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ABSTRACT
Background. The use of visible-near infrared (vis-NIR) spectroscopy for rapid soil
characterisation has gained a lot of interest in recent times. Soil spectra absorbance
from the visible-infrared range can be calibrated using regression models to predict
a set of soil properties. The accuracy of these regression models relies heavily on the
calibration set. The optimum sample size and the overall sample representativeness
of the dataset could further improve the model performance. However, there is no
guideline on which sampling method should be used under different size of datasets.
Methods. Here, we show different sampling algorithms performed differently under
different data size and different regression models (Cubist regression tree and Partial
Least Square Regression (PLSR)). We analysed the effect of three sampling algorithms:
Kennard-Stone (KS), conditioned Latin Hypercube Sampling (cLHS) and k-means
clustering (KM) against random sampling on the prediction of up to five different
soil properties (sand, clay, carbon content, cation exchange capacity and pH) on
three datasets. These datasets have different coverages: a European continental dataset
(LUCAS, n = 5,639), a regional dataset from Australia (Geeves, n = 379), and a local
dataset from New South Wales, Australia (Hillston, n= 384). Calibration sample sizes
ranging from 50 to 3,000 were derived and tested for the continental dataset; and from
50 to 200 samples for the regional and local datasets.
Results. Overall, the PLSR gives a better prediction in comparison to the Cubist model
for the prediction of various soil properties. It is also less prone to the choice of sampling
algorithm. The KM algorithm is more representative in the larger dataset up to a certain
calibration sample size. The KS algorithm appears to be more efficient (as compared
to random sampling) in small datasets; however, the prediction performance varied a
lot between soil properties. The cLHS sampling algorithm is the most robust sampling
method for multiple soil properties regardless of the sample size.
Discussion. Our results suggested that the optimum calibration sample size relied on
howmuch generalization the model had to create. The use of the sampling algorithm is
beneficial for larger datasets than smaller datasets where only small improvements can
be made. KM is suitable for large datasets, KS is efficient in small datasets but results
can be variable, while cLHS is less affected by sample size.
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INTRODUCTION
In the last few decades, there has been growing interest in rapid soil characterisation.
Infrared spectroscopy has gained interest for various soil analyses over the conventional
‘wet chemistry’ methods because the latter is laborious, costly and time-consuming.
Furthermore, multiple soil properties can be predicted from a single soil spectrum (Bendor
& Banin, 1995; Stenberg et al., 2010; Viscarra Rossel et al., 2008). Although spectroscopy
utilizes wide ranges of the electromagnetic spectrum, the work presented in this study
focuses on the visible near infrared (vis-NIR) region. The vis-NIR instrument allows a
robust analysis of soil in the field or lab with little to no sample preparation.

In the mid-infrared region (MIR), the absorption is due to fundamental vibrations
of organic and inorganic molecules in the soil; while in the vis-NIR region, absorption
is due to overtones and the combinations of the fundamental vibrations found in the
MIR region (Viscarra Rossel et al., 2008). Although the absorbance in the vis-NIR region is
often broad and less resolved, this region contains some useful information on stretching
and bending of the fundamentals C-H, N-H, O-H, and C=O bonds. With the help of
chemometric techniques, properties of a soil sample can be predicted from its spectral
absorption based on a regression model. The regression model is calibrated from a spectral
library, relating infrared absorbance to standard laboratory measurements. The most
common calibration models for soil applications are based on linear regressions, such
as principal component regression (Chang et al., 2001; Stenberg et al., 2010) and partial
least squares regression (PLSR) (McCarty et al., 2002; Wold, Johansson & Cocchi, 1993).
Nonetheless, because soil is a complex medium that might have non-linear reflectance
behaviour, a linear modelling approach like PLSR might not be sufficient (Vohland et al.,
2011). Machine learning regression models, such as Cubist regression tree (Quinlan, 1993),
random forests (RF) (Breiman, 2001), artificial neural networks (ANN) (Haykin, 1998)
and support vector machines (SVM) (Vapnik, 2000) have been explored for its potential
ability to yield higher accuracies.

Spectroscopy in conjunction with these chemometric techniques have been proven
to predict various chemical and physical properties of soil, such as pH, cation exchange
capacity (CEC), carbonate content, organic carbon content, and soil texture (Bendor &
Banin, 1995; Chang et al., 2001; Islam, Singh & McBratney, 2003; Shepherd & Walsh, 2002).
Nonetheless, the accuracy of these regression models to produce accurate predictions relies
heavily on the calibration dataset used. To obtain a reliable prediction, representative
data should be used in the model (Kuang & Mouazen, 2012; Viscarra Rossel et al., 2008).
The number of calibration samples also affects the model predictions, although this has
received limited attention (Kuang & Mouazen, 2012). A larger calibration sample size may
be able to create more reliable and representative models compared to those models based
upon smaller sample sizes (Kuang & Mouazen, 2012). However, in a real-world situation,
the number of samples (with complete standard measurements) are usually small due to
budget and/or time constraints (Minasny & McBratney, 2006). The optimal sample size is
often determined by the balance between the budget and acceptable accuracy. With the
expensive cost of soil analysis and limited budgets, choosing representative samples for
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Figure 1 Illustrations of the various sampling strategies with sample population containing outliers:
selecting 5 samples out of the 300 sample population. The red circles represent the samples selected by
a particular sampling algorithm. (A) represents sample population, (B) represents random sampling, (C)
represents the Kennard- Stone (KS) algorithm, (D) represents the conditioned Latin Hypercube sampling
(cLHS) algorithm (E) represents the k-means clustering algorithm (KM).

