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• Acknowledging measurement errors in
spatial modeling yields a lower uncer-
tainty in spatial predictions.

• MCMC techniques can be used to define
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error variance.
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is comparable to MCMC techniques in
terms of bias correction of the spatial
model.
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Spatial modelling of environmental data commonly only considers spatial variability as the single source of un-
certainty. In reality however, themeasurement errors should also be accounted for. In recent years, infrared spec-
troscopy has been shown to offer low cost, yet invaluable information needed for digital soil mapping at
meaningful spatial scales for land management. However, spectrally inferred soil carbon data are known to be
less accurate compared to laboratory analysed measurements. This study establishes a methodology to filter
out themeasurement error variability by incorporating themeasurement error variance in the spatial covariance
structure of themodel. The study was carried out in the Lower Hunter Valley, New SouthWales, Australia where
a combination of laboratorymeasured, and vis-NIR andMIR inferred topsoil and subsoil soil carbondata are avail-
able. We investigated the applicability of residual maximum likelihood (REML) and Markov Chain Monte Carlo
(MCMC) simulation methods to generate parameters of the Matérn covariance function directly from the data
in the presence of measurement error. The results revealed that the measurement error can be effectively
filtered-out through the proposed technique. When the measurement error was filtered from the data, the pre-
diction variance almost halved, which ultimately yielded a greater certainty in spatial predictions of soil carbon.
Further, the MCMC technique was successfully used to define the posterior distribution of measurement error.
This is an important outcome, as the MCMC technique can be used to estimate the measurement error if it is
not explicitly quantified. Although this study dealt with soil carbon data, this method is amenable for filtering
the measurement error of any kind of continuous spatial environmental data.
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1. Introduction

Soil carbon is recognized as a variable central to soil fertility and ag-
ricultural productivity. It is also well known for its capacity to serve as a
store for atmospheric carbon. Transferring atmospheric CO2 into long-
lived pools and securely storing so that it is not immediately remitted
is known as carbon sequestration (Lal, 2004; Yigini and Panagos,
2016). Small increases in soil carbon stocks per unit land area are antic-
ipated to result in significant changes in climate and land use manage-
ment (Falloon and Betts, 2010). Understanding soil carbon processes
for implementing “best practice” for balancing carbon budgets is pivotal
for carbon sequestration programs (Dawson and Smith, 2007). These
programs need extensive sampling for auditing soil carbon stocks. Sim-
ilarly, the assessment of soil health would also require conducting ex-
tensive measurement of soil carbon.

With the growing need for detailed soil carbondata, existing soil car-
bonmaps and inventories are becoming inadequate, especially for large
scale projects (Stevens et al., 2013). Standard techniques of soil carbon
measurements such as dry combustion and oxidation analyses can be
tedious, time consuming and expensive (Nocita et al., 2014). Con-
versely, infrared spectroscopy has been demonstrated to be a near com-
parable measurement technique that has the added advantage of being
relatively low cost (Janik et al., 2007; Reeves III, 2010; Rossel and
Webster, 2012; Stevens et al., 2013; Viscarra Rossel et al., 2006). The
low cost associated with this technique means that mapping studies
can afford higher sampling densities, thus enabling a detailed under-
standing soil carbon spatial variation across landscapes.

The use of infrared spectroscopy for soil analysis has been thriving
over the past decade (Bellon-Maurel andMcBratney, 2011). These stud-
ies have mostly focused on predicting basic soil composition, particu-
larly soil organic carbon (SOC) and texture (Stenberg et al., 2010).
Bellon-Maurel and McBratney (2011) provide a detailed review of the
studies on the use of NIR and MIR spectroscopic studies for soil carbon
inference. The review showed that these soil spectral inference studies
are largely dedicated to predicting soil carbon content for point loca-
tions. However, it is proposed that these soil spectral inference studies
could be further expanded into a spatial context for optimally predicting
soil carbon content at unsampled locations, and ultimately for soil map-
ping purposes.

