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More Data or a Better Model? Figuring Out What 
Matters Most for the Spatial Prediction of Soil Carbon

Pedology

Modeling techniques used in digital soil carbon mapping encompass a variety 
of algorithms to address spatial prediction problems such as spatial non-sta-
tionarity, nonlinearity and multi-colinearity. A given study site can inherit one 
or more such spatial prediction problems, necessitating the use of a combina-
tion of statistical learning algorithms to improve the accuracy of predictions. 
In addition, the training sample size may affect the accuracy of the model 
predictions. The effect of varying sample size on model accuracy has not 
been widely studied in pedometrics. To help fill this gap, we examined the 
behavior of multiple linear regression (MLR), geographically weighted regres-
sion (GWR), linear mixed models (LMMs), Cubist regression trees, quantile 
regression forests (QRFs), and extreme learning machine regression (ELMR) 
under varying sample sizes. The results showed that for the study site in the 
Hunter Valley, Australia, the accuracy of spatial prediction of soil carbon is 
more sensitive to training sample size compared to the model type used. The 
prediction accuracy initially increases exponentially with increasing sample 
size, eventually reaching a plateau. Different models reach their maximum 
predictive potential at different sample sizes. Furthermore, the uncertainty of 
model predictions decreases with increasing training sample sizes.

Abbreviations: CCC, concordance correlation coefficient; DEM, digital eleva-
tion model; DSM, digital soil mapping; ELMR, extreme learning machine 
regression; GWR, geographically weighted regression; LMM, linear mixed 
model; MIR, mid-infrared; ML, maximum likelihood; MLR, multiple linear 
regression; NDVI, normalized difference vegetation index; NIR, near-infrared; 
QRF, quantile regression forest; REML, residual maximum likelihood; SSD, 
standardized squared deviation; TWI, topographic wetness index.

Soil carbon is a key property which controls soil quality, as it is closely related 
to the structural stability of soil aggregates, soil fertility and plant growth 
(Blanco-Canqui et al., 2013; McBratney et al., 2014). In addition, soil carbon 

has the potential to mitigate climate change (Minasny et al., 2017). Consequently 
it has been the focus of much digital soil mapping (DSM) research in recent times. 
The number of publications on mapping soil carbon has dramatically risen over the 
past decade (Grunwald, 2009). A review by Minasny et al. (2013) reveals that the 
digital mapping of soil carbon employs a diverse range of spatial modeling tech-
niques. In terms of complexity, these methods range from simple linear regression 
to complex machine learning techniques (Minasny and McBratney, 2016).

Modeling techniques used in soil carbon mapping encompass a variety of sta-
tistical methods to address spatial prediction problems such as spatial non-station-
arity, nonlinearity and multi-colinearity. Spatial non-stationarity describes a condi-
tion where by a general ‘global’ model fails to explain target variable variation in an 
area as the soil-landscape relationships are not constant in space (Brunsdon et al., 
1998). Nonlinearity describes a condition where the relationship between primary 
and secondary variables of the model is not directly proportional, but instead varies 
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Core Ideas

•	Sample size is the major driving factor 
of prediction accuracy of soil carbon.

•	The prediction accuracy increases 
at a decreasing rate with increasing 
sample sizes.

•	Larger sample sizes deliver equally 
good prediction accuracy despite the 
model type.

•	Model type affects the reproducibility 
(precision) of the predictions.

•	Uncertainty of model predictions 
decreases with increasing sample sizes.
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in a nonlinear fashion. In such situations, the relationships are af-
fected by various factors such as the configuration or relative loca-
tion other than the values of the variables. This is also termed as 
‘nonlinear spatial dependence’ (Vann and Guibal, 2001). Multi 
co-linearity occurs when two or more predictor variables in the 
spatial model are highly correlated. When multico-linearity ex-
ists, small changes in the data can cause significant changes in 
regression coefficients, which eventually lead to higher standard 
errors of regression coefficients. Furthermore, the regression coef-
ficients can have the incorrect sign and unreasonable magnitude 
under such circumstances (Kozak, 1997). Ultimately, soil carbon 
prediction problems are site specific as the soil carbon content is 
directly related to the spatial properties of the study site. A given 
study site can inherit one or more aforementioned spatial predic-
tion problems. Dealing adequately with these problems requires 
the use of a combination of modeling algorithms.

Similarly, the accuracy of a model also depends on the train-
ing sample size. A study focusing on decision tree-based mod-
eling algorithms by Morgan et al. (2003) revealed that the pre-
diction accuracy increases at a decreasing rate with sequentially 
increasing sample size. John and Langley (1996), Frey and Fisher 
(1999), and Provost et al. (1999) have conducted separate stud-
ies using spatial models other than data-mining based models, 
and came to similar conclusions as Morgan et al. (2003). Taking 
the analysis a step further, studies have been conducted by Kelley 
(2007), Kelley and Maxwell (2003) and Maxwell et al. (2008) to 
establish an optimal sample size for deriving the highest achiev-
able accuracy in estimating multiple linear regression parameters.

This study primarily focuses on identifying how diverse spa-
tial modeling techniques perform under varying training sample 
sizes, in terms of soil carbon predictions. We selected a range of 

spatial models commonly used in DSM and also emerging tech-
niques in machine learning literature to include multiple linear 
regression (MLR), geographically weighted Regression (GWR), 
linear mixed models (LMM), Cubist models, quantile regression 
forests (QRF), and extreme learning machine regression (ELMR).

We trained and tested the foregoing models using data collect-
ed across the Hunter Valley region, NSW, Australia. We compared 
the prediction accuracy of these models under varying sampling 
sizes. We also evaluated the prediction uncertainties of the models 
and the potential of model ensembles in lowering such uncertain-
ties. The remainder of this paper describes the methods used in 
detail, discusses the results, and draws conclusions on the perfor-
mance of model types with respect to the training sample size.

