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This paper presents a refinement of the dissever algorithm, a framework for downscaling spatial infor-
mation based on available environmental covariates proposed by Malone et al. (2012). While the original
algorithm models the relationships between the target variable and the covariates using a general addi-
tive model (GAM), the modified procedure presented in this paper allows the user to choose between a
wide range of regression methods.

These developments have been implemented in an open-source package for the R statistical environ-
ment, and tested by downscaling soil organic carbon stocks (SOCS) maps available on two study sites in
Digital soil mapping Australia and New Zealand using 4 different regression methods: linear model (LM), GAM, random forest
Machine learning (RF), and Cubist (CU). In this study, the spatial resolution of a set of reference maps were degraded to a
R coarser resolution, so to assess the performance of the different downscaling methods. On the Australian
site, the 1-km SOCS coarse resolution map has been downscaled to a 90-m resolution. The best results
were achieved using either CU or RF (R? = 0.91 and 0.94 respectively). On the New Zealand site, the
250-m SOCS coarse resolution map has been downscaled to a 10-m resolution. The best results were
achieved using GAM (R? = 0.90). The results illustrate that the optimal regression methods for downscal-
ing spatial information using dissever vary on a case-by-case basis. In particular, simpler approaches
such as LM or GAM outperformed more complex approaches in cases where only a limited number of pix-
els are available to train the downscaling algorithm. This demonstrate the value of an implementation
that facilitates testing of different regression strategies.
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1. Introduction ing of spatial information is of current interest in DSM is to

increase the value of national digital soil maps that are becoming

The selection of a relevant spatial resolution is a central ques-
tion for digital soil mapping (DSM) (Behrens et al., 2010; Malone
et al., 2013; Smith et al,, 2006; Taylor et al., 2013). Most DSM
approaches require environmental predictors to be available on a
unique prediction grid (McBratney et al., 2003). While upscaling
(matching a fine resolution covariate to a coarser resolution grid)
can be easily solved using approaches such as block averaging or
block kriging, the opposite situation, downscaling (matching a
coarse resolution covariate onto a finer resolution grid) is a more
challenging task. While various interpolation methods can be
tested, it often results in the prediction grid being limited to the
resolution of the coarsest covariate. Another reason why downscal-
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increasingly available through initiatives such as GlobalSoilMap
(Arrouays et al., 2014). To increase their value to the primary sector
and match the resolution of farm-scale management decisions
(which are getting finer with the advent of precision agriculture
techniques) these coarse resolution maps (resolution of between
1-km and 100-m) need to be downscaled to a finer resolution.
Downscaling such national datasets also provides a useful tool to
stratify soil sampling for estimating soil organic carbon stocks, as
required by carbon farming initiatives (e.g. de Gruijter et al., 2016).

The dissever method for downscaling spatial information has
been proposed by Malone et al. (2012). It is mass-preserving, and
based on using a suite of covariates to reconstruct the signal of a
coarse variable at a finer resolution. The current context in soil
science is a favourable one to such an approach driven by covari-
ates, since it has been recently disrupted by the emergence of var-
ious sensing technogies that allow information to be recorded that
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relates to soil-forming factors at a fine spatial scale (Roudier et al.,
2015; Stockmann et al., 2015). Remote sensing methods such as
LiDAR, mounted on an aircraft to record elevation data at very fine
resolution, allow derivation of terrain parameters such as slope,
aspect, or wetness index (DeGloria et al., 2014; Fink and Drohan,
2016). Additionally, proximal soil sensors can be mounted directly
on a mobile platform, such as a tractor or a quad bike, and can
record a range of physical properties such as soil electrical resistiv-
ity and conductivity (electromagnetic sensors, EM), and natural
gamma emissions (gamma radiometric sensors, Viscarra Rossel
et al.,, 2011).