Infrared spectroscopic soil carbon measurement is an indirect mode
of measurement. The carbon concentrations are inferred using calibra-
tion models based on the characteristics of the absorption spectrum of
scanned soil samples. One drawback of using these soil carbon data is
the comparatively largermeasurement error associatedwith calibration
models compared to the data acquired through standard dry combus-
tion techniques (Bellon-Maurel et al., 2010).

When predicting the soil carbon content spatially, we are interested
in the actual value rather than the value distorted by the measurement
error. More often than not, measurement error is disregarded. For ex-
ample, a recent study by Rial et al. (2017) mapped topsoil organic car-
bon content using Visible-Near Infrared (VNIR) spectroscopic
measurements without accommodatingwithin themethodology a pro-
cedure for handling the measurement errors in the data.

To achieve an optimal prediction in a spatial modelling exercise, the
measurement errors should be filtered out (Cressie, 1991). One way of
accounting for the measurement error is to include measurement
error variance (σε

2) in the variogram or covariance structure of the spa-
tial model. This is also known as kriging with uncertain data, where the
error variance is added to the diagonal of the spatial covariance matrix
(Delhomme, 1978; Knotters et al., 1995; Laslett and McBratney, 1990).
Thisfilters themeasurement error variance from the nugget component
of the experimental variogram, ultimately leading to lower uncertainty
of spatial predictions.

The accuracy of the spatial predictions can also be influenced by the
techniques of model parameter estimation. Conventional techniques
using method-of-moments can be biased (Lark et al., 2006), and thus
the Residual Maximum Likelihood Method (REML) and Bayesian infer-
ence from Markov Chain Monte Carlo (MCMC) analysis are the
established techniques for unbiased parameter estimation (Poggio et al.,
2016). Lark et al. (2006) used REML for estimating parameters of the co-
variance function directly from the data, and then the estimated parame-
ters were used for the spatial prediction inwhat is termed as an empirical
best linear unbiased predictor (EBLUP). MCMC simulation can also be ap-
plied for estimating the variogram and trend model parameters directly
from data. Minasny et al. (2011) advocated the use of MCMC simulation
for parameter inference in model-based soil geostatistics including the
spatial prediction of soil carbon. The basic advantage of MCMC over
REML is that MCMC estimates the underlying uncertainty of the parame-
ters, whereas REML relies on a single realisation of the variogram param-
eters. However, MCMC estimations are computationally expensive
compared to the REML approach due to the slow convergence rates of
the former (Mossel and Vigoda, 2006; Poggio et al., 2016).

In this study, we explored the applicability of REML-EBLUP and
MCMC simulation for measurement error parameter inference for soil
carbon spatial modelling. A combination of laboratory measured (dry
combustion), near infrared red (NIR) andmid infrared (MIR) spectra es-
timated soil carbon data and associated σε

2 were used for predicting soil
carbon content across the Hunter Valley region, NSW, Australia. Subse-
quently, we compared the prediction capability of eachmodel, i.e. incor-
porating σε

2, and without σε
2.

2. Theoretical context

The stochastic spatial process of soil carbon can be expressed by a
linear mixed model.

S ¼ MβþWuþ e ð1Þ

S is the vector of n observations,M is the n × p design matrix that asso-
ciates with each value of p fixed effects, and β is the vector of p fixed ef-
fect coefficients. u is the vector of q random effects, realisations of
variable u, which is associated with the n observations by an n × q de-
sign matrix W. It is assumed that u is the spatially dependent random
variable, while e independent random errors and u and e are indepen-
dent to each other. Hence, assuming u and e are jointly Gaussian,

u
e

� �
� N 0

0

� �
;

σ2ξG 0
0 σ2I

� �� �
ð2Þ

where σ2 is the variance of the independent error, ξ is the variance ratio
between u and σ2 andG is the correlationmatrix of u. e represents both
measurement errors and the short scale variations of the spatial process
which is geo-statistically known as the nugget effect. Assuming u is
drawn from second order stationary random process, G can be
characterised by a suitable covariance function since it only depends
on the relative locations of the observations (Lark et al., 2006).