Full-size DOI: 10.7717/peerj.5722/fig-1

laboratory analysis which are subsequently used for calibration, is a critical component in
ensuring the establishment of the most appropriate regression models (Brown, Bricklemyer
& Miller, 2005; Ramirez-Lopez et al., 2014).

There are various sampling algorithms available to select calibration samples in infrared
spectroscopy, such as the Kennard-Stone (KS) algorithm, the conditioned Latin Hypercube
Sampling (cLHS) and k-means clustering (KM). One of the most common sampling
algorithms used in the infrared spectroscopy literature is the KS algorithm (Ramirez-Lopez
et al., 2014), which sequentially selects samples with the largest distance in the variable space
in the calibration set (Kennard & Stone, 1969). The cLHS algorithm developed initially for
generating optimal sample configurations for digital soil mapping has also been used in soil
spectroscopy studies (Mulder, De Bruin & Schaepman, 2013). The cLHS algorithm selects
samples that optimally represent the multivariate distribution of the input dataset. The
KM algorithm, on the other hand, partitions data into groups (strata) that have similar
properties. Random sampling is then used to pick representative samples from each strata.
An illustration of the three sampling algorithms as well as random sampling is given in
Fig. 1. Aside from the random sampling, these three algorithms are utilized to optimize the
selection of representative samples from the sample population.
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Ramirez-Lopez et al. (2014) compared the use of KS, cLHS and fuzzy k-means clustering
sampling (FKM) to select the calibration samples, and found that although KS algorithm
was outperformed by other algorithms in terms of sample representativeness, the predictive
performance of regression models for the prediction of clay content and exchangeable Ca
(Ca2+) were comparable regardless of the sampling method. This study warrants further
research as it only considers two properties for a field (5 km2) and regional scale (<500 km2)
with a calibration sample size of up to 380 samples for each dataset.

In this study, we compared three sampling algorithms (KS, cLHS, and KM) against
random sampling on three different datasets at continental, regional, and local scale with
various calibration sample sizes using two different regression methods: PLSR and Cubist
regression modelling. The performance of the models is evaluated based on the average
prediction accuracies of up to five different soil properties (sand, clay, carbon content,
cation exchange capacity and pH). Thus, the objective of this paper is to investigate the
effect of calibration sample size, the efficiency of sampling algorithms, and regression
methods to predict various soil properties on soil samples from three different spatial
extents.

MATERIALS AND METHODS
Datasets description
Three datasets were used in this study. The first dataset is from Europe which represents a
continental database. The second is a regional database from southern New South Wales
(NSW) and northern Victoria (VIC), and the third is a local database from the locality of
Hillston in south-west NSW, Australia.

Dataset 1: Continental dataset
Dataset 1 was obtained from the Land Use/Land Cover Area Frame Survey (LUCAS)
database (European Commission, 2017). The LUCAS soil database was developed as an
attempt to create a consistent spatial database across the European Union. The survey
covers a range of landscapes, with area coverage of approximately 4.5 million square
kilometers (km2). This database is a collection of composite soil samples from 0–20 cm
depth. All samples were scanned with a FOSS CDS Rapid Content Analyzer (NIRSystems,
INC.) operating within 400–2,500 nm wavelength range with 0.5 nm spectra resolution.
Each spectrum is composed of 4,200 wavelengths. Only one-third of the database were
considered for this study to reduce computational time, resulting in a subset of 5,639
observations. All samples had been analyzed for particle size distribution (clay and sand
content), pH (in CaCl2), organic carbon (g/kg), and cation exchange capacity (CEC;
cmol/kg) among all other properties.

Dataset 2: Regional dataset
Dataset 2 consists of 379 soil samples of 68 different soil profiles from the wheat-belt of
southern NSW and northern VIC covering approximately a 5,000 km2 area (Geeves et al.,
1995). There is a large variation of soil in the area, but the major soil types are Alfisols and
Oxisols. The soil samples were collected at different horizons with depth up to 1 m. The
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samples were air-dried, ground and sieved through a 2-mm sieve. The reflectance spectra
were then collected with an AgriSpec (Analytical Spectral Devices, Boulder, CO, USA) with
a spectral range of 350 to 2,500 nm with 1 nm sampling interval. A Spectralon (Labsphere
Inc., North Sutton, NH, USA) white standard was used for instrument calibration. Each
spectrum consists of 2151 wavelengths. All samples had been analysed for the clay and sand
content (%), pH in CaCl2 (1:5), total carbon (%) and CEC (cmol/kg).