In parallel to this increase in available data, the field of machine
learning has driven the development of many prediction tech-
niques. Making use of the increasing computer power available,
such advanced regression techniques have found applications in
many domains, and are able to handle complex relations between
covariates. A significant range of these prediction techniques have
been succesfully used in digital soil mapping (Heung et al., 2016;
Viscarra Rossel et al., 2015). The aim of this study was to modify
the dissever algorithm so that it can use different regression
methods. The performance of four different regression methods
were tested and compared in downscaling coarse resolution soil
organic carbon stocks (SOCS) maps using a suite of fine scale
covariates, at two different study sites.

2. Material and methods
2.1. The dissever algorithm

The dissever algorithm, initially proposed by Malone et al.
(2012), is a method to downscale a coarse resolution raster map
using a suite of finer resolution environmental covariates. To do
so, a relationship between the fine resolution covariates and the
coarse resolution base map is built using a generalised additive
model (GAM). The GAM is used in an iterative process to converge
towards a solution that is mass-preserving, i.e. the mean of fine
scale predictions is equivalent to the associated value of their
encapsulating coarse scale pixel. The algorithm, implemented as
follows, is detailed in Malone et al. (2012):

1. Interpolate the coarse resolution map of the target variable onto
the grid used by the fine resolution covariates using nearest
neighbour resampling.

2. Regress the fine gridded values of the target variable against the
suite of covariates.

3. Upscale the predictions of this regression model by block aver-
aging to the original base map resolution.

4. If the iteration number is greater than one, check whether
upscaled estimates are changed from previous iteration. If esti-
mated change is greater than some pre-defined threshold pro-
ceed to next step, otherwise stop. In Malone et al. (2012) an
averaged absolute difference between the upscaled map from
the present iteration and previous iteration was used. An arbi-
trarily selected threshold of 0.001 was used to determine if iter-
ation should proceed or not.

5. Compute the deviation from mass balance for each coarse grid
pixel, i.e. the difference between the mean of downscaled pre-
dictions and the original value of each pixel, and use it to cor-
rect the fine gridded estimates with deviation factor.

6. Go back to step 2.

2.2. Modification of the original algorithm

The original dissever method has been extended so that
different regression methods can be used to build the best

relationship between the coarse resolution target variable and
the fine resolution environmental covariates. At the initialisation
stage of the disseveration, for parametric regression methods, k-
fold cross-validation is used to choose the optimal parameter val-
ues. In this case, the set of parameters that minimise the cross-
validated root mean squared error (RMSE) are selected. This opti-
mal set of parameters is then used for the iterative stage of the dis-
severation. For non-parametric methods, this step is skipped, and
an initial model is simply fitted between the coarse resolution tar-
get variable and the environmental covariates.

The modified dissever procedure has been implemented
using the R statistical environment (R Core Team, 2015). The mod-
ified procedure leverages the caret predictive modelling package
for R (Kuhn, 2008), which provides a unified interface to 192 differ-
ent regression methods. Additionally, the caret provides numeri-
cal methods to optimally choose parameters, and allows for
parallel processing. The resulting code has been integrated in a
dedicated R package, and has been made publicly available on
Github.'

2.3. Regression methods tested

In this study, four different regression methods have been
tested and compared for the downscaling of coarse scale maps. Lin-
ear models (LM), as implemented in base R (R Core Team, 2015),
were chosen since they represent a simple yet robust predictive
technique. Generalised additive models (GAM), used in the original
dissever procedure, as implemented in R by the gam package
(Hastie, 2015), have been used as a reference method. Also, random
forest (RF), as implemented in R by the randomForest package
(Liaw and Wiener, 2002), and Cubist (CB), as implemented in R
by the Cubist package (Kuhn et al., 2014), were tested. These lat-
ter two methods are more recent data mining techniques and have
received a great deal of attention in the digital soil mapping liter-
ature (Heung et al., 2016).