TheMatérn covariance function has been effectively used in soil sci-
ence (Minasny andMcBratney, 2005) tomodel the covariance structure
of the random effects. The Matérn covariance function (K) is given as,

Kij ¼ c0δij þ c1
1

2υ−1Γ υð Þ
h
r

� �υ

Κυ
h
r

� �" #
ð3Þ

where Kij is the covariance between observation i and j, h represents the
separation distance between i and j, δijdenotes the Kronecker delta (δij
= 1 if i = j and δij = 0 when I ≠ j), c0 + c1 signifies the sill variance, Κv

is the modified Bessel function of the second kind of order υ. Γ is the
gamma function, r denotes the distance or ‘range’ parameter and υ is
the spatial ‘smoothness’. The latter parameter allows greater flexibility
in modelling the local spatial covariance. The parameters of the covari-
ance function along with σ2 and ξ can be estimated using REML. This
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counters the dependence of the estimates on the fixed effectsβwhich are
the “nuisance” parameters in this spatial problem (Lark et al., 2006).

2.1. Incorporating measurement error in the spatial model structure

The spectroscopic soil carbon estimates S(xi) are usually associated
with measurement errors and different to the true or actual values a
(xi). The data model for spatial random process can also be written as,

S xið Þ ¼ a xið Þ þ e xið Þ ð4Þ

where, the process model a(xi) = Mβ + Wu.
Therefore, measurement error variability can be acknowledged

through the inclusion of the underlying spatial correlation process u.

Ks hð Þ ¼ Ka hð Þ þ σ2
ε I h ¼ 0ð Þ ð5:1Þ

where h is the separation distance between the observation points. I is a
binary function where I = 1 when h = 0 and otherwise I = 0. Then,
Eq. (5.1) can be elaborated to include σε

2 in the covariance structure of
the spatial model.

Ks hð Þ ¼ Ka hð Þ þ σ2
ε Ka hð Þ

Ka hð Þ Ka hð Þ þ σ2
ε

� �
ð5:2Þ

Eq. (5.1) enables the predictor to “filter out” the measurement error
from the data. Then the predictions at sampled locationswill bemeasure-
ment error free estimates of the data (Eq. (6)).

a xið Þ ¼ m xið Þβ̂þ k xið ÞTK−1 S−Mβ̂� �
ð6Þ

Once this covariance is determined, it can be used to predict the
values at un-sampled locations x0 . The ordinary kriging predictor can
be written as (Cressie and Wikle, 2011).

a x0ð Þ ¼ m x0ð Þβ̂þ k x0ð ÞTK−1 S−Mβ̂� �
ð7Þ

a(x0) is the vector of predicted soil carbon at N un-sampled locations m
is the N x p design matrix with p fixed effects and k is the covariance
matrix between xi and x0.
Table 1
Comparison of LMM and HFK.

LMM

Model S(xi) = Mβ + Wu + e(xi)=
S is the vector of n observations, M is the n x p design matrix that a
with each value of p fixed effects, and β is vector of p fixed effect
coefficients. u is the vector of q random effects which is associated
n observations by n x q design matrix W.
u ~ N(0,G), e~N(0,σ2) and cov( u, e)=0
Where G is the covariance matrix of u and σ2 is the variance of e

Prediction model Maximised joint distribution of s and u gives

C β̂̂
u

� �
¼ Ms

WT s

� �
Where

C ¼ MTM MTW
WTM WTWþξ−1G−1

� �
ξ−1 is the ratio of variance of u to σ2

Structure of the
Random effect
corrected for the
σε
2

Covariance function
Ks = Ka + σε

2 I, h = 0

Prediction error
variance

τ2 = Ka(x0,x0)− ka(x0)TK−1ka(x0)
Where ka(x0) = cov (a(x0),a(xi)) and

Parameter
estimation

ML, REML or MCMC on the data, maximising a loglikelihood functi
(Cressie and Wikle, 2011)
And the prediction variance given by:

