytical errors (Viscarra Rossel and McBratney,
1998) and instrumental noises (Sudduth et al., 2001; Nelson et al.,
2011; Huang et al., 2015; Huang et al., 2017a).

In terms of the uncertainty in the spatial models, Bayesian statistics
has been successfully used (D'Or and Bogaert, 2003; Zhou et al., 2004;
Douaik et al., 2005; Kavetski et al., 2006; Brus et al., 2008; Yang et al.,
2009; Minasny et al., 2011; Liang et al., 2016). Compared with the
frequentist statistics which assumes the model parameters to be deter-
ministic, the Bayesian inference approach considers themodel parame-
ters as probabilistic variables with joint posterior probability density
functions (pdfs) and can be used to incorporate external information
(Gelman et al., 2004). The use of posterior pdfs alsomakes Bayesian sta-
tistics easier to account for the uncertainty in variance components of
predictive models compared to a frequentist approach (Diggle et al.,
1998).

To obtain the posterior distribution of model parameters,
simulation-based approaches such as Markov Chain Monte Carlo
(MCMC) simulation are common. However, this type of approach is
computationally intensive (Minasny et al., 2011; Milledge et al., 2012).
An alternative numerical approximation approach, called the Integrated
Nested Laplace Approximation (INLA), has recently been proposed (Rue
et al., 2009). Unlike MCMC, INLA allows relatively fast Bayesian infer-
ence by using numerical approximations to the marginal density for
the hyper-parameters and latent variables (Ryan et al., 2016). When
combined with a Stochastic Partial Differential Equation (SPDE) for
modelling the spatial correlation, INLA-SPDE has shown advantages in
various fields, including spatio-temporal diseases mapping
(e.g., Schrödle and Held, 2011;Musenge et al., 2013) and spatial model-
ling of environmental variables associated with large data (e.g. Eidsvik
et al., 2012; Poggio et al., 2016).

However, few researchers have evaluated the performance of INLA-
SPDE using independently collected calibration and validation datasets
and the performance of INLA-SPDE on the sparse environmental
datasets has been little studied. To further evaluate the potential use
and application of INLA-SPDE inmodelling andmapping environmental
variables, the aims of this studywas tri-fold; 1) tomap the spatial distri-
bution of various skewed andnon-skewed soil properties and elemental
data and estimate their posterior marginal distributions using INLA-
SPDE; 2) to compare themodel performance of INLA-SPDE with a com-
monly used linear mixed model estimated by residual maximum likeli-
hood (REML-LMM) using independent calibration and validation
datasets that were collected by stratified random sampling; 3) to evalu-
ate the robustness of INLA-SPDE and REML-LMMon the sparse datasets.

2. Materials and methods

2.1. Study area

The study area is located in the E. J. HoltsbaumAgricultural Research
Station, also known as the Nowley farm. It covers an area of approxi-
mately 2300 ha (Fig. 1). The town Nowley is located on the North
West Slopes and Plains of New SouthWales, Australia. Themean annual
maximumandminimum temperatures are 24.6 and 12.2 °C, respective-
ly, and the annual precipitation is on average 636.9 mm (BOM, 2016).

On the upper slopes and at the eastern end of the property, shallow
and stony soils fromweathered basalt are present. These soils grade into
deeper and dark-coloured Vertosols (World Reference Base equivalent
Vertisols, Soil Taxonomy equivalent Udic Haplusterts) in the upper
mid-slope and mid-slope positions. Also prominent in these mid-slope
positions are texture-contrast Chromosols (World Reference Base
equivalent Luvisols, Soil Taxonomy equivalent Udic Rhodustalfs),
while in the lower slope positions poorly drained, grey-brownVertosols
(World Reference Base equivalent Vertisols, Soil Taxonomy equivalent
Sodic Gypsiusterts), and texture-contrast Sodosols (World Reference
Base equivalent Solonetz, Soil Taxonomy equivalent Aquic-Arenic
Natrustalfs) are present (Stockmann et al., 2016). The eastern parts of
the farm are dominated by native vegetation while western parts are
mainly used for cropping.

2.2. Ancillary data collection

The farm was initially surveyed using an on-the-go proximal soil
sensing system in 2004. Information on the locations was recorded au-
tomatically along with the elevation data using a Real-Time Kinetic
Global Positioning System. The approximate spacing of the proximal
survey lines was 20 m. Airborne gamma-ray radiometrics data were
also obtained from the Department of Mineral Resources, New South
Wales, Australia. The elevation and gamma radiometrics data were in-
terpolated on a regular 10 m × 10 m grid using kriging with local
variograms. Based on the elevation data, slope and topographicwetness
index (TWI) were calculated using SAGA GIS (Conrad et al., 2015).

Soil sampleswere collected and analysed for soil pH and carbon con-
tent in the 2004 survey. Initial digital soil maps of total soil carbon per-
centage (soil C) and pH, along with their uncertainties, were generated
using the regression kriging approach (De Gruijter et al., 2016). These
initial maps of soil C and pHwere only used for guiding the yet to be de-
scribed sampling design, and should not be confused with the maps of
predicted soil C and pH using INLA-SPDE or REML-LMM approach
which will be discussed below.

2.3. Soil sampling and laboratory analysis

2.3.1. Soil sampling design
Independent calibration and validation datasets need to be collected.

A stratified random sampling design was generated using the initial
maps of carbon and pH as inputs to the Ospats algorithm (De Gruijter
et al., 2015), which optimised spatial stratification. The first sampling
design was based on the initial map of pH and was called dataset A.
The second sampling design was based on the initial map of carbon,
andwas called dataset B. The sampling campaignwas conducted in Feb-
ruary 2014, with 60 sites in each data set located using a handheld GPS
and samples were collected from the top 7.5 cm. In addition, at each of
thepre-determined sites, an extra samplewas located 1m from thepre-
determined location in a random orientation to account for the short-
range variability. Thus the total number of samples is 120 in both
dataset A & B.