Methodology
Study Area

The study site is situated in the Lower Hunter Valley, NSW, 
Australia, in an area known as the Hunter Wine Country Private 
Irrigation District. This site is located in the southwest portion of 
the District and has an undulating topography with hills ascend-
ing to the south and west (Fig. 1). The area experiences a temper-
ate climate, with warm humid summers and relatively cool win-
ters. Rainfall is uniformly distributed with an annual average of 
740 mm. The underlying geology is comprised of predominantly 
Early Permian siltstones, marl and some minor sandstone and 
Late Permian siltstones, Middle Permian conglomerates, sand-
stones and siltstones in minor amounts (Hawley et al., 1995).

Soil Carbon Data
The term ‘soil carbon’ in this research refers to the total car-

bon content in the soil. The soil carbon data comes from two 

Fig. 1. Spatial distribution of observation points across the Hunter Valley study area in New South Wales, Australia. The layer is a hillshaded surface 
derived from the available digital elevation model.
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sources: (i) data collected between the years of 2001 and 2015 
during annual soil surveys performed by students in the Faculty 
of Agriculture and Environment, University of Sydney, and (ii) 
data from two PhD research projects (Malone et al., 2011) and 
(Odgers et al., 2011). Soil samples were collected from depths 
of 0 to 10 cm and 40 to 50 cm. These samples were taken from 
100-cm soil cores from each sampling location; topsoil samples 
were obtained from 0 to 10 cm and subsoil from 40 to 50 cm. 
Therefore, the 0- to 10-cm and 40- to 50-cm soil layers will 
henceforth be referred to as ‘topsoil’ and ‘subsoil’, respectively. 
As the soil carbon data have been collected over several years for 
different purposes, a consistent method has not been used for 
soil carbon measurement. Methods used include dry combus-
tion, and spectral inference from near-infrared (NIR) and mid-
infrared (MIR) diffuse reflectance measurements.

Dry combustion of the soil samples was conducted using an 
ElementarVario Max CNS macro elemental analyzer (Elementar 
Analyses System GmbH, Hanau, Germany) where the carbon 
content is determined by the loss on ignition at 400°C (Zobeck 
et el., 2013). The standard deviation of the soil carbon mea-
surement of the ElementarVario Max CNS analyzer is 0.001 to 
0.004 g 100 g–1 based on standard soil samples.

Soil carbon content was spectrally inferred using the absorp-
tion spectrum produced after scanning the soil sample with an 
analytical spectral instrument (i.e., NIR or MIR). The absorp-
tion spectrum has a characteristic shape based on the constituents 
of the soil, and it is then used to infer the soil carbon content 
via calibration models. NIR spectroscopic measurements were 
obtained using an Agrispec portable spectrophotometer with a 
contact probe attachment (Analytical Spectral Devices, Boulder, 
CO) and Bruker TENSOR 37 Fourier Transform MIR spec-
trometer was used to measure the MIR spectral reflectance of soil 
samples. The collected NIR/MIR spectra were pre-processed to 
remove the noise, followed by normalizing before using them 
for the calibrations. Calibration models were derived using a re-
gression tree model called Cubist (Quinlan, 1992; Minasny et 
al., 2008), where spectral data is linked with soil carbon content 
measured via the dry combustion method. The calibration data 
are from a library of 316 soil profile samples from the wheat-
belt of southern New South Wales and northern Victoria 
(Geeves et al., 1995). See Minasny et al. (2008) for a descrip-
tion of the MIR spectral calibration model.

The final database was a pool of dry combusted, and 
spectroscopically inferred soil carbon data. There were 1435 
and 1027 samples in total for the top- and subsoils, respec-
tively. Figure 2 shows the experimental exponential variogram 
of square-root transformed soil carbon for the two soil layers. 
The topsoil samples had less variability in carbon content com-
pared to the subsoil samples. Also the range for topsoil carbon 
is about the one-fifth of the subsoil carbon.

Environmental Covariates
The amount and the spatial distribution of soil carbon and 

other soil properties are driven by environmental factors such 

as climate, lithology, topography, flora and fauna, space, and time. 
This relationship between soil and other spatially referenced fac-
tors is described by the SCORPAN spatial prediction function 
(McBratney et al., 2003). We can improve on this general model 
by selecting the most important auxiliary variables to build a more 
parsimonious spatial model. Model types such as Random Forest 
(Wheeler and Tiefelsdorf, 2005) and Cubist are embedded with 
methods to tune parameters—for example the number of trees to 
be constructed or the number of environmental variables to con-
sider in each model fitting procedure in the case of Random Forest 
models—optimally using inbuilt cross-validation options (Genuer 
et al., 2010), while some (e.g., MLR, GWR and LMM) are not. 
As this study is designed to compare several modeling techniques, 
as a generalization and to improve calibration efficiency, auxiliary 
variables (environmental covariates) were selected prior to model 
building. The covariate pool consisted of 22 covariates. Table 1 
provides a description of data sources, raster resolution and defini-
tion of all covariates that were considered in this study.

Correlation coefficients among covariates and stepwise re-
gression were used to select the most parsimonious model for 
the study. Highly correlated covariates were removed before pro-
ceeding into stepwise regression to avoid issues of multi-colinear-
ity. Stepwise regression can be implemented as a combination of 
forward and backward elimination of predictor variables where 
the predictors with higher probabilities than the critical value 
are removed in a step wise fashion. Therefore, the final model 
of the stepwise regression contains the most statistically signifi-
cant variables that best describes the soil carbon variability of the 
study site. Accordingly, altitude above channel network, analyti-
cal hillshade, Landsat band 5, elevation, land cover, normalized 
difference vegetation index (NDVI), plan curvature, topograph-
ic wetness index (TWI), slope direction and terrain roughness 

Fig. 2. Experimental variogram of squareroot transformed soil carbon content 
of topsoil and subsoil.
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index were selected as most significant covariates to be used for 
all considered model types in this study.

Spatial Models
A range of spatial models were chosen to model the distri-

bution of soil carbon. The MLR is the simplest form of spatial 
model which attempts to minimize the sum of squares to achieve 
the maximum prediction accuracy. It operates under the assump-
tions of normality, spatial linearity and spatial stationarity of pre-
dictor variables (Hastie et al., 2001).