τ2 ¼ Ka x0; x0ð Þ−ka x0ð ÞTK−1ka x0ð Þ ð8Þ

Hence, when predicting at sampled locations with known σε
2, the pro-

posed method yields smoother, error free predictions with lower predic-
tion variance. When predicting at un-sampled locations, predictions will
be identical whether measurement error is acknowledged or not. How-
ever, prediction variancewill be higherwhen themeasurement error is ig-
nored. If all data points share a commonσε

2, the prediction variancewill be
lowered by an amount of σε

2 when the errors are accounted for. Since our
soil carbon data are sourced from three different sources, the respective
prediction variance will not be lowered by exactly σε

2. This clearly shows
how the uncertainty of predictions reduces when the measurement
error is accounted for. A more detailed theoretical explanation about
filtering the measurement errors of spatial data using aforementioned
technique can be found in Cressie (1991) and Cressie andWikle (2011).

Filtered kriging or FK (Cressie, 1991; Schabenberger and Gotway,
2017;Waller andGotway, 2004) involves a similar technique offiltering
out the measurement error to achieve noise free predictions. Filtered
kriging requires a known σε

2 which is common across the spatial loca-
tions. Christensen (2011) proposed a heterogeneous filtered kriging
(HFK) approach to address the heterogeneity of measurement errors
in FK. The main difference between the LMM and FK is, LMM includes
σε
2 in the covariance structure while in FK, σε

2 is included in the
variogram of the kriging system. Although these parameter estimation
techniques are different, both methods ultimately yield similar results.
Table 1 compares these two methods.

3. Methods

Fig. 1 shows a flow diagram of the methodology. Each step will be
discussed in the following sections.

3.1. Study area

The study area is situated in the Lower Hunter Valley, NSW,
Australia. The area is known specifically as the Hunter Wine Country
Private Irrigation District (HWCPID). The district has an area of approx-
imately 220 km2. The area experiences a temperate climate, with warm
humid summers and relatively cool winters. It receives a uniformly dis-
tributed rainfall with an average annual amount of 740 mm. The
Kriging

ssociates

with the

S(xi) = a(xi) + e(xi)
S(xi) is the observed spatial process, S(ai) is unobservable spatial
process. e(ai) is the error term as in LMM

λ
μ

� �
¼ bгs 1

10 0

� �
_γs;a ðx0Þð

1

� �
Where 1 is an n- vector of ones, the (I, j) element of the n x n matrix bгs is
(γ̂sðxi−xjÞ, _γs;a ðx0Þð is the cross semivariogram of s with a(x0) error- free

unobservable value and μ is the Lagrange multiplier

Variogram
_γs;a ðx0Þð ¼ γ̂s−

1
n

Pn
i¼1 σ2

ε ðslÞ; h≠0

τ2 ¼ λT _γs;a ðx0Þð þ μ

on Method of moments calculation for variogram and fitting via nonlinear
least squares (Christensen, 2011)
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HWCPID has an undulating topography with hills ascending to the
South-West (Fig. 2a). The underlying geology is comprised of predomi-
nantly Early Permian siltstones, marl and some minor sandstone and
Late Permian siltstones, Middle Permian conglomerates, sandstones
and siltstones in minor amounts (Hawley et al., 1995; Malone et al.,
2016). The HWCPID is mainly occupied by viticultural enterprises,
followed by dry land grazing systems.
3.2. Data