Fig. 2a shows the location of the 120 sample site locations which
were used for calibration (dataset A) and the 120 samples that were
available for validation (dataset B). These calibration and validation
datasets were used for evaluating the SPDE-INLA and REML-LMM
models for predicting total soil Fe, Ca, K, Ti/Zr ratio and pH.

2.3.2. Laboratory analysis
All samples were taken back to the laboratory, air-dried, crushed,

and passed through a 2-mm sieve. Soil pH (1:5 soil to water) was mea-
sured. Soil C were analysed using the dry combustion method with the
CNS analyser (Vario Max Analyser, Hanau, Germany). A portable XRF
was used to measure the elemental concentration of the soil samples.
The portable X-ray Fluorescence spectrometer (pXRF) (Olympus Delta
TA Premium pXRF analyses; Olympus, Centre Valley, PA, USA) was
used to measure total concentrations of ~40 elements in the soil sam-
ples. Each sample was scanned under three beams (50 kV, 40 kV, and
15 kV) with five replicates, and its average value was used as the mea-
sure of total elemental concentrations.

Prior to taking pXRF measurements, the instrument was calibrated
using an Alloy 316 stainless steel calibration check standardization cou-
pon, containing 16.13% Cr, 1.78%Mn, 68.76% Fe, 10.42% Ni, 0.20% Cu and
2.10% Mo, and the scanning of a Si blank to detect potential



Fig. 1. Location of Nowley with reference to the position within Australia and proximity to Gunnedah, NSW, the nearest regional centre. Note: Field boundaries were overlaid upon the
aerial photo of Nowley.
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contamination on the pXRFmeasurement window. The performance of
the pXRF instrument was verified using a range of NIST soil standards
with varying elemental concentrations (SRM 2709, SRM 2710, and
SRM 2711a). Performance results of NIST SRM 2709, San Joaquin soil,
for the elements of interest in this study were (pXRF reported/NIST cer-
tified [recovery]): K, 20,300/18,854 mg kg−1 [1.08]; Ca, 18,900/
19,581 mg kg−1 [0.97], Mn 538/527 mg kg−1 [1.02]; Ti, 3420/
3341 mg kg−1 [1.02]; Zr, 160/123 mg kg−1 [1.30]; Si, 29.66/27.84%
[1.07]; Al, 7.5/6.56% [1.14]; Fe, 3.5/3.84% [0.91].
2.3.3. Selecting the environmental variables and covariates
For the purposes of this study, several key soil elements were inves-

tigated, including K (%), Ca (%), and Fe (%). In addition, Ti and Zr were
studied which characterise the immobile elements. The Ti/Zr ratio was
used because this ratio may indicate the source and nature of parent
material (Stockmann et al., 2016).With regard to soil pH and elemental
concentrations (i.e., K, Ca, Fe and Ti/Zr ratio), dataset A (120 samples)
were used to calibrate the spatial models (shown as solid circles in
Fig. 2a), and dataset B (120 samples) used for validation (shown as hol-
low circles in Fig. 2a).

Soil C was also selected as it indicated soil fertility and land suitabil-
ity (Li et al., 2015a; Huang et al., 2017b). In terms of predicting soil C,
due to budget constraints, only 80 samples from dataset B were
analysed for soil C content. These 80 samples were used to calibrate
the spatial model (shown as solid circles in Fig. 2b). For validation, an-
other 51 samples froman independent design-based sampling conduct-
ed in 2015 (De Gruijter et al., 2016) were included and analysed for
carbon content (shown as hollow circles in Fig. 2b). It was called dataset
C and it was only used as a validation set for soil C.

For the sake of brevity, only elevation, slope, TWI and
Gamma potassium of the gamma radiometrics data (Gamma-K) were
considered as cov0ariates for predicting various soil properties using
INLA-SPDE and REML-LMM.
2.4. INLA-SPDE

Consider a random field Xwith realisations at locations s1, s2,…, sn:
X(s1), X(s2), …, X(sn) which are normally distributed with 0 mean and
joint covariancewhich can be represented as aMatérn covariance func-
tion:

Cov Xðsið Þ;X sj
� �Þ ¼ σ2

eδij þ
σ2

x

2v−1 Γ vð Þ
κ jjsi−s jjj
� �vKv κjjsi−s jjj

� � ð1Þ

where ∣∣si−sj ∣∣ is the Euclidean distance between two points si and sj, σx
2

is the variance, κ is a scale parameter, v is a smoothness parameter, Kv is
the modified Bessel function of the second kind, and Γ is the Gamma
function (Minasny and McBratney, 2005). The Matérn function also
has a noise variance σe

2 (i.e. the nugget effect) and δij is the Kronecker
delta: δij=0 when i= j ;δij=1 when i≠ j.

The SPDE is based on the representation of the Matérn covariance
function as a solution to the following function (Lindgren et al., 2011):

κ2−Δ
� �ω=2

X sð Þ ¼ W sð Þ; s∈ℝ2; ð2Þ

where X(s) is the random environmental variable at location s, W(s) is
white noise, Δ is the Laplace operator ∂2/∂s12+∂2/∂s22 (s1 and s2 repre-
sent the coordinates in the two-dimensional space),ω is a positive inte-
ger related to the smoothness parameter v andω=v+1 (Lindgren and
Rue, 2015). In this study v=0.5. Thismade theMatérn function become
an exponential covariance function andω value became1.5. Further, the
SPDEmakes an approximation of the continuous variable X(s) as piece-
wise linear functions and this produces substantial computational ad-
vantages (Blangiardo et al., 2013). Detailed descriptions about the
basis functions and the approximation process can be found in
Simpson et al. (2012) and Blangiardo et al. (2013).