Dataset 3: Local dataset
Dataset 3 consists of soil samples fromdifferent soil cores extracted to 1.5m from the cotton-
growing district of Hillston in south-west NSW (Filippi et al., 2018a). The study area is
approximately 2,650 km2 in size. The samples were collected in a survey conducted in 2002,
consisting of 384 samples from 87 different sites. The soils in this area are mainly Vertisols,
with some soils of sandier texture derived from Aeolian parent material (Filippi et al.,
2018b). The soil samples were air-dried, ground and passed through a 2-mm sieve. Samples
were then scanned using AgriSpec (Analytical Spectral Devices, Boulder, CO, USA) with a
spectral range of 350 to 2,500 nm with 1 nm sampling interval. A Spectralon (Labsphere
Inc., North Sutton, NH, USA) white standard was used for instrument calibration. Each
spectrum consists of 2,151 wavelengths. These samples had been analyzed for total carbon,
clay and sand content (%), pH (in H2O), and CEC (cmol/kg) (Filippi et al., 2018a)

Data pre-processing
The summary statistics for all datasets are included in Table 1. Data that were skewed, with
a value greater than +2 or less than −2 (Curran, West & Finch, 1996), were subjected to
natural log transformation to normalise the dataset. To explain the variability of the samples
used for all three datasets, principal component analysis (PCA) of the pre-processed spectra
was employed. The PCA distribution of the spectra of all the datasets is shown in Fig. 2. The
differences of the three datasets is clearly shown; there is more variance in the continental
dataset (LUCAS), followed by the regional dataset (Geeves), and less variance in the local
dataset (Hillston).

Spectra pre-processing
To ensure that all the spectra from the different datasets underwent the same spectra
pre-processing treatment, spectra from the LUCAS dataset were resampled every 1 nm to
have the same sampling intervals, resulting in 2,100 points. Spectra between 350–499 nm
and 2,451–2,500 nm range were removed due to their low signal to noise ratio resulting in
1951 point spectra for all datasets. The resulting spectra were transformed to absorbance
log (1/R), and pre-processed by Savitzky-Golay (SG) transformation (Savitzky & Golay,
1964) with a window size of 11 and polynomial order 2 and followed with the Standard
Normal Variate (SNV) transformation. SG algorithm is used to remove instrument noise
within the spectra by smoothing the data using the polynomial regression, while SNV
is used to normalize the spectra, scaling it to zero mean and unit standard deviation
(Rinnan, Van den Berg & Engelsen, 2009). An example of the spectra before and after
pre-treatment is shown in Fig. 3.
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Table 1 Summary statistics of soil properties in the datasets.

Calibration set Validation set

Number
of samples

Min. Median Mean Max. SD Skewness Number
of samples

Min. Median Mean Max. SD Skewness

Dataset1: continental
pH_CaCl2 2.66 5.89 5.79 9.25 1.34 −0.27 3.11 5.78 5.72 8.01 1.32 −0.2
CEC (cmol/kg) 0 11.8 13.87 78.5 9.55 1.31 0 11.35 13.87 59.9 9.96 1.36
Clay (%) 0 17 19.21 79 13.12 0.9 1 17 19.18 79 13.00 0.92
Sand (%) 1 41 42.35 98 26.05 0.23 1 42 41.91 98 26.01 0.19
Organic Carbon (g/kg)

3,639

0 18.9 24.96 99.5 18.67 1.63

1,000

0 19.5 25.6 99.5 18.78 1.49
Dataset2: Regional
pH_CaCl2 3.84 5.31 5.43 8.03 0.89 0.6 3.76 5.45 5.7 8.23 1.17 0.53
CEC (cmol/kg) 0.4 7.08 8.62 28.21 5.12 1.15 1.6 8.87 10.88 36.43 7.21 1.33
Clay (%) 5 20 26.06 70 16.23 1 7 21 29.09 74 17.28 0.96
Sand (%) 14 60 57.12 91 16.42 −0.46 17 59 55.82 81 16.47 −0.7
Total Carbon (%)

284(51)*

0.06 0.83 1.19 12.74 1.48 4.3

95(17)*

0.11 0.93 1.16 5.9 1.04 2.2
Dataset3: local
pH 5.8 8.83 8.61 10.06 0.86 −0.8 6.33 8.87 8.68 9.92 0.85 −0.82
CEC (cmol/kg) 3.19 28.67 26.88 50.71 9.18 0.76 2.65 27.89 26.84 53.84 9.04 −0.41
Clay (%) 8.7 53.7 49.47 64.4 12.56 −1.79 4.4 51.85 46.9 63.7 13.19 −1.51
Sand (%)

298(66)*

19.73 35.55 39.28 90.26 13.97 1.98

86(21)*

23.81 38.41 42.21 94.73 13.53 1.7

Notes.
*The number in parentheses represents the number of different sites where the samples originated from.
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Figure 2 Principal Component Analysis (PCA) scores plot (PC1 vs. PC2) for visible near infrared (vis-
NIR) spectra from the three different datasets: continental, regional and local. The PCA was performed
on the pre-processed vis-NIR spectra.