2.4. Comparison of the downscaled outputs

Fig. 1 shows the workflow that has been used to assess the
downscaling performance using the dissever algorithm with dif-
ferent regression methods. The base map was the coarse resolution
map to be downscaled. It was created by block-averaging a refer-
ence map, available at the same fine resolution as the environmen-
tal predictors. The downscaled map resulted from the dissever
procedure, and was compared to the reference map. It was also
block-averaged back to the coarse resolution support to create
the restored map. This restored map was compared to the base
map in order to assess the respect of the mass-conservation con-
straint of the algorithm.

2.4.1. Downscaling performance

Different metrics quantified the performance of the downscal-
ing process, including the root mean squared error of downscaling
(RMSEd), R?, concordance correlation coefficient (CCC Lin, 1989),
and bias. The RMSEd indicates the uncertainty of the downscaled
map, while the bias gives an indication about its accuracy. The
standard error (SE) was also reported. The CCC quantified the
agreement between the downscaled map and the reference map
as a value between 0 (absolute disagreement) and 1 (absolute
agreement).

Y. 2
RMSEd = Zf%

(1)

1 https://github.com/pierreroudier/dissever.
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Fig. 1. Workflow and naming conventions. A reference map, available at fine
resolution, is block-average to create the coarse resolution base map. This base map
is being downscaled into using the dissever approach. The downscaled result is
block-averaged to the coarse scale to form the restored map, which can be
compared to the base map.
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where X is the value of the reference data, x is the value of the
downscaled data, n is the number of pixels, r is the correlation coef-
ficient between the reference and the downscaled data, o and & are
the standard deviations of the reference and downscaled data, and
M and m are the means of the reference and downscaled data.

6680000 +

2.4.2. Restoration performance

The respect of the mass-preserving constraint is assessed by
comparing the base map with the restored map, i.e. the down-
scaled map re-aggregated back onto the coarse scale spatial sup-
port using block average. The root mean squared error of
restoration (RMSEr) was used to quantify the respect of this
constraint:

n (Y —Xi)?

RMSEr = Zi .

(4)
where X is the base map, Y is the restored map, and n is the number
of pixels.

2.4.3. Spatial structure

Experimental semi-variograms were computed in order to com-
pare the spatial structure of the downscaled maps with that of the
reference map. Then, a variogram model was fitted to the experi-
mental semi-variograms. In this study we tested a range of differ-
ent variogram models: exponential, spherical and Matérn
(Minasny and McBratney, 2005). These computations were done
in the R statistical environment using the gstat package
(Pebesma, 2004).

2.5. Case studies

2.5.1. Case study 1
The first case study is a 163,891-ha farm located in the Edgeroi
District, NSW, Australia. Edgeroi is an intensive cropping area upon

5527500

SOCS SOCS
6670000 (T/ha) 5527000 (T/ha)
P 20 — 70
E E
Z 6660000 16 = 65
12 5526500 - 60
6650000 o
5526000
740000 750000 760000 770000 780000 790000 1821000 1822000 1823000
E (m) E (m)
Fig. 2. Base maps for the Edgeroi and Massey sites, obtained by block-averaging the reference maps.
Edgeroi Massey
1.54 ¢
__ 1.0
© L]
<
=
—
L
2
o 054
¢
! ‘
0.0 -
T T T T T T T T
GAM Linear Model Random Forest Cubist GAM Linear Model Random Forest Cubist

Fig. 3. Error associated with the mass-preservation constraint for each regression methods tested for downscaling. The solid lines show the 90% confidence intervals around

each RMSE value.
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Table 1

Summary statistics of the reference map and the maps downscaled using the four different regression methods on the Edgeroi and Massey study sites. Min.: Minimum. Pct.:
Percentile. Max.: Maximum. Std. Dev.: Standard deviation. Skew.: Skewness.