The objectives of the Bayesian computation are the marginal poste-
rior distributions for each of the elements of the parameters vector and



Fig. 2. a) Locations of soil sampling sites for a) total soil Fe, Ca, K, Ti/Zr ratio, pH and b) total
soil carbon (C) across the study area; c) themesh constructed using the calibration points
shown in Fig. 2a. Note: Calibration and validation points were marked in solid and hollow
circles in Fig. 2b and c and in red and green circles in Fig. 2d, respectively.
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for each element of the hyper-parameters vector. These marginal
posterior distributions were estimated based on Bayes' theorem
using integrated nested Laplace approximation (INLA) method in-
troduced by Rue et al. (2009). The INLA approach exploits the as-
sumptions of the model to produce a numerical approximation to
the posteriors of interested parameters, based on the Laplace ap-
proximation (Tierney and Kadane, 1986). Details about the theory
and implementation of INLA-SPDE can be found in Rue et al.
(2009), Martins et al. (2012), Blangiardo et al. (2013) and Krainski
et al. (2016). INLA-SPDE was carried out using the R Package R-
INLA (http://www.r-inla.org/) implemented in the R software (R
Core Team, 2017).
Here, the steps of INLA-SPDE were described as follows.

1) Construct non-convex hull meshes. Because the spatial correlation
structure for the SPDE part of the model was defined by the meshes
and evaluated at the mesh discretisation points (Lindgren and Rue,
2015), meshes were needed for the calibration and validation
datasets and for the whole prediction grid (10 m spacing). Herein,
the Constrained Refined Delaunay Triangulation was used with the
“inla.mesh.2d” function. The maximum triangle edge lengths were
set to be 4 km in the inner domain and in the outer extension.
These values were empirically determined so triangles were as reg-
ular as possible in size and shape (Krainski et al., 2016). Additionally,
aminimumdistance between pointswas empirically set to be 300m
to avoid small triangles as suggested by Krainski et al. (2016).

Although increasing the number of triangles in themeshwill slightly
increase the model performance, it did not generate better modelling
results based on our leave-one-out cross-validation results. Therefore,
a denser mesh suggested by Poggio et al. (2016) was not used. The
mesh constructed using dataset A and the corresponding 60 extra sam-
ples was shown in Fig. 2c.

2) Calculate a projection matrix. Because the SPDE model was defined
on the mesh, the process at the mesh vertices required to be
projected to the locations response. Details about the calculation of
the projector matrix can be found in Lindgren (2012).

3) Define an SPDE model based on the mesh of the calibration dataset.
Here the Matérn correlation function was used which was available
in R-INLA (see Eq. 1).

4) Construct a hierarchical model. According to Krainski et al. (2016),
the hierarchicalmodel implemented in INLA-SPDE includes three ef-
fects (i.e. intercept, the fixed effect, and random effect) and can be
expressed as follows:

y ¼ α þ FTβþ X; ð3Þ

where y is themodel response (e.g. soil pH),α is the intercept, F is ama-
trix of fixed effects or covariates (e.g., elevation, slope, TWI andGamma-
K) with coefficients β. As defined in Eq. 1, X is the latent Gaussian field,
used tomodel the random effect. The hyperparameters θ=(θ1,θ2), con-
trol the latent Gaussian field and/or the likelihood of the variables (Rue
et al., 2016). θ1 is the logarithm of the ‘local variance parameter’ τ such
that the variance σ2

x ¼ 1
4πτ2κ2; θ2=log(κ).For reference of the various la-

tent models used to model the latent Gaussian field (X), readers can re-
fer to the following link (http://www.r-inla.org/models/latent-models).

5) Fit the hierarchical model. The likelihood family of the probability
distribution of the model response needed to be defined. Herein,
two likelihood families (i.e. Gaussian and log-normal) were com-
pared for all soil properties because they accounted for the distribu-
tions of most of the soil properties. In the current version of INLA-
SPDE, the log-normal family simply implements log-
transformation of the model response (i.e. soil properties) for the
modelling process (http://www.math.ntnu.no/inla/r-inla.org/doc/
likelihood/lognormal.pdf).

6) Select the optimal linear covariates. To determine the optimal com-
bination of covariates for the fixed effects, a full INLA model was
firstly fitted with all covariates (i.e., elevation, slope, TWI, and
Gamma-K). Then each of the covariateswas dropped in turn. Follow-
ing Rue et al. (2009), the deviance information criterion (DIC) of the
full model and the reduced models was calculated. A covariate was
dropped if the reducedmodel excluding this covariate had a smaller
DIC value than the full model and other reduced models. Subse-
quently, each of the remaining covariates was dropped in turn.
Then the DIC values were calculated and another covariate was
dropped based on the same criteria. The process continued until

http://www.r-inla.org
http://www.r-inla.org/models/latent-models
http://www.math.ntnu.no/inla/r-inla.org/doc/likelihood/lognormal.pdf
http://www.math.ntnu.no/inla/r-inla.org/doc/likelihood/lognormal.pdf


Table 2
Pearson's correlation coefficient (r) between various soil properties and ancillary data for
the calibration and validation datasets. Note: *, b0.05; **, b0.01, ***, b0.001.

Num. Gamma-K Elevation Slope Topographic wetness index

Calibration
K 120 0.89*** 0.59*** 0.39*** −0.39***
Ca 120 0.66*** 0.78*** 0.63*** −0.54***
Fe 120 0.87*** 0.84*** 0.68*** −0.55***
Ti/Zr 120 0.66*** 0.78*** 0.67*** −0.50***
pH 120 0.63*** 0.53*** 0.37*** −0.40***
C 80 0.53*** 0.53*** 0.56*** −0.48***

Validation
K 120 0.89*** 0.58*** 0.33*** −0.51***
Ca 118 0.78*** 0.78*** 0.65*** −0.52***
Fe 120 0.92*** 0.81*** 0.65*** −0.59***
Ti/Zr 120 0.82*** 0.74*** 0.60*** −0.58***
pH 120 0.57*** 0.43*** 0.34*** −0.28***
C 51 0.78*** 0.66*** 0.51*** −0.51***

Table 1
Summary statistics of measured soil properties for calibration and validation sets.