The GWR is an extended form of MLR which addresses 
the spatial non-stationarity of predictor variables by allowing the 
coefficients to vary geographically instead of using global values 
as in the case of MLR (Brunsdon et al., 1998).

Unlike GWR and MLR, LMMs allow the response variable 
to have different distributions other than the normal distribu-
tion. The LMMs incorporate the spatial stochastic process un-
explained by the deterministic trend of the predictor variables. 
Usually maximum likelihood (ML) or residual maximum like-
lihood (REML) techniques are used to infer the parameters of 
the spatial stochastic process (Lark and Cullis, 2004; Lark et al., 
2006). The ML and REML approaches give unbiased robust 
estimates directly from the data unlike other methods, such as 
residual kriging, which separately model the stochastic process 
through the residuals (Minasny and McBratney, 2007).

Cubist handles nonlinearity between target and predictor 
variables via recursive partitioning of the spatial model into lo-

cal models, which capture local linearity of predictor variables 
in different regions of the geographical space. Cubist is an en-
semble of local models designed to deliver more accurate outputs 
with relatively lower uncertainty (Holmes et al., 1999; Wang and 
Witten, 1997).

Quantile regression forest (QRF) is a non-parametric 
technique used to estimate the conditional quantiles of multi-
dimensional predictor variables; hence, QRF is able to estimate 
more accurate summaries of the conditional distribution of the 
response variable (Meinshausen, 2006).

Extreme learning machine regression (ELMR) (Huang et 
al., 2006) is a recently developed machine learning algorithm, 
which is popular due to its comparatively fast learning speed. It 
minimizes the training error through improved generalization 
which avoids perturbation and multi-linearity problems (Ding 
et al., 2014; Huang et al., 2006).

The following sections describe additional theoretical de-
tails about each of the model types considered in this study.

Multiple Linear Regression
The MLR is a relatively simple and frequently used model. 

It is assumed that the regression function E (Y\X) is linear, or the 
linear model is a reasonable approximation. The linear regression 
model can be expressed as:

( ) 0  i jxS pj Xb b= +∑ = � [1]

Table 1. Environmental covariates with their sources, resolution, and definitions.

Covariate† Source Spatial scale Definition

Landsat Bands 1,2,3,4,5, 7 Landsat 7-(2012) 30 m Visible (reflected light) bands in the spectrum of blue, green, red, near-
infrared (NIR), and mid-infrared (MIR)

Normalized difference 
vegetation index (NDVI)

Landsat 7 30 m Ratio, (NIR–Red)/(NIR+Red)
[(Band4–Band 3)/(Band4+Band 3)]

Landcover NSW Dep. of Land and Property 
Information, Australia

25 m Physical cover of the study site

Digital elevation model 
(DEM)

NSW Dep. of Land and Property 
Information, Australia

25 m Digital elevation model of the area- representation of the terrain’s surface

Plan curvature DEM 25 m Curvature types highlight different aspects of the shape or curvature of the 
slope. Plan curvature is perpendicular to the direction of the maximum slope 
& relates to the convergence and divergence of flow across a surface

Profile curvature DEM 25 m Parallel to the slope and indicates the direction of maximum slope. Affects 
the acceleration and deceleration of flow across the surface.

Topographic wetness index 
(TWI)

DEM 25 m ln(a/tanb), a = local upslope area draining through a certain point per unit 
contour length, tanb = local slope (Sørensen et al., 2006). Known as the 
tendency of a grid cell in the DEM to accumulate water.

Altitude above channel 
network

DEM 25 m Altitude for each grid cell of the DEM above the nearest streamline channel

Analytical hill-shading DEM 25 m Hypothetical illumination surface derived using azimuth and altitude of the 
sun. A relative measure of incident light for analysis.

Light insolation NSW Dep. of Planning and 
Environment, 2016

25 m Amount of solar radiation energy received by a surface area in a particular 
time period

Mid slope DEM 25 m Any position between the top and the bottom of the slope.

Slope direction DEM 25 m Direction of the slope

Aspect diretion DEM 25 m Slope facing direction

Terrain roughness index (TRI)DEM 25 m Amount of elevation difference between  
adjacent cells of a digital elevation grid

Catchment area DEM 25 m Area from which rainfall flows into a river
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where b0 is the intercept of the linear model, Xi represents the 
auxiliary variables or covariates, bj represents the unknown coef-
ficients for the auxiliary variables, and p is the number of auxiliary 
variables (Hastie et al., 2001). Regression methods explore a possi-
ble functional relationship between the target variable (soil carbon 
content) and explanatory variables (environmental covariates).

Geographically Weighted Regression
The GWR (Brunsdon et al., 1998) is an extended form of 

traditional regression and accounts for spatial non-stationarity 
by allowing model coefficients to vary spatially. The regression 
equation can be given as:

0
1

 
m

i i ik ik i
k

S a a x e
=

= + +∑ � [2]

where Si is the observation of the dependent variable at location 
i, aik is the value of the kth parameter at location i, and the error 
term, ei, is normally distributed with mean zero. For each loca-
tion, independent local models are calibrated. The observations 
which are closer to location i have a greater impact in determin-
ing the parameter values. The impact is estimated via a weight-
ing scheme using a kernel function. In this study the more com-
monly used Gaussian kernel function was used:
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where dij is the distance between observations i and j, and the 
bandwidth b is used to exclude observations that exceed the 
distance threshold. The weighting of the data will gradually de-
crease exponentially as the distance between i and j increases; this 
is similar to an exponential variogram model. The GWR model 
will gradually reduce to an ordinary least squares (Hwang et al., 
2011) model as the bandwidth increases, and will suffer from 
over-fitting if the bandwidth decreases to zero. The optimum, b, 
is computed using cross validation by minimizing the following:

{ }2ˆCVSS( ) ( )= −∑ i i
i

b S S b � [4]

where ( )îS b  is the predicted value respective to the optimum 
band with b.

The GWR has issues of multi-colinearity caused by corre-
lations among local regression coefficients. These correlations 
can occur between pairs of local regression coefficients at one 
location, or correlations among two sets of local regression coef-
ficients (Wheeler and Tiefelsdorf, 2005).