Full-size DOI: 10.7717/peerj.5722/fig-2

Figure 3 Illustrations of visible near infrared (vis-NIR) spectra from the local dataset: (A) raw and (B)
being pre-processed.

Full-size DOI: 10.7717/peerj.5722/fig-3
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Sampling algorithms
Three different sampling algorithms were tested in this study against random sampling,
including Kennard Stone (KS), conditioned Latin Hypercube Sampling (cLHS), and
k-means clustering (KM). All of the sampling methods are based on different principles of
selecting samples from the available spectra data to be used for model calibration. Except
for the random sampling, the three other sampling algorithms were utilized to optimize the
selection of representative samples from the spectra. Ideally, the samples selected to be used
for model calibration should explain the variability in the original samples and ultimately
provide reliable predictions on the validation dataset (Soriano-Disla et al., 2014).

Random sampling
This is the simplest way of selecting samples. It creates a subset that follows the statistical
distribution of the original dataset. While this is an unbiased method, it is not efficient as
more samples are required to achieve the representativeness of the data (Rajer-Kanduc,
Zupan & Majcen, 2003; Wu et al., 1996). Despite this shortcoming, the method is still
commonly used as it is easy to carry out, and unbiased. Shepherd & Walsh (2002),McCarty
et al. (2002), and Okparanma & Mouazen (2013) are some exemplar studies where this
sampling approach has been utilized in soil spectra modelling studies.

Kennard Stone Sampling (KS)
This algorithm was developed initially to create a response surface of experimental design
(Kennard & Stone, 1969) by selecting subset samples that cover the maximum distances
between each candidate samples. It is a sequential and deterministic procedure. Consider
k samples have been selected, where k <number of samples (N) in the dataset. The next
sample candidate (k +1) has the furthest distance (in variable space) from existing samples
with the following criteria:

d =maxio(mini(di,io))

where i is the existing sample candidate, and io is the candidate sample to be chosen.
Here, the Euclidean distance is used (Kennard & Stone, 1969). This method is the most
commonly used in the spectroscopy literature (Bouveresse & Massart, 1996; Ji, Rossel & Shi,
2015), however its efficiency in selecting representative sample is not well studied.

Conditioned Latin Hypercube Sampling (cLHS)
Conditioned Latin Hypercube sampling has its origins in Latin Hypercube sampling (LHS),
which was first proposed by Mckay, Beckman & Conover (1979). LHS is an efficient way
to reproduce an empirical distribution function, where the idea is to divide the empirical
distribution function of a variable, X (for soil spectral data this could be an individual
wavelength), into n equi-probable, non-overlapping strata, and then draw one random
value from each stratum. In amulti-dimensional setting (for example a full spectrum), for k
variables,X 1,X 2,. . . ,X k , the n random values drawn for variableX 1 are combined randomly
(or in some order to maintain its correlation) with the n random values drawn for variable
X 2, and so on until n k-tuples are formed, i.e., the Latin hypercube sample (Clifford et al.,
2014). Its utility for soil sampling was noted by Minasny & McBratney (2006), but they
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recognised that some generalisation of LHS sampling was required so that selected samples
actually existed. Subsequently, they proposed a conditioning of the LHS, which is achieved
by drawing an initial Latin hypercube sample from the ancillary information, then using
simulated annealing to permute the sample in such a way that an objective function is
minimised. The method was originally developed to select samples for calibration in digital
soil mapping studies. Viscarra Rossel et al. (2008) adapted this sampling scheme to select
representative samples from the legacy dataset to be sent for laboratory analysis.

K-means cluster sampling (KM)
K-means is a method to group data that are similar to each other into clusters. First, the
data are allocated to the pre-defined number of centroids (center of the clusters). It is
then optimized by minimizing the distance between the values of the data to its designated
centroid while maximizing the distances among all the centroids. In this case, we utilized
the Euclidean distance. Each data is reassigned to a cluster with the nearest centroid, and
the new means becomes the new centroids. This process continues until no change in
cluster members are observed (Næs, 1987). Random sampling is then utilized to select
sample from each cluster. This method had been used by McDowell et al. (2012) to cluster
samples to be included in the calibration dataset.

Establishment of calibration models
All spectra derivation and calculation were performed with R statistical language and
open-source software (R Core Team, 2016). For each sampling design, the predictive ability
of different calibration sampling sizes were evaluated as the average of fifty repetitions of
overall root mean square error (RMSE) and R2 values for the prediction of the various
soil properties on the validation dataset. Other accuracy parameters (bias and RPIQ) are
included in the Supplementary Material.