Dataset N Min Mean Median Max SD Skewness CV (%)

Calibration
K (%) A 120 0.2 0.5 0.4 2.5 0.3 3.2 60.0
Ca (%) A 120 0.0 0.5 0.2 2.2 0.5 1.4 114.8
Fe (%) A 120 0.4 3.7 2.8 9.9 2.7 0.7 72.9
Ti/Zr A 120 0.001 0.002 0.002 0.006 0.001 1.5 43.6
pH A 120 4.9 6.4 6.3 8.3 0.8 0.4 13.1
C (%) B 80 0.7 1.8 1.4 9.2 1.3 3.5 68.8

Validation
K (%) B 120 0.2 0.6 0.5 1.4 0.3 1.0 49.7
Ca (%) B 118 0.0 0.6 0.2 2.9 0.7 1.6 115.9
Fe (%) B 120 0.4 4.1 3.7 10.2 2.8 0.6 67.6
Ti/Zr B 120 0.001 0.002 0.002 0.006 0.001 1.5 48.4
pH B 120 5.1 6.5 6.5 8.4 0.8 0.3 12.5
C (%) C 51 0.5 1.7 1.5 7.8 1.1 3.4 65.8
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dropping any of the remaining covariates generatedmodels that had
larger DIC values than those of other models calculated in the same
turn.

7) Estimate the posterior distribution of the parameters of the selected
models. Here, the marginal distribution of the intercept, fixed effect
parameters β, and parameters of theMatérn function (σx

2 ,κ ,σe
2) was

estimated using INLA-SPDE.
8) Predict the soil properties onto the validation datasets.

Here, a number of metrics between themeasured and predicted soil
properties were employed using the validation datasets to evaluate the
model performance. These include coefficient of determination (R2),
Lin's concordance correlation coefficient (Lin, 1989), mean error (ME)
and root mean square error (RMSE).

9) Predict the soil properties and calculate their posterior marginal dis-
tribution across the whole study area.

2.5. REML-LMM

The linear mixed model (LMM) includes a fixed effect component,
which is a relationship between the response (e.g. soil C) and the ancil-
lary data (e.g. elevation), a spatial correlation model (i.e. variogram) to
model spatial dependence, the random effect, and an error component
(ε). A LMM often has the form:

y ¼ Bτþ uþ ε; ð4Þ

where y is a vector of themodel response, B is a matrix of predicting co-
variates (e.g. elevation) at observation points, and the vector τ contains
coefficients of the fixed effects. The vectors u and ε contain random er-
rors which are spatially correlated such that

uε
� �

� Ν 0
0

� �
;

ξσ2G 0
0 σ2I

� �� �
; ð5Þ

where G is the correlation matrix where correlation depends only on
the relative location of observations. I is the identity matrix and σ2 is
the variance of the independent error and ξ is the ratio of the variance
of u to σ2 (Lark et al., 2006). Here it is assumed that the random terms
are jointly Gaussian distributed. The term ε represents both indepen-
dentmeasurement errors and variation of the processes that are spatial-
ly dependent over shorter distances than separate samples, namely, the
nugget (σe

2).
Once the parameters of the LMMs were determined, soil properties

were predicted onto the unsampled locations using the formulation of
universal kriging with external drift. The process is considered as the
empirical best linear unbiased prediction (E-BLUP). Full details of E-
BLUP can be found in Lark and Cullis (2004) and Lark et al. (2006).
The geoR package (Ribeiro and Diggle, 2001) in R was used to fit the
model parameters in Eqs. (4) and (5) while the gstat package
(Pebesma, 2004) was used for kriging. To be consistent, the same sets
of covariates selected in the INLA-SPDE models were used to construct
the corresponding LMMs. Only the nugget and exponential variograms
were compared and the optimal variogramswere selected based on the
log-likelihood. Similarly, the LMMs were fitted using the calibration
datasets and various soil properties were predicted onto the validation
datasets to evaluate the model performance. To validate the REML-
LMMmodels, R2, Lin's concordance, ME, and RMSEwere also calculated.

2.6. Evaluating the effects of sampling size on the INLA-SPDE and REML-
LMM

To evaluate the effects of sampling sizes on the model performance,
a certain number of points were randomly selected from the calibration
data (i.e. 100, 80, 60 and 40 samples for Fe, Ca, K, Ti/Zr ratio and pH and
70, 60, 50 and 40 samples for C). INLA-SPDE and REML-LMM models
were constructed using these subsets of the calibration datasets and
predicted onto the validation datasets.

3. Results and discussion

3.1. Exploratory data analysis

The summary statistics of various soil properties are shown in
Table 1. Of all the soil properties, soil Cwas strongly skewed for both cal-
ibration and validation datasets (skewness= 3.5 and 3.4, respectively).
Total soil Ca concentration and Ti/Zr ratio were moderately skewed
(skewness ≈ 1.5) while total Fe concentration and pH were non-
skewed (skewness b 1). It was also noted that soil Ca wasmost variable
in the field (CV N 100%) while pHwas least variable (CV b 20%). The re-
maining soil properties showed moderate variability.

The Pearson's correlation coefficients between soil properties and
covariates are shown in Table 2. With regard to the calibration data,
the elements that were significantly correlated with gamma-K (P b

0.001) included soil K (r = 0.89) and Fe (0.87). Whilst strong correla-
tions have previously been reported between gamma-K and soil K (i.e.
Wong and Harper, 1999; Haskard et al., 2010), the high correlation ob-
served in this study is not very common. Gamma-Kwas also significant-
ly correlated with Ti/Zr (r = 0.67) and Ca (r = 0.66). In addition, and
whilst soil pH (r = 0.63) and soil C (r = 0.53) were only moderately
correlated with gamma-K, they were statistically significant and these
results were consistent with the findings by Wong et al. (2008) and
Dierke and Werban (2013), respectively. Therefore, it was reasonable
to argue that the strong correlations between soil elements and
gamma-ray elements may be site-specific and were controlled by the



Fig. 3. Spatial distribution of the various kriged ancillary data and including; a) elevation (m), b) slope (degree), c) topographic wetness index (TWI) and d) gamma potassium (Gamma-
K – %) across the study area, respectively. Note: two selected sites with predicted small and large soil properties were marked with black dots.
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localised soil mineralogy composition and as a function of different
physical, chemical and biological weathering processes (Triantafilis
et al., 2013).