P. Roudier et al./ Computers and Electronics in Agriculture 142 (2017) 91-100

Site Model Min. 2.5% Pct. 25% Pct. 50% Pct. Mean 75% Pct. 97.5% Pct. Max. Std. Dev. Skew.
Edgeroi Linear model -3.33 8.21 11.17 12.93 13.32 14.98 21.58 35.05 3.36 0.93
Edgeroi GAM 3.57 8.82 10.91 12.77 13.32 15.04 21.71 26.89 3.24 0.94
Edgeroi Cubist 2.26 8.32 10.65 12.72 13.32 15.33 22.08 27.54 3.55 0.80
Edgeroi Random forest 7.58 8.35 10.73 12.78 13.32 15.25 21.99 24.50 3.48 0.78
Edgeroi Reference 4.09 8.32 10.64 12.76 13.32 15.63 22.51 24.98 3.61 0.82
Massey Linear model 53.17 55.78 60.92 63.82 64.67 68.26 75.47 77.86 5.39 0.38
Massey GAM 53.32 55.85 60.84 63.94 64.67 68.25 75.24 77.31 5.30 0.36
Massey Cubist 43.82 57.84 61.03 64.16 64.67 68.87 73.01 76.95 4.54 0.23
Massey Random forest 52.52 57.85 60.34 64.36 64.67 68.17 73.43 74.70 4.77 0.30
Massey Reference 47.49 56.48 60.35 63.98 64.58 68.54 74.98 77.76 5.34 0.34

the fertile alluvial Namoi River plain. Different fine-scale covariates
(all rescaled to a 90-m resolution by block averaging) were col-
lected on this farm. A digital elevation model (DEM) provided
information about elevation, and terrain derivatives such as slope
and topographic wetness index (TWI). Data from the Landsat
ETM + satellite were used to derive normalised difference vegeta-
tion index (NDVI), along with a suite of band ratios: band 5/band
7, band 3/ band 7, band 3/ band 2. Finally, potassium and thorium
abundance estimates were derived from an airborne gamma radio-
metrics survey over the region. Those covariates were used to map
SOCS to a depth of 30 cm at a 90-m resolution, as detailed in
Malone et al. (2012). This reference map (202334 pixels) was

upscaled to a 1-km resolution using block averaging to create the
base map to be downscaled (1689 pixels, Fig. 2).

2.5.2. Case study 2

The second case study is the 129-ha Massey University Farm
Number 1 located in Palmerston North, New Zealand. A suite of
fine resolution covariates, collated at a 10-m resolution, were col-
lected on the farm. Two proximal soil sensors mounted on a quad
bike, electromagnetic (EM) and gamma radiometrics, were used to
survey the farm. Their outputs were then kriged to match the 10-m
resolution grid. A DEM was created from an aerial LiDAR survey
collected by the Horizons Regional Council. It was then rescaled
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Fig. 4. Probability density functions of the disaggregated and reference SOC maps for the Edgeroi and Massey sites. The range of the reference data is indicated using broken

vertical lines.
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to the 10-m resolution grid using block averaging. Terrain deriva-
tives such as slope and SAGA wetness index (SWI) were derived
from the DEM using SAGA GIS. The distance to the river was also
mapped since those soils are regularly affected by fluvial deposits
following flood events. Finally, a legacy soil map was also used as a
covariate layer. As detailed for the first case study above, those
covariates were used alongside a collection of 100 soil core sam-
ples to create a SOCS map to 30 cm at a 10-m resolution. Because
the farm is much smaller than the Australian study site, the refer-
ence map (12,901 pixels) was block-averaged to a 250-m resolu-
tion grid to create the base map to be downscaled (38 pixels,
Fig. 2).

3. Results

For each downscaled map, the respect of the mass-preservation
constraint is illustrated in Fig. 3. The figure shows the errors asoci-
ated with the restoration process by comparing the base map and
the restored map. In both study cases, RF and CU out-perform GAM
and LM, and the restored data downscaled using these two regres-
sion methods shows very little errors (RMSEr < 0.5 T/ha). Results

95

using the GAM model show a RMSEr of 0.96 T/ha at the Edgeroi
site, and 0.5 T/ha at the Massey site. Results using LM show the
highest RMSEr (1.47 T/ha at the Edgeroi site, 0.63 T/ha at the
Massey site).