The soil carbon data consists of ‘data’ collected between the years
of 2001 and 2015 during the annual soil surveys carried out by the
students of the University of Sydney soil sciences group, and the
data from Malone et al. (2011) and Odgers et al. (2011). The term
‘soil carbon’ in this research is analogous to the total carbon content
in the soil. Soil samples were collected from the topsoil (0–10 cm)
and subsoil (40–50 cm). As the soil carbon data were derived from
several years of surveys, the method of soil carbon measurement
also varied. Methods included laboratory analysis using dry combus-
tionmethod, and spectrally inferred from NIR andMIR diffuse reflec-
tance measurements. Dry combustion of the soil samples was done
using an ElementarVario Max CNS macro elemental analyser
(Elementar Analysesysteme GmbH, Hanau, Germany) where the car-
bon content is determined by the loss on ignition at 400 °C (Zobeck
et al., 2013). The standard deviation of the soil carbon measurement
of the ElementarVario Max CNS analyser is 0.001–0.004 g 100 g−1

based on standard soil samples.
The estimation of soil carbon content using infrared spectroscopy is

done based on the absorption spectrumwhich is produced after scanning
the soil sample with an analytical spectral instrument. The absorption
spectrum has a characteristic shape produced based on the constituents
of the soil. The spectrum is then used to infer the soil carbon content via
calibration models. NIR spectroscopic measurements were made using
an Agrispec portable spectrophotometer with a contact probe attachment
(Analytical SpectralDevices, Boulder, Colorado). Bruker TENSOR37Fourier
Transform (FT)mid-infrared (MIR) spectrometerwas used tomeasure the
MIR spectral reflectance of soil samples. The collected NIR/MIR spectra
were prepossessed to remove the noise, followed by normalising before
using them for the calibrations. Calibration models were derived using a
regression tree method called Cubist (Minasny and McBratney, 2006;
Fig. 1.Methodology
Quinlan, 1992), where spectral data is linked with the soil carbon content
measured via the dry combustionmethod. The calibration data came from
a library of 316 soil profile samples from the wheatbelt of southern NSW
and northern Victoria (Geeves et al., 1995). See Minasny et al. (2008) for
the MIR spectra calibration model.

Some sampling points of the study area consisted of more than
one type of measurement for soil carbon. Accordingly, some data
points contained all three types of measurement: laboratory analysis
using dry combustion (Cea), NIR-inferred andMIR-inferredmeasure-
ments. Some sampling points had only two types of measurements:
either Cea and MIR or Cea and NIR, while the rest of the sampling
points consisted of only one measurement type.

Altogether, there were 1679 soil samples for the top 0–10 cm soil
layer. The observed data consisted of 681 Cea measured values, 266 NIR
inferred values and 732 MIR inferred values. There was a total of 1129
samples for the 40–50 cm subsurface layer. There were 43 Cea measured
values, 767NIR inferred values and 319MIR inferred values. The total car-
bon content was measured in g 100 g−1 of soil (Fig. 2b). A detailed anal-
ysis of data emphasizing spatial and temporal distribution of measured
carbon is presented in Appendix A.

3.2.1. Data pre-processing
Measured soil carbon concentration data had a skewed distribution

for all methods, resulting in the need to transform it via a square root
transformation to approximate a normal distribution. Then a linear rela-
tionship was developed between the values of standard dry combustion
technique (CNS) and NIR, and MIR. These relationships were used for
bias correction at sampling points where there were no CNS measure-
ments. Measurement errors for NIR and MIR data were calculated as.

ε NIR=MIRð Þ xið Þ ¼ sCea xið Þ−sNIR=MIR xið Þ ð9Þ

where sCea(xi) is the measured value at a location x and, while sNIR/MIR(xi)

denotes theNIR/MIRmeasured value at the same location. Then themea-
surement error variance for NIR/MIR data is given by

σ2
ε NIR=MIRð Þ ¼

P ε NIR=MIRð Þ−ε NIR=MIRð Þ
� 	2n o

n
ð10Þ

where εðNIR=MIRÞdenotes the mean error and n is the number of observa-
tions for NIR/MIR data.
flow diagram.