Each of the dataset was first randomly split into calibration and validation set (∼75%
and ∼25% respectively). For the continental dataset, 1,000 samples were retained as the
validation set, and the rest of the samples were utilized as a calibration set. In the smaller
datasets (regional and local), the topsoil and subsoil samples were paired prior to data
splitting. The dataset were split based on the unique profile location as suggested by
Brown, Bricklemyer & Miller (2005) (see Table 1). This method is selected to ensure that
the regression model can generalize based on the calibration dataset to predict on the
validation dataset because the sample size is relatively small. Samples from 17 different
sites with a total sample of 95 were used as validation in regional dataset. Meanwhile, 86
different samples from 21 different sites were used for validation in the local dataset.

To reduce the computational time, all the sampling strategies were applied to the
principal components (PC) space of the pre-processed vis-NIR spectra. First, the principal
component analysis was performed on all the dataset to determine how many principal
components to be kept to explain 99% of the variances within the dataset. Nine, six and five
PCs were retained for continental, regional and local dataset respectively. The R package
‘base’ was used to select the random samples (R Core Team, 2016), ‘prospectr’ to select the
KS samples (Stevens & Ramirez-Lopez, 2013), ‘clhs’ to select the cLHS samples (Roudier,
2011), and ‘stats’ to select the KM samples (R Core Team, 2016).
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Figure 4 Methodology flowchart for creating various sizes calibration and validation.
Full-size DOI: 10.7717/peerj.5722/fig-4

The number of sample sizes was set at 50, 100, 150, 200, 250, 300, 400, 500, 1,000, 2,000
and 3,000 for the continental dataset, and 50, 100, 150 and 200 samples for both the regional
and local dataset. All these different size calibration dataset models were validated with
the same validation set from its respective dataset. All but the KS sampling algorithm were
repeated fifty times and the average performances were reported in this study because the
same samples were produced at each iteration, and hence removing the need of multiple
repetitions. The methodology flow chart is illustrated in Fig. 4.

For each calibration set, the modelling required using R implementations of PLSR
(Mevik, Wehrens & Liland, 2016) and Cubist models (Kuhn et al., 2016). PLSR is a linear
chemometric regression model that projects spectra data into latent variables that explain
the variances within the spectra data. The optimum number of components retained in the
model corresponded to the number that provided the lowest cross-validation root means
squared error of prediction (RMSEP). Cubist is a rule-based regression model developed
by Quinlan (1993). If the input variables satisfy the regression rules, it is then passed into
the multivariate linear regression models behind the rules instances. The Cubist model is
run with the default hyperparameter settings. Hyperparameters are defined as parameters
that have to be fixed before the running the model training (Probst, Bischl & Boulesteix,
2018), such as the number of committees, neighbours, and rules.

RESULTS
Prediction of soil properties and effect of regression models
To investigate the effect of different types of regression models on prediction accuracy,
the two models (PLSR and Cubist) were generated for each soil property and different
calibration sample size for eachdataset. This results inmore than three thousand realizations
and models for each dataset. The performance of the PLSR and Cubist regression model
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Figure 5 Boxplots comparing the performance of Partial Least Square Regression (PLSR) and Cubist
regression tree models in predicting soil properties using various calibration sampling size and sam-
pling algorithms within the continental dataset. Each boxplot represents the results for the 50 repetitions
of the various soil properties predicted. cLHS, conditioned Latin Hypercube sampling; KM, k-means clus-
tering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-5

was evaluated on five soil properties for the continental and regional dataset and four soil
properties for the local dataset. All results presented here are based on the validation set.

The boxplots comparing the two regression models (PLSR and Cubist) using various
sampling algorithms with various calibration sample sizes for the different datasets are
included in Figs. 5–7. Each boxplot represents the average R2 value of various properties for
that dataset using a given calibration sample size and sampling algorithm. For a comparison
between the effects of regressionmodels, only the performance of random samplingmethod
is discussed in this section. The effect of sampling algorithm will be discussed later in the
paper.

For the continental dataset, pHwas predicted best using the PLSRmodel with calibration
sample size of 3,000 (R2

= 0.81), followed by clay content (R2
= 0.73), CEC (R2

= 0.68),
OC (R2

= 0.59) and sand content (R2
= 0.53). For the Cubist modelling and calibration

sample size of 3,000, the model performance for each of the soil properties were: pH
(R2
= 0.83), clay content (R2

= 0.70), CEC (R2
= 0.61), OC (R2

= 0.58) and sand content
(R2
= 0.52). More detailed results are included in the Supplemental Information.
For the regional dataset with the calibration sample size of 200, using the PLSRmodel the

ranking from the highest to lowest in terms of the R2 was CEC (R2
= 0.82), pH (R2

= 0.79),
clay (R2

= 0.75), sand content (R2
= 0.74) and total C (R2

= 0.72). Using the Cubist model
and calibration sample size of 200, the best performance of the model in terms of R2 were
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Figure 6 Boxplots comparing the performance of Partial Least Square Regression (PLSR) and Cubist
regression tree models in predicting soil properties using various calibration sampling size and sam-
pling algorithms within the regional dataset. Each boxplot represents the results for the 50 repetitions of
the various soil properties predicted. cLHS, conditioned Latin Hypercube sampling; KM, k-means cluster-
ing; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-6