In terms of the terrain parameters, elevationwas positively correlat-
ed with soil elemental data and in particular Fe (r = 0.84), Ti/Zr ratio
Table 3
Summary statistics of the model parameters of the a) INLA-SPDE and b) REML-LMMmodels.

a) Mean 2.5% percentile

Intercept −3.074 −4.600
Gamma-K 1.303 1.011
Elevation 0.00483 0.00058
Slope −0.055 −0.099
TWI 0.023 −0.002
Variogram Exponential function
Scale parameter (κ) 0.00295 0.0007
σx
2 0.105 0.020

Practical range (m) 1021.8 222.3
θ1 3.363 1.999
θ2 −6.037 −7.273
Nugget (σe

2) 0.029 0.022
DIC −248.399

b)

Fixed effects Estimates
Intercept −1.335
Gamma-K 1.521
Elevation 0.00355
Slope −0.056
TWI 0.016
Variogram Exponential function
partial sill 0.074
Practical Range (m) 5991.5
Nugget (σe

2) 0.004
Scale parameter (κ) 0.0005
Log-likelihood 91.2
(0.78), Ca (0.78) and K (0.59), as well as pH (0.53) and soil C (0.53)
while topographic wetness index (TWI) was negatively correlated in
comparison. Similar positive correlations were evident with slope. It
was also noted that similar strong correlations were also evident in
the validation data.
Median 97.5% percentile Mode SD

−3.062 −1.619 −3.038 0.753
1.304 1.588 1.307 0.146
0.00480 0.00929 0.00473 0.00220
−0.054 −0.012 −0.054 0.022
0.023 0.049 0.023 0.013

0.0023 0.0089 0.0015 0.00217
0.078 0.346 0.046 0.088
852.1 2804.0 566.3 678.5
3.384 4.621 3.438 0.666
−6.057 −4.699 −6.110 0.650
0.029 0.038 0.028 0.004

Standard Error Prob N |t|
0.973 0.173
0.156 b0.0001
0.00276 0.201
0.019 0.004
0.012 0.187



Table 4
Comparison of model statistics between INLA-SPDE and REML-LMM on the validation
dataset. Note: The selected INLA-SPDE models were marked in bold.

INLA-SPDE R2 Lin's concordance ME RMSE

K (Gaussian-Mean) 0.80 0.88 −0.04% 0.14%
Ca (Gaussian-Mean) 0.68 0.78 0.05% 0.38%
Fe (Gaussian-Mean) 0.90 0.95 −0.08% 0.88%
C (Gaussian-Mean) 0.45 0.65 −0.19% 0.86%
pH (Gaussian-Mean) 0.59 0.76 0.03 0.53
Ti/Zr (Gaussian-Mean) 0.63 0.72 0.0001 0.0007
K (lognormal-Mean) 0.83 0.91 −0.02% 0.12%
Ca (lognormal-Mean) 0.65 0.75 0.11% 0.41%
Fe (lognormal-Mean) 0.91 0.95 0.01% 0.85%
C (lognormal-Mean) 0.41 0.61 −0.08% 0.86%
pH (lognormal-Mean) 0.59 0.75 0.05 0.53
Ti/Zr (lognormal-Mean) 0.64 0.70 0.0001 0.0007
K (lognormal-Median) 0.83 0.91 −0.02% 0.12%
Ca (lognormal-Median) 0.65 0.75 0.11% 0.41%
Fe (lognormal-Median) 0.91 0.95 0.01% 0.85%
C (lognormal-Median) 0.41 0.61 −0.08% 0.86%
pH (lognormal-Median) 0.59 0.75 0.05 0.53
Ti/Zr (lognormal-Median) 0.64 0.70 0.0001 0.0007
REML-LMM R2 Lin's concordance ME RMSE
K (Gaussian-Mean) 0.82 0.90 −0.03% 0.13%
Ca (Gaussian-Mean) 0.66 0.79 0.04% 0.39%
Fe (Gaussian-Mean) 0.91 0.95 −0.14% 0.82%
C (Gaussian-Mean) 0.44 0.64 −0.20% 0.87%
pH (Gaussian-Mean) 0.65 0.78 0.05 0.49
Ti/Zr (Gaussian-Mean) 0.70 0.78 0.0000 0.0006
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3.2. Spatial distribution of covariates

The spatial distributions of the various covariates are shown in Fig. 3.
Fig. 3a shows that the elevationwas highest in the east (510m) and de-
creased to topographic low in the west (310 m). Fig. 3b, which shows
the slope, for the most part the study area had only a small fall (slope
= 0–5 degrees) (Fig. 3b). However, to the eastern margin, elevation in-
creased rapidly over a short distance with slope larger than 10 degrees
(Fig. 3b). Fig. 3c shows the spatial distribution of TWI. It was evident
that several contiguous regions of larger TWI values (i.e. 10–16) tra-
verse the study area from southeast to the northwest. These regions
were more or less consistent with the location of various depressions
and the location of local small drainage ways and floodways (Fig. 1).
Table 5
Comparison of model statistics between INLA-SPDE and REML-LMM when different sampling

Soil property Skewness Size of calibration set INLA-SPDE

R2 Lin's

C 3.5 80 0.45 0.65
C 3.3 70 0.45 0.64
C 3.7 60 0.45 0.64
C 3.7 50 0.45 0.64
C 3.5 40 0.45 0.65
C 3.2 30 0.45 0.64
C 3.8 20 0.46 0.38
Ti/Zr 1.5 120 0.64 0.70
Ti/Zr 1.3 100 0.60 0.68
Ti/Zr 1.3 80 0.60 0.66
Ti/Zr 1.3 60 0.54 0.65
Ti/Zr 1.5 40 0.24 0.39
Ti/Zr 1.6 30 0.13 0.24
Ti/Zr 1.1 20 0.15 0.26
pH 0.4 120 0.59 0.76
pH 0.4 100 0.59 0.76
pH 0.4 80 0.62 0.77
pH 0.4 60 0.63 0.78
pH 0.6 40 0.62 0.78
pH 0.8 30 0.51 0.71
pH 1.1 20 0.21 0.39
In the west they were wooded and in the east they were protected by
perennial grasses.