Fig. 2. (a). The spatial distribution of observation points for the 0–10 cm layer. (b). The composition of observation data (Cea) measured using CNS Vario Max and NIR/MIR spectral
inference for the two soil layers.
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The calculated σε
2 was 0.21 and 0.07 for NIR andMIR respectively for

the 0–10 cm layer, while for the 40–50 cm layer the error variance was
0.22 and 0.17 respectively for NIR and MIR instruments.

70% of the data from each layer was randomly selected for model
training, with the remaining 30% allocated for validation. To ensure
there was no co-located data for a sampling location, we selected the
most accurate type of measurement that was available. The ranking
for accuracy was 1) dry combustionmeasurement, 2)MIR spectrally in-
ferred measurement, and 3) NIR spectrally inferred measurement.

3.3. Spatial model of soil carbon

Stepwise regression and correlation coefficients were used to select
the most important environmental covariates for ‘scorpan’ modelling
(McBratney et al., 2003) of soil carbon content. Covariate selection was
done using a covariate pool which consisted of 15 covariates: Easting,
northing, aspect direction, Landsat 5 ETM bands 1,2,3,4,5, and 7, catch-
ment area, Digital ElevationModel (DEM), land cover, light isolation, nor-
malized difference vegetation index (NDVI), plan curvature, profile
curvature and slope direction. The selection was done through the analy-
sis of correlation coefficients and the stepwise regressionmethod. Landsat
band 5 (NIR band), DEM, and NDVI were statistically significant for soil
carbon predictions over the study area. A linear mixed model (LMM)
was fitted to the 0–10 cm and 40–50 cm data for estimating the soil car-
bon content across the study area. The LMMmodel is given as

S xið Þ ¼ β0 þ β1Landsat band 5þ β2Filled DEM þ β3 NDVI þ u
þ e xið Þ ð11Þ

where S(xi) is the observed value of soil carbon and β0, β1, β2, and β3, are
parameters of the fixed effects.
Model calibration was done using REML and Bayesian MCMC
models, and the parameters were estimated for both scenarios: inclu-
sion and exclusion of measurement error variance. Then we selected
the best performing calibration technique as confirmed by the valida-
tion dataset, to implement the spatial prediction of soil carbon at un-
sampled locations i.e. digital soil mapping.

3.3.1. Estimation of model parameters via REML
In geostatistics, the linear spatial model parameters are usually

inferred using the standard ordinary least squares method. Then
the variogram structure of the model residuals is estimated
separately using the method-of-moments procedure. This method
underestimates overall variability, and also the spatial structure esti-
mates maybe similarly inaccurate. REML can be used as a solution to
this problem since it provides unbiased and robust estimates of the
parameters directly from the data (Minasny and McBratney, 2007).

In the REML approach, an optimization algorithm (Nelder-Mead
Simplex method) was used to find the parameters that maximise the
following log-likelihood function:

L θjyð Þ ¼ n−p
2

log 2πð Þ−1
2

log Kj j− log Wj j−1
2
yTK−1Qy ð12Þ

where [θ = β ∣ ϕ] denotes the vector of parameters to be estimated
for the linear spatialmodel,β is the linear spatial trend andϕ=[c0, c1, r,
v,σε

2] defines parameters of the covariance function.M is the designma-
trix of the trend function andW=MTK−1M,Q= I−MW−1MTK−1 and
y = TS, denote a stationary data increments transformation of S with
transformation matrix T = I − M(MTM)−1MT.

Estimation of the REML variogram parameters using the profile like-
lihood method can be summarised as follows:
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• Choose a set of values for v and r
• Maximise the log-likelihood by estimating c0 and c1 for each combina-
tion of v and r using an optimization algorithm.

• Plot the likelihood L, against v and r for finding the respective v and r
values that have the largest L (log-likelihood) value.