CEC (R2
= 0.80), pH (R2

= 0.73), clay content (R2
= 0.72), sand content (R2

= 0.71) and
total carbon respectively (R2

= 0.70).
For the local dataset with the calibration sample size of 200, using the PLSR model

the best models in terms of R2 were ranked as clay (R2
= 0.77), pH (R2

= 0.72), CEC
(R2
= 0.71) and sand content (R2

= 0.70). With the Cubist model and calibration sample
size of 200, the best-fitted models were clay (R2

= 0.73), followed by pH (R2
= 0.72), CEC

(R2
= 0.69) and sand content (R2

= 0.68).
In general, the PLSR provided better prediction than the Cubist regression, regardless

of the calibration sampling size and sampling algorithm (see Figs. 5–7). The PLSR was also
not heavily affected by the sampling algorithm in comparison to the Cubist regression. This
effect was prominent in continental dataset as a more extensive sequence of calibration
sample sizes were evaluated (see Fig. 8).

In the continental dataset using the PLSR model, there was a steady increase in model
performance (lower RMSE) as calibration sample size increased (see Fig. 8). All sampling
algorithms behaved similarly. Meanwhile, the performance of the Cubist regression
fluctuated depending on the sampling algorithm (see Fig. 8). For smaller calibration
sample size in the smaller datasets, the KS algorithm provided the best performance (see
Figs. 9 and 10). However, its performance was inconsistent. Since the KS algorithm tends
to pick samples that explained the most variance, it tends to pick up the outlier/extreme
samples. Combining the KS algorithm sample selection with rule-based algorithms such as
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Figure 7 Boxplots comparing the performance of Partial Least Square Regression (PLSR) and Cubist
regression tree models in predicting soil properties using various calibration sampling size and sam-
pling algorithms within the local dataset. Each boxplot represents the results for the 50 repetitions of the
various soil properties predicted. cLHS, conditioned Latin Hypercube sampling; KM, k-means clustering;
KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-7

the Cubist model could potentially lead to larger variance of the regression model. It was
also noted that although the combined use of the KM algorithm and Cubist provided an
overall good prediction, as the calibration sample size >2,000, the performance started to
deteriorate. Regardless of the datasets and sample size, the performance of subset samples
selected using cLHS mimics those of random sampling.

The effect of calibration sample size
As the number of samples for calibration increased, the prediction became more accurate
following the general pattern of a learning curve (see Fig. 8). The larger the calibration
sample size dataset, the lower the RMSE validation was. These results are consistent with
findings from other studies (Brown, Bricklemyer & Miller, 2005; Kuang & Mouazen, 2012;
Ramirez-Lopez et al., 2014; Shepherd & Walsh, 2002).

Regardless of the sampling algorithm, the use of the PLSR model for the continental
dataset, yielded pretty much similar performance with sample sizes greater than 1,000
(Fig. 8). By increasing the sample size from 500 to 1,000, the overall properties prediction
improved an average of 6.4% (in terms of RMSE decrease). For calibration sample size
1,000 to 1,500, however, the improvement was only minimal at an average of 1.6%. This
result is different to those of the findings from (Ramirez-Lopez et al. (2014)) where at
calibration sample sizes ≥200, they observed that the error already stabilized. This is most
likely due to much larger area coverage of the dataset used in this study. Meanwhile, for
the smaller regional and local datasets, the calibration sample size results were inconclusive
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Figure 8 Plot of root mean square error (RMSE) against the number of calibration sample size for the
prediction of various soil properties using: (A) Partial Least Square Regression (PLSR) and (B) Cubist
tree regressionmodels within the continental dataset. cLHS, conditioned Latin Hypercube sampling;
KM, k-means clustering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-8
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Figure 9 Plot of root mean square error (RMSE) against the number of calibration sample size for the
prediction of various soil properties using: (A) Partial Least Square Regression (PLSR) and (B) Cubist
tree regressionmodels within the regional dataset. cLHS, conditioned Latin Hypercube sampling; KM,
k-means clustering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-9

Ng et al. (2018), PeerJ, DOI 10.7717/peerj.5722 15/27

https://peerj.com
https://doi.org/10.7717/peerj.5722/fig-9
http://dx.doi.org/10.7717/peerj.5722


Figure 10 Plot of root mean square error (RMSE) against the number of calibration sample size for the
prediction of various soil properties using: (A) Partial Least Square Regression (PLSR) and (B) Cubist
tree regressionmodels within the local dataset. cLHS, conditioned Latin Hypercube sampling; KM, k-
means clustering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-10
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because no plateau had been reached at a sample size of 200. Although at calibration sample
size of 200, the regression performance was good. This suggests that the regression could
be further improved by increasing the size of the calibration sample (see Figs. 9A and 10A).

With the Cubist model in the continental dataset, the cLHS and KS algorithm converged
to the performance of the random sampling at a sample size of 2,000. However, when using
the KM algorithm, the predictions became worse with an increasing number of samples.
No plateau had been reached in the smaller datasets (regional and local) using the Cubist
model, with the KM algorithm performing worse as the calibration sample size increased.
This means that for a large number of samples, the KM algorithm does not partition the
data effectively, and should not be used.