The summary statistics of the downscaled and reference maps
are presented on Table 1. In general, the mean value is not
distorted by the downscaling operations, which shows the
mass-preserving constraint has been successfully observed for all
regression methods tested on this case study. Moreover, at both
study sites, the interquartile range (the difference between the
25th and the 75th percentiles) remains more or less identical to
the reference map for all downscaled maps.

However, significant differences can be observed in the ten-
dency of each method to extrapolate data outside the reference
map boundaries or not. This is illustrated in the probability density
functions of the downscaled maps (Fig. 4). As a consequence of
this, at the Edgeroi site, both LM and GAM are positively skewing
the distribution of the downscaled outputs compared to that of
the reference map. It can be observed that on one hand the shape
of the probability distributions for the linear model and the GAM
model are very similar, while on the other hand RF and CU have
similar distributions too. A potential explanation is the similarities
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Fig. 5. Downscaled maps for the Edgeroi and Massey sites, along with the respective reference maps.
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that exists between LM and GAM on one hand, and between CU
and RF on the other hand. GAMs are linear predictors using
smoothing functions on predictive variable, while both CU and
RF are tree-based machine learning techniques. The distributions
derived from RF and CU are closest to the reference map distribu-
tion, expecially at the Edgeroi site, as evidenced by the
Kolmogorov-Smirnov statistic D computed between the reference
population and that of each of the downscaled outputs (0.10,
0.08, 0.04, and 0.05 for LM, GAM, CU, and RF respectively).

Fig. 5 shows the downscaled maps for the different regression
methods tested at the two study sites. The reference maps, from
which the coarse scale map has been derived, are also reported.
Results show some different spatial patterns depending on the
regression method used in the disseveration. At the Edgeroi site,
both CU and RF produce details that are more consistent with
the original data than LM and GAM. In particular, both CU and RF
appear to better reproduce the sharper variations in space. This
is possibly due to the tree nature of those regression algorithms.
While the overall pattern given by the GAM method is consistent
with that of the reference map, the spatial variations appeared to
have been smoothed out.

At the Massey site, the situation is different: maps downscaled
using both LM and GAM appear to be very similar with the refer-
ence map. The RF map is reasonably similar too, but did not cap-
ture some of the finer variations observed on the reference map.
Looking at the relative importance of the different fine-scale
covariates revealed that the legacy soil map, in particular, was used
by the model. The spatial pattern of the downscaled map is
affected by the use of this map, which represents the broad pat-
terns of soils in the farm, as opposed to the fine-scale variations

recorded by other covariates. Finally, the map produced using
the CU method is affected by a tiled pattern that matches the spa-
tial support of the base map. The inspection of the regression rules
used by the CU model shows that the distance from the river is the
covariate that has been most prevalently used in the downscaling
regression, at the expense of other covariates that explain the finer
details of the reference map.

Geostatical methods were used to quantify the spatial structure
of the different downscaled results displayed on Fig. 5. Fig. 6 com-
pares the semi-variograms of the downscaled maps with that of
the reference maps. All variograms follow a similar model to that
of the reference map (Matérn model for the Edgeroi maps, spheri-
cal model for the Massey maps). At both sites, a drop in the sill
variance can be observed for some of the downscaled results
(Table 2). This indicates that the some downscaled maps captured
more of the variance of the reference map than others. At the Edge-
roi site, this drop in sill is most pronounced for GAM, while LM and
CU present the closest variograms to the reference. At the Massey
site, both RF and CU are affected by a significant drop in sill vari-
ance, while GAM and LM show a very similar sill variance to the
reference map. Looking at the range of the modelled variograms
shows that at the Edgeroi site, GAM, RF and, to a lesser extent,
CU, produced a downscaled map that does not capture all short
range variabilities observed on the reference map. At the Massey
site, a similar problem was observed for RF and CU, while the range
of the variograms of the maps produced using LM and GAM were
close to that of the reference map.