A detailed explanation of REML-EBLUP for Matérn covariance func-
tion can be found in Lark and Cullis (2004) and Minasny and
McBratney (2007).

Accordingly, REML was used to generate the spatial model parame-
ters for the two soil layers separately. Models for each soil layer were
trained with added measurement error variance and without measure-
ment error variance. As explained earlier, the measurement error vari-
ance was included in the diagonal of the covariance matrix for the
prior approach. REML was applied with initial guesses for c0 and c1,
and then each model was optimised via a profile-likelihood method
using a combination of v and r values. The parameter combination
that furnished the maximum likelihood (Eq. (12)) was then selected.

3.3.2. Bayesian inference using MCMC simulation
Unlike classical statistics, Bayesian inference treats both parameters

(of the statistical model) and the sample data as random, and draws
conclusions about the population based on those samples. The Bayes
theorem states that the posterior probability, pðθjSÞ of a hypothesis (θ)
is proportional to the product of likelihood LðθjSÞand the prior probabil-
ity, p(θ) of the hypothesis given the new observations S or pðθjSÞα pðθÞ
LðθjSÞ. In this context, θ is the spatial model (Vrugt, 2016). Thus, it cap-
tures the probability distribution of posterior parameters from the like-
lihood and probability of the distribution of prior parameters too.

However, for practical geostatistical problemswhich have a high di-
mensionality, it is near-impossible to obtain the posterior distribution
through analytical means or by analytical approximation. Only recently
a new analytical approximation via Integrated Nested Laplace Approxi-
mation (INLA) has been proposed (Huang et al., 2017; Poggio et al.,
2016). Commonly, iterative approximation methods such as Markov
ChainMonte Carlo (MCMC) are used to approximate the target distribu-
tion (Minasny et al., 2011). The differential evaluation adaptivemetrop-
olis (DREAM), an algorithm proposed by Vrugt et al. (2008) is a multi-
chain MCMC simulation algorithm that automatically tunes the scale
and orientation of the proposed distribution en route to the target dis-
tribution. In addition, DREAM has an efficient sampling strategy on
high-dimensional and multi-modal posterior distributions (Vrugt,
2016). DREAM implementation can be summarised as follows:

• Define the parameter ranges, initial sampling distribution and likeli-
hood function to compare model prediction with the observation
data.

• List the upper and lower bounds of the parameters and use Latin Hy-
percube sampling over d dimensional hypercube to initialize the ini-
tial points of the N number of Markov chains.

• Optimise the log-likelihood function:

L θjSð Þ ¼ n
2

log 2πð Þ þ 1
2

log Kj j−1
2

S−Mβð ÞTK−1 S−Mβð Þ ð13Þ

where θ= [β ∣ф] denotes the vector of parameters to be estimated for
the linear spatial model as in Eq. (12).

More detailed theoretical and technical explanation about DREAM
can be found in Vrugt (2016). Minasny et al. (2011) also provide a de-
tailed discussion about its application in soil geostatistics.

Accordingly, four calibration models were derived using DREAM for
the two soil layers for both scenarios;with addedσε

2 andwithoutσε
2.We

also explored the possibility of defining the posterior distribution of σε
2

of NIR andMIR predictions directly from the data. If the posterior distri-
bution of σε

2 can be successfully defined, MCMC can be used to deter-
mine σε

2, when σε
2 is not explicitly quantified.

3.4. Model validation

The calibrated models for each soil layer and for each scenario were
validated using a subset of the data.With these data, models were com-
paredusing rootmean squared error (RMSE) and Lins' concordance cor-
relation coefficient (CCC) (Lin, 1989).

3.4.1. Uncertainty assessment
The predictions from a spatial model are done with a certain degree

of uncertainty. Uncertainty can be simply defined as the variability of
model predictions. Parameter uncertainty and structural uncertainty
are the two major sources of uncertainty of a spatial model. Parameter
uncertainty is caused by the uncertainty of model parameters and the
structural uncertainty caused by approximate or incomplete treatment
of the spatial relationship of the process beingmodelled (McKay, 1995).