The GWR has been widely used in DSM literature and the 
studies by Mishra et al. (2010); Song et al. (2016); Zeng et al. 
(2016) are examples for the use of GWR for soil carbon mapping.

Cubist Models
This is a variation of the regression tree model, where the pre-

diction is based on linear regression models instead of discrete val-
ues at the terminal nodes. Cubist models spatial non-stationarity 

indirectly by producing a set of ‘if–then’ rules, where each rule has 
an associated multivariate linear model. Whenever a set of covari-
ates matches a rule’s conditions, the associated model is used to 
calculate the predicted value. The algorithm was first described 
by Quinlan (1992), then followed by extended descriptions from 
Wang and Witten (1997), and Holmes et al. (1999). Briefly, the 
Cubist algorithm builds a ‘tree’ by splitting the data based on the 
predictors so that it minimizes the intra-subset variation in the 
class (Holmes et al., 1999). The model associated with each rule 
is computed using linear least-squares regression. Finally, the linear 
model is adjusted and simplified to reduce absolute error. Cubist 
has been used effectively in various soil prediction and digital map-
ping procedures (Bui et al., 2009; Henderson et al., 2005; Kidd et 
al., 2014; Minasny et al., 2008; Viscarra Rossel et al., 2014).

Quantile Regression Forests
While the prediction of parametric models is an estimate 

of the conditional mean of the response variable, the QRF pre-
dicts the quantiles which form a more complete summary of the 
conditional distribution of the response variable. Thus, the QRF 
(Meinshausen, 2006) is a non-parametric multivariate regression 
method which builds on the Random Forest decision tree en-
sembles (Breiman, 2001). Similar to Cubist, the regression trees 
are constructed by recursive partitioning. Nevertheless, Random 
Forest is a modified version of bootstrapped trees where the pre-
dictions are the results of tree ensembles. Each tree is grown on 
a random subset of training data. The main difference between 
QRF and Random Forest is, for each node in a tree, only the 
mean value of the observations is preserved in Random Forest 
while QRF keeps all values that fall into the node to assess the 
conditional distribution. The model prediction, i.e., the con-
ditional distribution, is estimated by the weighted distribution 
of observed response variables. This method has been used by 
Rudiyanto et al. (2016) to map peat thickness in Indonesia.

Linear Mixed Models
The spatial model is composed of fixed and random com-

ponents. The fixed effects, or deterministic trend, u(s), describes 
the spatial variation of the soil carbon explained by the input co-
variates. The random component (stochastic residuals), u(s) + 
e(s), is the unexplained spatial variation (Cressie, 1991).

0

( )  u  ( )
p

j j
j

S x X xb e
=

= + +∑ � [5]

The term e represents both independent measurement er-
rors and microscale variation. This is geostatistically termed as 
the nugget effect of the spatial variogram. Cressie (1991) ex-
plained that the nugget effect of the spatial variogram is made up 
of two non-negative components, 2

0s  (microscale variance of the 
actual value of a variable) and 2

es  of the observed value, u is a spa-
tially dependent second order random process with the variance 
of ξs2 which can be estimated via a suitable covariance function.

The current study used residual maximum likelihood 
(REML), which is an optimization algorithm, to derive unbiased 
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model parameters directly from the data. Linear mixed models 
have been used in the DSM studies of Rawlins et al. (2009) and 
Karunaratne et al. (2014) to analyze the sampling error of soil 
properties and to map soil organic carbon fractions, respectively.

Extreme Learning Machine Regression
Extreme learning machine methods are feed forward neu-

ral networks designed for classification or regression with single 
layer of hidden nodes. The ELMR adopts a tuning-free strategy 
for feed forward neural networks. The ELMR is flexible with 
hidden activation functions and allows the use of nonlinear 
piecewise continuous functions and their linear combinations. 
Therefore, ELMR has superior fast learning speed and better 
generalization than other comparable algorithms such as support 
vector machines (or SVM) and its variants (Huang et al., 2006).

The relationship between input and output of single hidden 
layer feed-forward neural network (or SLFN) systems is given by:

( )
1

  for =1, ...,,  
N

i i i i j
i

g b t j N
=

+ =⋅∑ w x


b � [6]

where wi is the weight vector between the ith neuron in the hid-
den layer and the input layer; bi, is the bias of the ith neuron in 
the hidden layer; xi is the jth input data vector; g(.) is an active 
function of the hidden neuron; bi is the weight vector between 
the ith hidden neuron and the output layer, N ; N  is the num-
ber of hidden nodes; and N is number of training samples. The 
above equation can also be written as:

T=Hb � [7]

where H is the hidden layer output matrix of the network.
The ELMR approach has two operational phases: an ini-

tialization phase and the sequential learning phase. In the ini-
tialization phase, the values of wi and bi are not tuned during 
training. Random values are assigned for wi and bi according to 
any continuous sampling distribution. This information is then 

passed to the learning phase where the weight matrix of hidden-
to-output (bi) is estimated using following equation:

1 T−=Hb � [8]

where H–1 is the Moore–Penrose generalized inverse of the hid-
den layer output matrix H. Huang et al. (2006) and Huang et al. 
(2015) provide more detailed descriptions of ELMR.

Neural networks have been used routinely in DSM (e.g., 
Rudiyanto et al., 2016), however only a few studies have used 
ELMR for soil carbon prediction with a recent study from Masri 
et al. (2015).

Training and Validation of Spatial Models
Model Training and Testing

To test how the different spatial modeling techniques per-
formed under varying training sample sizes, the dataset for each 
soil layer was randomly split into training and testing sets. In this 
study we used a 70:30 training/testing data split. The training set 
was used to model the site specific relationship between the soil 
carbon and the environmental predictors. The held-out test set 
was used to assess the goodness of fit of the models using accuracy 
indicators. The training set was further subdivided into differ-
ent sample sizes. Each sample size had 10 realizations of repeated 
sampling. Each realization was tested with the same test set using 
accuracy indicators. The training sample sizes were 100, 200, 300, 
400, 500, 700, 800, 900, and 1000 for the topsoil, and 100, 200, 
300, 400, 500, and 700 for the subsoil. The sample sizes for soil 
layers differed as there were fewer subsoil samples available com-
pared to the number topsoil samples. Accordingly, each modeling 
algorithm MLR, LMM, Cubist, QRF, GWR, and ELMR were 
trained and tested for all sample sizes across the two soil layers. 
Figure 3 presents the distributions of model covariates for all 
sample sizes for the topsoil. The distributions of a covariate for all 
sample sizes have been plotted on the same plot space. According 
to these histograms, there is no clear deviation between the distri-
butions of a covariate between the sample sizes for both soil layers.