Fig. 7 maps the absolute error between the different down-
scaled results and the reference maps at both study sites. At the
Edgeroi site, it shows smaller errors when using CU or RF as

Edgeroi

Massey

Semi-variance

Cubist
GAM
—= Linear Model
—— Random Forest
Reference

1000 2000 3000 4000 5000

o4

Distance (m)

Fig. 6. Comparison of the semi-variograms of the different downscaled maps, along with the reference map.

Table 2

Variogram models of the semi-variograms of the different downscaled maps, along with the reference map.
Site Reg. model Var. model Nugget Sill Range (m)
Edgeroi Linear model Ste 0.77 2.88 1336.93
Edgeroi GAM Ste 0.03 1.85 2033.14
Edgeroi Cubist Ste 0.34 3.30 1919.87
Edgeroi Random forest Ste 0.04 3.14 2104.06
Edgeroi Reference Ste 0.38 3.55 1539.40
Massey Linear model Sph 0.83 21.16 411.58
Massey GAM Sph 0.34 20.97 436.80
Massey Cubist Sph 0.46 14.39 548.35
Massey Random forest Sph 0.00 17.89 611.28
Massey Reference Sph 0.53 21.72 443.02
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Fig. 7. Maps of the absolute errors between the reference map and the downscaled maps.

opposed to the other methods. From a general standpoint, errors
seems to be comparatively larger on the West part of the map,
which corresponds to the foothills. The LM model is also affected
by water bodies that are present on the East part of the map. At
the Massey site, results show that the downscaling error is more
important on the river terrace located away from the river. The
maps also show that the CU model is missing a lot of the fine scale
variations contained in the reference map.

Fig. 8 and Table 3 compare the two values of the downscaled
maps against the values of the reference map. At both study sites,

there is generally good agreement between the downscaled and
the reference datasets, with CCC > 0.8 for all regression methods
tested. Additionally, no regression methods produced any bias.
However, some methods performed noteably better than others,
but the ranking of the regression methods changed depending on
the study site. At the Edgeroi site, CU and RF produced the best
results, with R-squared > 0.9, CCC > 0.95, and a RMSE close to 1 T/
ha. GAM followed, with a R-squared of 0.84, CCC of 0.91, and a
RMSEd < 2 T/ha. LM gave the worst performance statistics, with a
R-squared of 0.65, CCC of 0.8, and RMSE > 2.2 T/ha. At the Massey
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Table 3
Performance of the downscaling process using different regression methods.
Site Model RMSE (T/ha) R-squared CcC Bias (T/ha)
Edgeroi Cubist 1.07 0.91 0.96 0.00
Edgeroi GAM 1.46 0.84 0.91 0.00
Edgeroi Linear model 2.20 0.65 0.80 0.00
Edgeroi Random forest 0.86 0.94 0.97 0.00
Massey Cubist 2.88 0.71 0.83 —0.01
Massey GAM 1.70 0.90 0.95 —-0.01
Massey Linear model 1.92 0.88 0.94 —-0.01
Massey Random forest 1.83 0.88 0.93 —0.01

site, LM, GAM, and RF performed similarly. They produced down-
scaled values with a R-squared around 0.9, CCC>0.9, and
RMSE < 2 T/ha. The CU model, as it has already be observed above,
did not performed as well, with a R-squared of 0.71, CCC = 0.83,
and RMSE = 2.88 T/ha.

Fig. 9 shows the cumulative probability distribution of the abso-
lute error between the reference map and the downscaled maps. At
the Edgeroi site, it shows a rather clear hierarchy in terms of per-
formance, with RF giving the best results, followed by CU, GAM,
and LM. This figure allows to express the results in terms of risk:
the error threshold of 2 T/ha used by Malone et al. (2012) is
observed by 96% and 93% of the downscaled locations using the
RF and CU methods. This percentage falls to 85% and 68% for
GAM and LM. At the Massey site, the figure shows that GAM, RF,
and LM are very close in terms of prediction performance, with
82%, 77%, and 76% of the downscaled locations showing an
error < 2 T/ha. For the CU model, this proportion falls down to 55%.