Fig. 3d shows the spatial distribution of gamma-K. Note that an in-
creasing trend was found in gamma-K from southwest to the north-
east of the study area. Given previous studies which have shown that
gamma-K is correlated with soil parent materials (Wilford et al.,
1997; Triantafilis et al., 2013), soil texture (Viscarra Rossel et al.,
2007) and soil types (Schuler et al., 2011; Guimaraes et al., 2013),
the differences in gamma-K was due to varying parent materials
and soil types.
3.3. Comparison of the model parameters between INLA-SPDE and REML-
LMM

To better understand the modelling process and compare INLA-
SPDE and REML-LMM, the marginal distributions of the parameters of
the INLA-SPDE model were presented. For brevity, only the scenario
for predicting elemental K concentration that was moderately skewed
was shown in Table 3.

In this case, after dropping each of the ancillary data in turn (Step-6
of the INLA-SPDE model calibration), it was found the DIC values in-
creased. This indicated that all the ancillary data were required and
therefore the model needed to include gamma-K, elevation, slope, and
TWI as covariates.

The marginal distributions of the intercept, fixed effects param-
eters, scale parameter (κ) of the Matérn function, variance param-
eter of the random field (σx

2) and the practical range are shown in
Table 3a. Table 3a also shows in the mean of coefficients of the
fixed effects, practical range (1021.8 m), scale parameter (0.003)
and nugget (0.029) of the Matérn function (with υ=0.5, or the ex-
ponential function) of the INLA-SPDE. The equivalent data for
REML-LMMmodel are shown in Table 3b, including the coefficients
of the fixed effects, practical range (5991.5 m), scale parameter
(0.0005) and nugget (0.004) of the exponential function. The dif-
ference between the two approaches was that INLA-SPDE provides
an estimate of the posterior marginal distribution (e.g. upper and
lower 2.5% percentiles) of the model parameters while the tradi-
tional REML approach estimated the optimal parameter values
only.
sizes were used.

REML-LMM

ME RMSE R2 Lin's ME RMSE

−0.19% 0.86% 0.44 0.64 −0.20% 0.87%
−0.27% 0.90% 0.44 0.64 −0.27% 0.91%
−0.23% 0.87% 0.44 0.64 −0.23% 0.88%
−0.23% 0.87% 0.44 0.64 −0.23% 0.88%
−0.31% 0.95% 0.44 0.64 −0.31% 0.96%
−0.34% 0.97% 0.44 0.64 −0.34% 0.98%
−1.31% 2.65% 0.43 0.42 −1.13% 2.22%
0.0001 0.0007 0.70 0.78 0.0000 0.0006
0.0001 0.0007 0.69 0.77 0.0001 0.0006
0.0002 0.0007 0.69 0.76 0.0001 0.0006
0.0001 0.0008 0.63 0.72 0.0001 0.0007
−0.0003 0.0019 0.30 0.54 −0.0000 0.0011
0.0004 0.0011 0.11 0.22 0.0004 0.0011
0.0003 0.0011 0.20 0.29 0.0003 0.0010
0.03 0.53 0.66 0.79 0.06 0.48
0.05 0.53 0.65 0.78 0.06 0.49
0.04 0.51 0.65 0.78 0.03 0.49
0.02 0.50 0.63 0.78 0.04 0.50
0.04 0.51 0.62 0.77 0.02 0.50
0.01 0.62 0.54 0.73 0.01 0.59
0.37 0.85 0.58 0.68 0.22 0.57



Fig. 4. Posterior marginal distributions of various soil properties predicted at two selected
locations (marked in Fig. 3) and including; a) total soil carbon (C – %), b) Ti/Zr ratio, c) pH,
respectively.
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3.4. Comparison of the model performance between INLA-SPDE and REML-
LMM

Table 4 shows the validation results for predicting different soil
properties using INLA-SPDE and REML-LMM. When INLA-SPDE was
used, themean of the predicted soil properties estimated using a Gauss-
ian likelihoodwas reported andboth themean andmedianvalues of the
soil properties estimated using a log-normal likelihood were reported.
Table 4 indicates that the use of the median values for log-normal like-
lihood did not improve themodel performance in terms of the goodness
of fit (R2 and Lin's concordance), bias (ME) and accuracy (RMSE) as
compared with the mean. Therefore, the paper only focused on the
mean values obtained by either Gaussian or log-normal likelihood
using the INLA-SPDE approach.

With respect to the strongly skewed soil C, INLA-SPDE produced
similar predictions given the RMSE (0.86%) and ME (−0.19%) were
slightly smaller than REML-LMM which produced larger RMSE (0.87%)
and ME (−0.20%). The Lin's concordance correlation coefficient was
also slightly larger for INLA-SPDE (0.65) compared with REML-LMM
(0.64).

Table 4 also shows that the INLA-SPDE was equivalent to REML-
LMM for predicting the moderately skewed (i.e., elemental K, Ca and
Ti/Zr) and non-skeweddata (elemental Fe and pH). Thiswasmost likely
due to the strong linear relationships between the soil properties and
the covariates (see Table 2), which were equivalently modelled by
REML-LMM and INLA-SPDE.