The performance of the KS algorithm increased as sample size increased in the regional
dataset, except for the prediction of pH. In the local dataset, only the pH prediction
improved as calibration sample size increased to 200 (Figs. 9B–10B).

The efficiency of the sampling algorithm
Firstly, we evaluate the sampling algorithm that produced the lowest error. For the
continental dataset with the PLSR model, overall the KM algorithm performed best for
clay, sand, pH and organic carbon (giving the lowest RMSE) for sample sizes <1,000
(Fig. 8A). The KS performed best for CEC at sample size <300. For the regional dataset
with the PLSR model, the KS method performed best for all sample size and all properties,
while the KM algorithm was the worst performing (Fig. 9A). The cLHS and random
sampling appeared to perform similarly. For the local dataset, KS performed best for CEC
and pH, while cLHS and random sampling performed best for sand and clay content
(Fig. 10A).

To be able to quantify the effectiveness of a sampling algorithm, its performance
is compared against the performance of the random sampling method by way of the
ratio between RMSE values from each sampling approach and the random sampling
approach. The average performance prediction for the various soil properties were then
plotted as boxplots illustrated in Figs. 11–13 for the continental, regional and local dataset
respectively. Each boxplot colour represents a particular sampling algorithm. The best
sampling algorithm would have RMSE ratio <1, meaning it performed better than the
random sampling.

For the continental dataset, the combination of an effective sampling algorithm with
PLSR model could improve the overall model performance. The KS algorithm was able to
provide a calibration subset dataset that improved themodel performance in comparison to
the random sampling up to sample size of 500 (see Fig. 11). For the calibration sample size
greater than 500, the KS algorithm failed to perform better than the random sampling. The
median RMSE reduction achieved with this algorithm was 0–10% (ranging from 0–15%).
The model performance using calibration samples selected using the KM algorithm was
able to provide similar calibration subset dataset up to sample size of 1500. Nonetheless,
as sample size increased, the performance deteriorated and became worse than random
sampling. Within the same sample size range of 500, the median RMSE reduction achieved
by the KM was 4–8% (ranging from 1–15%). The samples selected using cLHS algorithm
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Figure 11 Average performances of various sampling algorithms for the prediction of five different
soil properties using various calibration sample size in the continental dataset in terms of RMSE ratios
using (A) Partial Least Square Regression (PLSR) and (B) Cubist model. Each boxplot represents the av-
erage of 50 repetitions of the five different soil properties predicted. The solid black line represents the av-
erage performance of the random sampling. cLHS, conditioned Latin Hypercube sampling; KM, k-means
clustering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-11
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Figure 12 Average performances of various sampling algorithms for the prediction of five different
soil properties using various calibration sample size in the regional dataset in terms of RMSE ratios us-
ing (A) Partial Least Square Regression (PLSR) and (B) Cubist model. Each boxplot represents the aver-
age of 50 repetitions of the five different soil properties predicted. The solid black line represents the av-
erage performance of the random sampling. cLHS, conditioned Latin Hypercube sampling; KM, k-means
clustering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-12
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Figure 13 Average performances of various sampling algorithms for the prediction of four different
soil properties using various calibration sample size in the local dataset in terms of RMSE ratios using
(A) Partial Least Square Regression (PLSR) and (B) Cubist model. Each boxplot represents the average
of 50 repetitions of the four different soil properties predicted. The solid black line represents the average
performance of the random sampling. cLHS, conditioned Latin Hypercube sampling; KM, k-means clus-
tering; KS, Kennard-Stone.

Full-size DOI: 10.7717/peerj.5722/fig-13
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provided a much smaller RMSE reduction in comparison to the other two sampling
algorithms with a median reduction in RMSE of 1–2% (ranging from 0–10%). On average,
the samples selected using cLHSmanaged to perform better than those of random sampling
up until calibration sample size of 3,000 where it performed similarly. The combinations
of the sampling algorithms with the Cubist model yielded quite different results. The
sample selected using KS algorithm in conjunction with the Cubist model yielded large
variations in model performance, as pointed out earlier in the paper. Because of this, KS
should be used with caution in conjunction with the Cubist model. The calibration subset
data selected using KM algorithm performed worse than random sampling at a calibration
sample size of 1,500. The calibration subset data selected using cLHS algorithm performed
worse than random sampling at a sample size of 400; however, the performance improved
and eventually became similar to that achieved when random sampling is used for sample
data selection. Although calibration sample dataset selected using KM and cLHS sampling
algorithm improved the Cubist model performance, this improvement was much less in
comparison to the improvement observed in the PLSR model with RMSE improvement
ranging from 0.86–2% and 0 – 1.4% respectively.