4. Discussion

The comparison of four different regression methods on two
study cases showed that the best regression method to downscale
information varied. The RF and CU algorithms showed better
respect of mass-preserving constraint in both cases, but when
comparing the downscaled maps with the reference maps, results
from the Edegroi case study were the opposite of those from the
Massey case study. In the first study case, the best performance
was achieved using complex regression tree approaches (RF and

CU), whilst in the second case study, simpler regression methods
performed better (LM and GAM).

It is worth noting that the two study sites exhibited significant
differences. First, the change in resolution associated with the
downscaling process is more important for the Massey site (from
250 m to 10 m) than for the Edgeroi site (from 1000 m to 90 m).
Also, despite the base map at the Edgeroi site having a much larger
number of pixels than the Massey site base map (1689 vs. 38 pix-
els), it has a smaller inter-quartile range (4.35 vs. 6.49 T/ha) and a
smaller standard deviation (3.38 vs. 4.6 T/ha). With a small num-
ber of values to calibrate the model at the Massey site, it seems
that simple models such as LM or GAM outperform more complex
approaches such as CU and RF to capture the important variations
observed on the small farm. At the Edgeroi site, with more data to
calibrate regression models, CU and RF outperformed LM and GAM.

As the case studies presented above demonstrate, having the
ability to easily test different regression methods provides the
opportunity to find the best fit for purpose. While the original algo-
rithm relied on GAM to model the relationship between the coarse
resolution target variable and the fine resolution environmental
covariates, the R implementation of dissever is more flexible in
that it allows the user to test and use a very wide collection of pre-
dictive techniques. To do so, the caret package was used as a
wrapper to access a very important range of regression techniques.
To date, 192 regression methods can be tested, ranging from the
simple multivariate linear model, to more cutting edge algorithms
from the machine learning literature. At present, these regression
methods can be compared, but a possible enhancement to the
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Fig. 9. Cumulative distribution of the absolute errors for the Edgeroi and the Massey sites.

method would be to have them to collaborate, using ensemble
modelling. Ensemble modelling makes use of multiple prediction
techniques collaboratively in order to obtain better predictions
than using these techniques individually, since different prediction
models can capture different aspects of the data.

Another point on which further development needs to focus is
the ability to compare downscaled maps without reference maps.
While for the purpose of this study, reference maps were available,
in most applications this won’t be the case, and only the
mass-preservation could be assessed. However, performance
assessement methods used for pan-sharpening in the remote sens-
ing literature, such as indicators based on the entropy of the
restored image (Leung et al., 2001), could be trialled.

5. Conclusions

The original dissever method for downscaling spatial infor-
mation uses a GAM model to describe the relationship between a
coarse resolution variable and a suite of fine resolution covariates.
It has been extended so that the user can choose to model this rela-
tionship using a variety of regression techniques. To illustrate this,
two case studies have been considered, in Australia and in New
Zealand. Care must be taken when picking the more suitable
regression technique to succesfully downscale a given map. While
the more complex data mining approaches (Cubist, Random For-
est) produced the best results for the larger Australian dataset
(1689 pixels), on the smaller NZ site (38 pixels), simpler
approaches such as linear model and GAM provided the best
option for downscaling the coarse scale SOCS map down to farm
management scale. Moreover, the fine-scale covariates used for
the downscaling also need to be carefully selected, and explain
the variations in the variable that is downscaled.

The availibility of a downscaling strategy based on covariates is
an opportunity for adding value to national models, developed for
national inventory exercises during the Kyoto Protocol reporting
years. Using the increasing amount of high resolution environmen-
tal data recorded at the farm management scale, the disaggrega-
tion of these national models to farm scale will provide an initial
framework for land owners to audit changes in soil organic carbon
stocks through time, which is required by emerging carbon trading
schemes that aim to audit and reward management strategies that
maintain or sequester organic carbon into global soil resources.
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