3.5. Effects of sampling size on the model performance

Table 5 shows the effects of sampling size on INLA-SPDE and REML-
LMM approaches. For brevity, only soil C (strongly skewed), Ti/Zr ratio
(moderately skewed) and pH (non-skewed) were shown as they
were representative of the other results. In terms of predicting soil C,
as indicated by the RMSE, the INLA-SPDE (e.g. 70 sites: 0.90%) approach
achieved similar results compared with REML-LMM (e.g. 70 sites:
0.91%) when sampling size decreased from 80 to 30. This suggests
that INLA-SPDE was equivalent to LMM-REML for predicting strongly
skewed soil properties even when sample size was small.

However, this was not the case for Ti/Zr ratio. As the sample size de-
creased from 120 to 60, REML-LMM (e.g. 100 sites: RMSE = 0.0006)
generally performed better than or equivalent to INLA-SPDE (e.g. 100
sites: RMSE=0.0007).When the sample sizewas b60, both predictions
became very poor (Lin's concordance b 0.6). These results indicated that
INLA-SPDEwas slightly less robust thanREML-LMM for predictingmod-
erately skewed soil properties. With regard to the non-skewed soil pH,
both INLA-SPDE and LMM-REML achieved good results even when the
sampling size decreased to 40 (Lin's concordance N0.6).

It was not expected that LMM-REML was robust for predicting soil
properties with a small number of samples (Lark et al., 2006; Minasny
and McBratney, 2007; Minasny et al., 2008; Li et al., 2015b). However,
the results of this study showed that INLA-SPDE was able to achieve
equivalent model performance with sparse calibration data.

3.6. Posterior distribution of predicted soil properties using INLA-SPDE

To evaluate the model performance for predicting different soil
properties, the posterior distribution of the predicted soil properties
was plotted using two selected sites with small and large values
(marked in Figs. 3, 5 and 6). Fig. 4a shows the posterior distribution of
predicted strongly skewed soil C at sites 1 and 2. The distributions
were close to normal due to the use of the Gaussian function for INLA-
SPDEmodel. Additionally, higher C value at site 2 had a smaller kurtosis
compared with the lower C value at site 1.

The larger uncertainty in prediction at site 2 was most likely a func-
tion of the highly variable spatial nature of the ancillary data used to de-
velop the INLA-SPDE; namely elevation and TWI. This was most
apparentwith respect to the TWI data shown in Fig. 3c. Site 2was locat-
ed in a local topographic low (i.e. TWI ~12). However, it was
surrounded on all three sides by topographic highs (TWI ~6–8). As a re-
sult, this caused a wider spread in the posterior distribution.

Similar patterns were identified for the posterior marginal distribu-
tions of moderately skewed Ti/Zr ratio (Fig. 4b) and pH (Fig. 4c). Again,
the distributions of themodel response (Ti/Zr ratio and pH)were flatter
(small kurtosis) at site 2 compared with site 1.With respect to the Ti/Zr
ratio, prediction required elevation and slope be used as the covariates
in the INLA-SPDE approach. However, there was marked spatial vari-
ability around site 2. This was especially the case with respect to the
slope (see Fig. 3b) which was steeper to the east (~12 degrees) than
to the west (~6–8 degrees). The same applied for pH; whereby eleva-
tion and TWI were the ancillary data and for the same reason as soil C.
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3.7. Spatial distribution of predicted soil properties using INLA-SPDE

Fig. 5 shows the spatial distributions of the mean and credible inter-
val of predicted soil properties due to the uncertainty of the model pa-
rameters only across the study area. Here, the credible interval was
delineated by the differences between 5% and 95% percentiles of the
predicted soil properties. In terms of the strongly skewed C, an increas-
ing trendwas identified fromwest to east across the study area (Fig. 5a).
This was mostly driven by elevation, soil types and land use (Li et al.,
2015a, 2015b; Shi et al., 2015; Stockmann et al., 2016). In the east of
the study area dominated by Vertisols and native vegetation, the eleva-
tion was high, so was the soil C. Conversely, lower C values were found
in the western plains with Luvisols and Solonetz whereby the land was
mostly used for cropping.

The large uncertainty (~2%) was located at the eastern corner of
the study area (Fig. 5b). This was consistent with the posterior mar-
ginal distribution of the predicted soil C (Fig. 4a). Again, it was most
likely because the INLA-SPDEmodel failed to accurately estimate the
soil C values in these due to the short-scale variation in the covari-
ates (i.e. elevation and TWI). In addition, large uncertainty was
Fig. 5. Spatial distributions of the predicted soil properties using INLA-SPDE and including; a) t
interval for soil b) C, d) Ti/Zr ratio and f) pH, respectively. Note: two selected sites with predic
found along several strips across the study area. This was particularly
the case in a southeast to northwest trending band in the western
third of the study area. The uncertainty was probably caused by the
large TWI values, corresponding to a small wooded depression (see
Fig. 1).

Fig. 5c and d show the spatial distributions of themean and credible
interval of predicted Ti/Zr ratio. The patternwas similar to that found for
soil C, whereby Ti/Zr ratio increased from west to east. Similarly, this
was mainly driven by soil types, parent materials and land use
(Stockmann et al., 2016). Unlike soil C, the largest model uncertainty
for predicting Ti/Zr ratio was only identified at the eastern margins of
the study area. Again this was most likely due to the poor performance
of the INLA-SPDEmodel as a function of the highly variable nature of the
covariates.

However, this was not the case for pH. As shown in Fig. 5e, soil pH
increased from quite acidic (~5) in the southwest to moderately to
strongly alkaline (~8.5) in the northeast. As was shown in Fig. 5f, the
largest credibility interval of the predicted pH was mostly located
close to the margins. In this case, the large credibility interval values
were mainly due to the edge effect.
otal soil carbon (C – %), c) Ti/Zr ratio, e) pH; and spatial distributions of the 90% credibility
ted small and large soil properties were marked with black dots.
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3.8. Spatial distribution of predicted soil properties using REML-LMM

For comparison, the spatial distributions of themean and prediction
interval of predicted soil properties generated by REML-LMMwere pre-
sented (Fig. 6). Here, the prediction interval was delineated by the dif-
ferences between 5% and 95% percentiles of the predicted soil
properties and was calculated using the mean and kriging variance of
the E-BLUP assuming a Gaussian distribution.