�Prediction Accuracy of Models under 
Progressive Sample Sizes

Goodness-of-fit statistics used in this study included the 
root mean squared error (RMSE), Lin’s concordance correlation 
coefficient (CCC) (Lin, 1989), standardized squared deviation 
(SSD), and prediction variance. These were calculated for each 
simulation of the spatial models with respect to the different 
sample sizes and model type.

The RMSE is a measure of prediction accuracy of the mod-
el. Lower RMSE values indicate higher prediction accuracy. The 
CCC evaluates the fidelity to which observed and predicted 
pairs fall on the 45° line when they are plotted against each other. 
It is a determinant of both accuracy and precision of the predic-
tions. The CCC is calculated using following equation:

( )22 2

2
CCC

   

x y

x y x y

rs s

s s m m
=

+ + − � [9]
Fig. 3. Histograms of covariates plotted for different training sample sizes.
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where r is the correlation coefficient, sx and sy are the variances 
of observed (x) and predicted (y) values, and mx and my are the 
respective means. The CCC is scaled between -1 and 1, with the 
latter implying perfect agreement and the former implying per-
fect reverse agreement.

The SSD(x) measures the prediction model goodness of fit:

( )
( ) ( ){ }2

2
SD

ˆ
S  

x

S x S x
x

s

−
= � [10]

where S(x) is the measured value, Ŝ( )x  denotes the predicted 
value with prediction variance 2

xs . A value closer to 1 for mean 
SSD(x) indicates a good estimate (Voltz and Webster, 1990) and 
a median value closer to 0.455 (Lark, 2000) symbolizes kriging 
with a correct variogram.

Estimations of Prediction Uncertainty
Prediction uncertainty is defined as the variability of model 

predictions. The uncertainty of model predictions are caused by 
uncertain model parameters and inputs or approximate and/or 
incomplete treatment of the spatial relationship of the process 
being modeled (McKay, 1995). For example this study assumed 
a linear relationship between soil carbon and the environmental 
covariates in MLR, however, it can be nonlinear. The stochastic 
variability of the processes can also contribute to the uncertainty 
of soil carbon predictions. Hence the uncertainty of spatial mod-
el predictions is comprised of three major types of uncertainties; 
input uncertainty, structural uncertainty and parameter uncer-
tainty (McBratney et al., 2002).

Prediction variance is considered as a measure of uncertain-
ty of model predictions caused by the uncertainty of input pa-
rameters of the model. We calculated the variance of the model 
predictions to compare the reliability of the model predictions in 
terms of the type of model and training sample sizes. The predic-
tion variance is given by:

{ }( )2
2

 1

1 ˆ ˆ ( ) ( )
n

x i
S x x

n
s m

=

 = − 
 

∑ � [11]

where ( )ˆ xm  is the mean of predicted values.
The GWR and LMM prediction functions (in relevant R 

statistical software packages) are embedded with options to cal-
culate the prediction variance. The MLR and QRF prediction 
functions allow calculating standard error and/or standard devia-
tion of predictions where the prediction variance is the squared 
error of the standard error. For Cubist, ELMR and MLR models, 
the prediction variance was calculated using the repeated sam-
pling for each size of the training samples. For Cubist and ELMR 
models the prediction variance was calculated using Eq. [11] for 
repeated samples where n is the number of repeats. For GWR, 
LMM, MLR, and QRF, the prediction variance is the average of 
prediction variances of the repeats.

Model Ensembles
Model ensembling is the combining of the predictions of 

multiple learning algorithms. The resulting ensemble is generally 

more accurate than any of the individual algorithms within the 
ensemble (Opitz and Maclin, 1999). Therefore, model ensembles 
could be a useful technique to enhance the accuracy of soil carbon 
predictions by combining spatial predictions of several models.

Bagging, boosting, and stacking are commonly used meth-
ods for ensembling (Opitz and Maclin, 1999). In this study we 
used stacking, where the predictions from the MLR, GWR, 
LMM, Cubist, QRF and ELMR models were combined using 
different weighting for each algorithm. Weighting was based on 
the validation R2 values where models with higher R2 were given 
a higher relative weight than the models with lower R2 when 
combining model predictions to form the stack. Accordingly, we 
tested the performance of all possible combinations of the above 
algorithms using the accuracy indices described previously with 
regard to prediction accuracy under progressive sample sizes. 
The stacks consisted of 6, 5, 4, 3, and 2 layers of model predic-
tions in all possible combination of the models being tested.

Spatial Prediction of Soil Carbon
The ultimate objective of the model training was to use the 

trained model to predict the carbon content at un-sampled loca-
tion within the study area. Therefore, to compare the effect of 
sample sizes and models, the spatial distribution of soil carbon in 
the study area was predicted using LMM and GWR models for 
three selected sample sizes: 300, 500, and 1000 for the topsoil. 
The LMM and GWR models were selected for mapping as they 
gave the highest prediction accuracy. The trained models for 
each sample size were used to predict carbon content to the same 
spatial resolution of the environmental covariates (25- by 25-m 
cell resolution). Additionally, we also mapped the prediction 
variance of each model to assess uncertainty of the model predic-
tions with respect to the training sample sizes and model type.

Results
Covariates Selection for the Spatial Model

Pearson correlation analysis showed that altitude above 
channel network terrain roughness index, and elevation covari-
ates had positive correlation whereas NDVI had negative cor-
relation with soil carbon for the topsoil (Fig. 4). Although the 
other selected covariates had a relatively smaller correlation with 
soil carbon, they were still influential covariates in the regression 
analysis as the probability values for these covariates were less 
than the critical value (0.05). Therefore, they were included in 
the spatial model. Plan curvature, slope direction, TWI, altitude 
above channel network and digital elevation model (DEM) ex-
hibited a strong positive correlation with soil carbon in the sub-
soil layer whereas TWI displayed a negative correlation.