In the regional dataset, the KS algorithm with PLSR model performed best with a
median RMSE reduction of 2–8% (ranging from 0–19%). The KM algorithm provided a
subset of calibration dataset that contibuted to better model outcomes when compared
to the random sampling, starting at calibration sample size of <150 (see Fig. 12). The
cLHS algorithm provided samples with similar predictions as random sampling with
minimal reduction in performance of 0.2–2.6% (ranging from 0–8.5%). The use of the KM
algorithm with the Cubist model in the regional dataset failed to perform better than the
random sampling. Similar to the observation in the continental dataset, the conjunction
of KS algorithm and Cubist model yielded model performance with large variance. The
average improvement achieved by the KS was a 2.5–7% reduction in RMSE (ranging
from 0–20%). The RMSE improvement achieved with the cLHS algorithm was 0.25–1.8%
(ranging from 0–6.5%).

In the local dataset, the KS algorithm also provided samples with the lowest RMSE
prediction. However, note that the variation in the RMSE was quite large (see Fig. 13). The
median RMSE reduction achieved was 1.6–6% (ranging from 0–8%). The KM algorithm
performed worse than the random sampling starting at a calibration sample size of 100.
cLHS consistently provided similar performance prediction as random sampling with
RMSE reduction ranging from 0–4% with a median of 0–1%. With the Cubist model,
the KM algorithm also deteriorated at a calibration sample size of 100. KS and cLHS
algorithms in the Cubist behaved similarly to those in the PLSR model with minimal
RMSE improvement using cLHS algorithm (median of 0.5–1% reduction in RMSE), and
large variance in RMSE reduction using KS algorithm (median of 2.5–10.6%).

DISCUSSIONS
The choice of regressionmodel clearly affected themodel performance. In general, the PLSR
model performed better than the Cubist model. This could be due to the un-optimized

Ng et al. (2018), PeerJ, DOI 10.7717/peerj.5722 21/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.5722


hyperparameters used in the Cubist model in this study. By adding number of committees
or neighbours in the Cubist model, the model generated would be more robust. However,
caution should be taken when tuning these hyperparameters as overfitting could be
introduced when the calibration sample set is small.

Sample size and sample representativeness affected the performance of the regression
model. As calibration sample size increased, the model performance improved which
follows a pattern of a learning curve. Increasing sample size only could improve the model
prediction up to a certain point, and further addition of calibration sample data would
not lead to a better model. The optimum calibration sample size relied on how much
generalization the model has to create. When the model performance is optimized, it is
unnecessary to add more calibration samples.

Since the choice of sampling algorithm also affects the model performance, the selection
thereof from a soil spectral modelling perspective requires due consideration. In particular,
we found the combined use of regression models and a sampling algorithm that represents
the sample population better (cLHS) have higher accuracy in comparison to those that
tend to pick up the outlier in the sample population (KS), which logically makes sense.
Although the KM algorithm performed well on the larger continental dataset and the KS
algorithm performed best on the smaller regional and local datasets, the cLHS algorithm
provided the most robust sampling algorithm. However, this efficiency of the sampling
algorithm in improving predictions was more beneficial in the larger dataset. This suggests
that sampling algorithms were not as effective in smaller datasets, and random sampling
itself should be sufficient. Furthermore, the combined use of a sampling algorithm with
certain regression models should be done with caution, as we showed earlier. The use of
the KS algorithm in conjunction with Cubist models yielded large variations in model
performance.

We noted that in this study, the sampling algorithms (cLHS, KM and KS) selected
samples based on the principal components of the spectra, while the calibration models
used the pre-processed spectra. Thus, their use in sampling algorithms may not be optimal,
and perhaps that leads to the low performance of the cLHS method. Although similar
results are expected, future research should look into comparing the performance of
sampling algorithm both by using PCs as well as the pre-processed spectra.

CONCLUSIONS
We explored the effect of three different sampling algorithms in comparison to random
sampling on different calibration sample sizes using two different regression models on
three different datasets.

• For the datasets we evaluated, generally, the PLSR model gives better performance in
comparison to the Cubist model. It generated much more robust models regardless
of the sampling algorithm. A future study could assess the optimization of Cubist
hyperparameters.
• The Cubist tree model is highly affected by the choice of sampling algorithm, especially
KS. The KS sampling technique is not recommended for use in rule-based or treemodels.
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• Although an increase in calibration set size could increase the performance of themodel,
we found that in a continental dataset, calibration sample size ≥1,000 does not provide
much improvement to model prediction. This also means that only 25% of the samples
need to be fully analysed to provide a good calibration set.
• The KM algorithm was suitable to select calibration dataset for larger datasets up to a
point (∼1,000 samples), however, the performance deteriorated with increasing samples
size, with KM being the worst for smaller datasets.
• Conversely, the KS algorithm performed better on the smaller datasets and worse in
large datasets. As the algorithm picks extreme spectra, KS can result in a good calibration
for certain soil properties, but poor calibration in other properties.
• The use of cLHS algorithm provided more robust sampling algorithms regardless of
sample sizes.
• Overall, the efficiency of the sampling methods (in comparison to random sampling) is
more significant in the larger dataset in comparison to the smaller datasets.
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