In terms of predicting soil C, REML-LMM produced similar mean
values compared with INLA-SPDE (Fig. 6a). However, this was not the
case for the prediction interval (Fig. 6b). Although the spatial pattern
of the model uncertainty was similar, REML-LMM had a much larger
90% prediction interval (3.2–3.8%) compared with INLA-SPDE
(0.4–2.4%). This was not unexpected given the differences in the two
methods. Specifically, REML-LMM represents the prediction interval,
while INLA-SPDE only shows credible (or confidence interval in
frequentist statistic).

With regard to Ti/Zr ratio (Fig. 6c), REML-LMM was found to pro-
duce lower Ti/Zr ratio (~0.001) at the western part and higher Ti/Zr
ratio (0.005) at the eastern corner of the study area compared with
Fig. 6. Spatial distributions of the predicted soil properties using REML-LMM and including; a) t
intervals for soil b) C, d) Ti/Zr ratio and f) pH, respectively. Note: two selected sites with predi
INLA-SPDE. As for soil pH, the mean of the prediction achieved by
REML-LMM was similar to that of INLA-SPDE (Fig. 6e).

3.9. Implications for environmental monitoring and management

The characteristics of INLA-SPDE demonstrated heremay be applied
in a number of ways. Firstly, given the capability of estimating the pos-
terior distributions of themodel parameters and responses, it is possible
to use INLA-SPDE as an alternative method to the traditional computa-
tionally intensive MCMC-based approach (Banerjee et al., 2008; Orton
et al., 2009; Minasny et al., 2011).

Secondly, the ease of incorporating various likelihood functions (e.g.
Gaussian, log-normal) of INLA-SPDE makes it suitable for predicting
various environmental properties and estimating the posteriormarginal
distributions of the predicted values. Unlike the traditional or model-
based geostatistics which relied on data transformation (Orton et al.,
2009) or Copulas (Marchant et al., 2011), INLA-SPDE is also able to
deal with the skewed data with the latent Gaussian field directly in
the model and is proven to be as robust as REML-LMM (in this study)
and Generalized Additive Models with Gaussian simulations (Poggio
otal soil carbon (C – %), c) Ti/Zr ratio, e) pH; and spatial distributions of the 90% prediction
cted small and large soil properties were marked with black dots.
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et al., 2016). Therefore, INLA-SPDE can be potentially applied in map-
ping the spatial distribution of various environmental variables and pol-
lutions (Teng et al., 2014; Yang et al., 2014; Liu et al., 2016;
Gómez-Nubla et al., 2017) and establishing risk management zones
with using the posterior marginal distributions of the prediction
(Horta et al., 2015; Beaudequin et al., 2016; O'Rourke et al., 2016).

Thirdly, it is also worth highlighting the robustness of INLA-SPDE
with small calibration datasets. As suggested by Webster and Oliver
(1992), ~100 samples are often required for accurately estimating a
variogram. However, as demonstrated in our study, 40–60 samples
were sufficient to establish a “good” INLA-SPDE model for predicting
strongly skewed and non-skewed soil properties provided that strongly
correlated ancillary data were available (Stockmann et al., 2016). This
suggests that INLA-SPDE could be employed when a detailed sampling
campaign is not available.

Lastly, it should be noted that while REML-LMM can only estimate
the parameter uncertainty based on an approximation of the Fisher in-
formation matrix assuming Gaussian distribution (Minasny and
McBratney, 2005), INLA-SPDE is able to calculate the posterior distribu-
tion of parameters. This information can be used to assist decision-
making in environmental management (Yang et al., 2016). However,
to calculate the prediction interval equivalent to kriging variance, simu-
lations of the model parameters need to be done.
3.10. Disadvantages of INLA-SPDE

A number of disadvantages of INLA-SPDE were also reported in the
study. First, some discontinuous artefacts were identified in the maps
of predicted soil C (Fig. 5a) and Ti/Zr ratio (Fig. 5c). This wasmost likely
due to the triangulated meshes, which were used to approximate the
SPDE functions (Simpson et al., 2012).

Second, it should be also noted that the INLA-SPDE approach took
~24 h to calculate the credible intervals of each of the soil properties
(particularly for non-Gaussian distributed variables) across the 10-m
grid using a computer with an Intel (R) Core (TM) i7-4510U CPU @
2.00GHz and a RAM of 8.00 GB. Unlike INLA-SPDE, the time of estimat-
ing the optimal model parameters was much shorter (i.e. ~1 min) for
REML-LMMalthough REML-LMMwasnot able to estimate the posterior
marginal distribution of the model parameters. It was also reported by
Poggio et al. (2016) that INLA-SPDE becamequite slowwhen estimating
the posterior marginal distributions of the environmental variables as-
sociated with large datasets using non-Gaussian likelihood families.
4. Conclusions

The spatial distribution of various skewed and non-skewed environ-
mental variables (e.g. soil Carbon, pH, and elemental Fe, Ca, K, and Ti/Zr)
were predicted using a Bayesian inference approach, Integrated Nested
Laplace Approximation with Stochastic Partial Differential Equation
(INLA-SPDE). Based on independent validation datasets, it was found
that INLA-SPDEwas equivalent to a linearmixedmodel estimatedby re-
sidual maximum likelihood (REML-LMM) in terms of themodel perfor-
mance and was similarly robust with sparse datasets.

The advantage of INLA-SPDE was that it was able to predict the
posterior marginal distributions of the model parameters as well as
the model responses without carrying out extensive simulations.
Therefore, INLA-SPDE can be potentially applied in mapping the spa-
tial distribution of environmental variables via various likelihood
families and estimating their posterior marginal distributions to as-
sist decision making in environmental management. However, the
use of triangulated meshes in INLA-SPDE may lead to discontinuous
artefacts of the model responses and the computation time will be-
come quite long when dealing with non-Gaussian likelihood
families.
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