Comparison of Performance Indicators across 
Models and Training Sample Sizes
Root Mean Squared Error

Each model for specified soil layers had ten replicates of 
validation statistics for each training sample size. We have de-
scribed the variations in RMSE values of replicates for validation 
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using the boxplots (Fig. 5). For most of the models the variation 
in RMSE between replicates was high at small training sample 
sizes. At small sample sizes (<300) this variation was around 5 
to 10% while the difference for higher training sample sizes was 
negligible for both soil layers.

For topsoil, average RMSE values of MLR ranged be-
tween 0.6 and 0.46 between the 100 and 1000 sample sizes. 

Accordingly, there was a 14% improvement in the accuracy of 
predictions for MLR with increasing training sample size. The 
respective RMSE values for GWR, LMM, QRF, Cubist and 
ELMR were 0.5–0.48, 0.50–0.46, 0.49–0.44, 0.50–0.46 and 
0.41–0.37. The percentage accuracy improvements for the re-
spective models were 2, 4, 5, 4, and 3%. In addition, the RMSE 
values for each sample size for all models except ELMR had very 

Fig. 4. Correlation among the soil carbon and environmental covariates for topsoil and subsoil layers.

Fig. 5. Boxplot of RMSE values on the validation data (left), and learning curves (right).
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similar values. ELMR had approximately 10% lower RMSE val-
ues for each sample size compared to the other models.

For the subsoil, average RMSE values for MLR improved 
from 0.55 to 0.47 when the training sample size increased from 
100 to 700. This indicates an 8% improvement in prediction ac-
curacy for MLR. The respective values for GWR, LMM, QRF, 
Cubist, and ELMR were 0.52-0.43, 0.50–0.43, 0.56–0.51, 0.59–
0.51 and 0.43–0.39. Therefore, the accuracy enhancement be-
tween the lowest and highest sample sizes for these models are 9, 
7, 5, 8 and 4%, respectively. The RMSE values between models for 
each sample size were very similar with the exception of ELMR. In 
the topsoil layer ELMR had an approximately 10% lower RMSE 
value for all sample sizes compared to the other models.

Learning Curves
Learning curves can be defined as a measure of predictive 

performance on a given domain as a function of some measure 
of varying amounts of learning effort. The most common form 
of learning curves shows predictive accuracy on the test data set 
as a function of the number of training samples (Perlich, 2010).

The learning curves for each model for both soil layers 
were computed using the average RMSE values of replicates of 
each training sample size (Fig. 5). According to this figure, the 
learning curves had two clusters. One cluster was comprised of 
ELMR and all other models were in the other cluster. This shows 
that ELMR performed very differently to the other models. All 
other models converged into steady state after a certain sample 
size while ELMR convergence still fluctuated with samples sizes 
nearing and equal to the maximum sample size.

Concordance Correlation Coefficient 
Figure 6 presents the average validation CCC and associ-

ated standard error of replicates for each sample size for all de-
scribed modeling scenarios for both soil layers. For the topsoil, 
the average CCC of MLR improved from 0.24 to 0.36 when the 
training sample sizes increased from 100 to 1000. The respec-
tive statistics for the other models, Cubist, GWR, LMM, QRF 
and ELMR were 0.22–0.27, 0.28–0.41, 0.31–0.43, 0.18–0.35, 
and 0.17–0.19. Therefore, prediction accuracy and precision 

gains of the models for the increasing training sample sizes were 
12, 5, 13, 12, 17, and 2% for MLR, Cubist, GWR, LMM, QRF 
and ELMR, respectively. For each sample size, the average CCC 
values increased in an ascending order according to the manner; 
ELMR < QRF < Cubist < MLR < GWR < LMM. Accordingly, 
ELMR had the lowest average CCC while LMM had the highest 
for each training sample size. The differences between the low-
est and highest CCC values between these two models were 14, 
18, 17, 15, 19, 22, 21, 26, and 22% for the sample sizes 100, 200, 
300, 400, 500, 700, 800, 900, and 1000, respectively.

For subsoil the average CCC values for all models and for 
all sample sizes were higher than the topsoil. Nevertheless, the 
patterns between the sample sizes and the models were similar 
to the topsoil. ELMR had the lowest and LMM has the high-
est CCC values while the order of accuracy gain of the models 
followed that of the topsoil. The differences between the lowest 
and highest CCC values between these two models were 34, 35, 
38, 35, 35, and 31%, respectively, for the sample sizes 100, 200, 
300, 400, 500, and 700.

Standardized Squared Deviation
Bias, mean SSD, median SSD and the prediction variances 

of the model validations for both soil layers respective to the 
model type and sample sizes are given in Table 2. The ELMR 
had the highest biased predictions while LMM had the lowest 
biased predictions for both soil layers. There was no clear dif-
ference between the bias values of different sample sizes of each 
model except for Cubist and ELMR models of the subsoil.

A mean SSD of 1 indicates an accurate prediction. The 
mean SSD values were closer to 1 for GWR, LMM and QRF for 
both soil layers (ranges 0.85–1.13 for the topsoil, and 0.0.85–
1.17 for the subsoil). The MLR, Cubist and ELMR had values 
further from 1 for both soil layers. The values ranged between 
0.63 to 1.33 for the topsoil and from 0.37 to 0.75 for the sub-
soil. Median SSD values followed a similar pattern for soil layers, 
models and sample sizes. Accordingly, GWR, LMM and QRF 
had values closer to best estimate of 0.455. It is important to note 
that there were no clear differences of mean and median SSD 
values for varying training sample sizes of each model.

Fig. 6. The concordance correlation coefficient values and their standard errors of the models for topsoil and subsoil layers.
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Prediction Variance
The prediction variances were quite similar between sam-

ple sizes of each model for both soil layers. The ELMR had the 
lowest prediction uncertainty while Cubist had the highest pre-
diction variance for topsoil for all sample sizes. For the subsoil, 
MLR had the highest prediction uncertainty while LMM and 
GWR displayed a similar low level of prediction uncertainty. 
There were no noticeable differences between the prediction 
variances among the sample sizes for all model types.

Model Ensembles
Among the tested ensembles, neither model stacks gave a 

significant improvement in the accuracy. The highest accuracy 
gain was 2% delivered by an ensemble of LMM and GWR mod-
eling algorithms.

Spatial Prediction of Soil Carbon
Figures 7 and 8 demonstrate the LMM and GWR predict-

ed spatial distribution of topsoil carbon content over the study 
area. Overall the spatial patterns of the soil carbon content were 
consistent across the models and sample sizes. The northern part 

of the study area had lower carbon content and it gradually in-
creased toward the south. The prediction variance decreased as 
the training sample size increased for both modeling scenarios.

Discussion
Model Type and Training Sample Size

This study examined how the accuracy of soil carbon pre-
dictions depends on the model type and training sample size. 
The RMSE values across the models for any given sample size 
were very similar. For the chosen study site it appears that the 
models have a similar prediction accuracy. Prediction accuracy 
increases with the increasing sampling size for all models, which 
implies that, for this study site, soil carbon prediction accuracy 
is more sensitive to training sample size than the type of spatial 
model. ELMR is an exception here as it scored the lowest predic-
tion error across all sample sizes, while its prediction accuracy is 
less sensitive to the training sample size.

When the RMSE values between models are compared, 
LMM predictions were comparatively more accurate than MLR, 
GWR, QRF and Cubist model predictions. The LMM is the 
only model that considers the spatial auto-correlation of the 

Table 2. Bias, mean standardized squared deviation (SSD), median SSD, and prediction percentage, falling within 95% confidence 
interval limits of each model for the topsoil (0-10 cm) and subsoil (40-50 cm) layers.

 
 
Model†

0–10 cm 40–50 cm

Sample size Sample size

100 200 300 400 500 700 800 900 1000 100 200 300 400 500 700

Bias

MLR -0.03 -0.01 0.01 0 0 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.03

GWR 0.01 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.04 0.02 0.01 0.01 0.01 0

LMM 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.03

QRF -0.01 0.01 0.01 0.01 0 0 0 0 0 0.04 0.03 0.02 0.03 0.02 0.02

Cubist 0.03 0.04 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.08 0.08 0.08 0.01 0.01 0.01

ELMR 0.15 0.19 0.14 0.14 0.15 0.17 0.16 0.18 0.20 0.11 0.05 0.03 0.02 0.01 0.01

Mean SSD

MLR 1.33 0.84 0.72 0.74 0.75 0.69 0.69 0.7 0.7 0.59 0.38 0.37 0.39 0.42 0.37

GWR 0.97 0.93 0.89 0.86 0.86 0.84 0.87 0.87 0.86 1.02 0.95 0.92 0.91 0.92 0.85

LMM 1.13 0.91 0.93 0.87 0.86 0.87 0.88 0.85 0.85 1.17 0.92 0.98 0.99 1.02 1

QRF 0.97 1.07 0.96 0.96 0.94 0.95 0.94 0.94 0.94 1.17 1.09 0.98 1 0.95 0.92

Cubist 0.82 0.69 0.67 0.68 0.67 0.66 0.67 0.66 0.67 0.69 0.64 0.63 0.66 0.68 0.56

ELMR 0.84 0.66 0.71 0.69 0.65 0.63 0.66 0.66 0.64 0.75 0.71 0.66 0.58 0.6 0.46

Median SSD

MLR 0.27 0.25 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.22 0.14 0.14 0.15 0.15 0.13

GWR 0.32 0.32 0.31 0.3 0.3 0.3 0.3 0.31 0.32 0.41 0.38 0.36 0.38 0.35 0.35

LMM 0.41 0.34 0.35 0.31 0.3 0.32 0.31 0.3 0.29 0.44 0.36 0.37 0.38 0.36 0.36

QRF 0.34 0.34 0.34 0.33 0.33 0.33 0.33 0.33 0.33 0.51 0.53 0.48 0.49 0.49 0.48

Cubist 0.25 0.24 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.22 0.2 0.21 0.21 0.22 0.18

ELMR 0.27 0.25 0.25 0.25 0.24 0.25 0.25 0.25 0.25 0.26 0.27 0.27 0.23 0.25 0.2

Prediction Variance

MLR 0.29 0.31 0.33 0.31 0.3 0.32 0.32 0.31 0.31 0.62 0.79 0.65 0.6 0.54 0.6

GWR 0.26 0.26 0.26 0.26 0.26 0.26 0.25 0.25 0.24 0.49 0.48 0.51 0.5 0.49 0.49

LMM 0.23 0.25 0.24 0.25 0.24 0.23 0.23 0.23 0.23 0.22 0.23 0.20 0.20 0.19 0.19

QRF 0.27 0.27 0.26 0.26 0.26 0.26 0.25 0.25 0.25 0.28 0.26 0.28 0.27 0.27 0.27

Cubist 0.31 0.34 0.36 0.35 0.35 0.36 0.35 0.35 0.35 0.49 0.48 0.51 0.5 0.49 0.49

ELMR 0.2 0.2 0.17 0.18 0.17 0.18 0.18 0.19 0.19 0.23 0.21 0.21 0.21 0.21 0.21
† MLR, multiple linear regression; GWR, geographically weighted regression; LMM, linear mixed model; QRF, quantile regression forest; ELMR, 
extreme learning machine regression.
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predictor variable while other models only account for the de-
terministic component. Spatial autocorrelation appears to be an 
essential component in predicting soil carbon content for this 
particular study site.

Learning curves provide a clear picture of a model’s behavior 
with increasing sample sizes. When the sample size is increased, the 
model prediction accuracy increased at a decreasing rate. Learning 
curve of each modeling algorithm fully converged at different 
sample sizes. This indicates that the number of samples required 
for the optimum performance depends on the model type. For ex-
ample, MLR and GWR reached their steady state of convergence 
very early while other models were still converging. In general, this 
particular study site required more than 15 samples for a square ki-
lometer to achieve an optimum predictive performance. It is note-
worthy that the same model fully converges at a different sample 
size for the top and subsoil layers. For example, GWR fully con-
verged at 700 data points for the topsoil but for the subsoil, the full 
convergence was not reached with this sample size.

According to the accuracy and reproducibility of predic-
tions given by CCC values, LMM, GWR, and MLR delivered 

more accurate and precise predictions than the QRF, Cubist, 
ELMR models. These statistics suggest that accuracy and re-
peatability of soil carbon predictions depend on the model 
type (Somarathna et al., 2016). Although ELMR had the low-
est CCC, it also had the lowest RMSE, most likely due to the 
fact that ELMR predictions were heavily biased compared to 
the other models (Table 2). The CCC values also depend on the 
training sample size; however, the differences of CCC between 
the models were greater than the gain of CCC between progres-
sive sample sizes. Therefore, reproducibility or precision of soil 
carbon predictions for the study site mostly depended on the 
model type than the training sample size.

The SSD values are also accuracy indicators of predictions. 
Mean SSD values (Table 2) revealed that for both soil layers, 
GWR, LMM and QRF generated equally good estimates for all 
sample sizes and MLR, Cubist, and ELMR resulted in compara-
tively poorer estimates. The SSD values decreased with increas-
ing training sample size. These values suggest that the prediction 
variance increases with the increasing number of training points. 
This may have been caused by increasing number of outliers (ob-

Fig. 7. LMM predicted carbon content (%) and the associated prediction variance (bottom) for the sample sizes 300, 500, and 1000 for topsoil.
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servations that lies an abnormal distance from other values in a 
random sample from a population) as the number of samples 
grew. The median values of the SSD were much lower than 0.455 
for all models and sample sizes. This indicates all models tended 
to overestimate the predictions. The calculated bias values also 
suggest that all tested models in this study had a propensity to 
overestimate. The comparison of SSD values between the mod-
els and the training sample sizes revealed that the differences be-
tween the models were relatively higher than the differences be-
tween sample sizes. This emphasizes that some models (GWR, 
LMM, QRF) generated more accurate estimates of soil carbon 
than other models (MLR, ELMR).

Prediction variance is an indication of uncertainty of pre-
dictions. According to the results, the degree of uncertainty of 
model predictions was more or less similar across the training 
sample sizes, however there were more noticeable differences of 
prediction variances between the models, especially for the sub-
soil. For example, LMM, QRF and ELMR delivered more cer-
tainty in predictions than MLR, Cubist and GWR. Therefore, 
the uncertainty of prediction most likely depends on the model 
type rather than the sample size.

Despite the use of a variety of techniques, the accuracy of 
spatial soil carbon predictions always remains low (the maximum 
CCC of model prediction is 0.6). This confirms the observations 
made by (Heuvelink and Webster, 2001) that it is impossible to 
completely capture the local variability of soil carbon through a 
deterministic model. LMM and GWR delivered more accurate 
predictions. LMM capture the spatial autocorrelation of soil car-
bon through estimating the experimental variogram directly from 
the data. Hence, spatial auto-correlation is also an important fac-
tor to be considered in predicting soil carbon content. This cor-
relation was more significant for subsoil carbon of the study site. 
This may have caused by the abundance of marl in the subsoil 
layer, which occurs through the study area and HWCPID in gen-
eral. Similarly, GWR treats the covariates as spatially non-station-
ary and so it is capable of capturing most of the non-stationarity 
of the deterministic trend of the spatial model.

The current study suggests that the training sample size had a 
substantial effect on prediction accuracy of the model. Regardless 
of model type, a comparatively higher degree of prediction ac-
curacy can be achieved with large sample sizes using any spatial 
model. Learning curves suggested that all models require at least 

Fig. 8. GWR predicted carbon content (%) and the associated prediction variance (bottom) for the sample sizes 300, 500, and 1000 for topsoil.
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300 training samples to achieve a state closer to the optimum ac-
curacy. Overall, the combination of sufficient sample size and the 
right spatial modeling techniques designed for capturing random 
non-stationarity will deliver more accurate soil carbon predictions.

Do Model Ensembles Improve Accuracy?
The maximum 2% accuracy gain of model ensembles dem-

onstrated that even combining algorithms could not deliver a 
clear improvement in soil carbon predictions for this study site. 
It suggests the limitations of capturing the local variability of soil 
carbon through deterministic models; thus performing ensem-
bles of different machine learning models is not recommended. 
Ensembles can only prove beneficial if different methods of 
mapping or datasets were combined (e.g., Dobarco et al., 2017; 
Malone et al., 2014).

Comparing the Spatial Predictions of Soil carbon
According to Fig. 7, it is evident that the LMM model had 

the tendency to overestimate the topsoil carbon content with 
lower training sample sizes. Accordingly, the uncertainty of the 
model predictions decreased with increasing training sample 
size. Although we did not observe a distinct variation of predic-
tion variance across sample sizes in the validation procedure, it 
is clearly visible in the maps. This may be due to validation test 
points and training points that are closely located, whereas in the 
maps the predictions are mostly on un-sampled locations.

The GWR model tended to overestimate when the model 
was trained with fewer samples (Fig. 8) and in turn the uncer-
tainties of the model predictions decreased. When the predic-
tions of GWR and LMM were compared, LMM predictions 
were found to be more reliable as LMM had a lower prediction 
variance than GWR.

Conclusions
For this study site, the accuracy of spatial prediction of soil 

carbon is less likely to depend on the model type used, yet the 
training sample size has a clear effect on model prediction ac-
curacy. The difference between model realizations become insig-
nificant when the models are trained with comparatively larger 
sample sizes. The models such as MLR, LMM and GWR seem 
to deliver more precise predictions than the other considered 
models. The prediction accuracy increased at a decreasing rate 
with increasing sample sizes. Most of the models require a mini-
mum of 15 samples per square kilometer to reach their maximum 
predictive capability for this particular study site.
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