Prediction variance is considered as a measure of uncertainty of
model predictions caused by the uncertainty of input parameters of
the model. We calculated the variance of the model predictions to see
how themodels behave when the uncertainty of data is included or ex-
cluded. Prediction variance is given by,

σ2
x ¼

Pn
i¼1 Ŝ xð Þ−μ̂ xð Þ

n o2

n
ð14Þ

where ŜðxÞ is the predicted value and μ̂ðxÞ is the mean of predicted
values.

The standardised squared deviation SSD(x) measures a prediction
model's goodness of fit. It is an indication of the quality of estimate of
the prediction variance. A value closer to 1 for mean SSD(x) indicates
a good estimate (Voltz and Webster, 1990) and a median value closer
to 0.455 (Lark, 2000) symbolises kriging with a correct variogram:

SSD xð Þ ¼
S xð Þ−Ŝ xð Þ

n o2

σ2
x

ð15Þ

where S(x) is themeasured value, ŜðxÞdenotes the predicted valuewith
variance σx

2.
In the REML approach, prediction variance at each prediction point

was calculated along with the predicted value. Similarly, for MCMC ap-
proach, prediction variance was calculated at each prediction point
given the realisations of the last 1000 MCMC simulations, and the pre-
dicted value was taken as the average of all simulated predicted values.

3.5. Mapping the carbon content

Finally the best performing REML–inferred models were selected to
predict the carbon content to a 25×25mgrid over study area. Themaps
were produced using trained models for with (a) and without (b) the
inclusion of σε

2 scenarios for both 0–10 cm and 40–50 cm soil layers.
The spatial predictions for these two scenarios were subsequently com-
pared by subtracting (b) from (a). Also the prediction uncertainties of
two scenarios were compared in a similar manner.

4. Results & discussion

This study focuses on filtering measurement errors or observed un-
certainty of data via expressing the estimated uncertainty in the spatial
model. The study compares the accuracy of a spatial model when the
measurement error variance is included and when it is excluded. In
any research field, measured data is affected by some degree of uncer-
tainty. For example ecological data are almost always observed



Fig. 3. REML estimated variograms for the scenarios with and without inclusion of σε
2 for the two soil layers.
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incompletely with large and unknown amounts of measurement error
or data uncertainty (Cressie et al., 2009).

4.1. REML inferred variogram parameters

In this study, the REML approach was used to find the optimum
values that maximise the log-likelihood (Eq. (12)). We compared the
aforementioned scenarios; with σε

2 and without σε
2 using derived

variogram structures. For the top 0–10 cm layer, among the thirty six
combinations of v and r values, 0.05 was the optimum v while the
range was around 2500 to 5000 m (Fig. 3). In the modelling exercise
without the inclusion of σε

2, the optimum range is slightly reduced to
1500 m while the smoothness parameter (v) increased to 0.1. Very
low v values and short ranges suggest that the soil carbon process at
Fig. 4.Marginal distributions (diagonal) and binary scatter plots (off-d
the study site is a highly variable spatial process. In other words, a pres-
ence of rapid variations of soil carbon content at small lags can be ob-
served. With the inclusion of σε

2 the value of v has doubled suggesting
the addition of σε

2 increased the smoothness of the spatial process of
soil carbon.

The variogram parameters of the 40–50 cm layer had a similar opti-
mum (v= 0.2) and a similar range of 2000–4000 m for both scenarios.
The smaller v value also indicated that a rapid variation in soil carbon
content occurs at small lags. However, the variation is comparatively
low compared to that of the top 0–10 cm layer. Variograms of the two
scenarios for both soil layers show a similar structure apart from the dif-
ferent sill values. The total variance is reduced with the added σε

2 for
both layers, and the nugget (c0) value decreased with the inclusion of
σε
2 for both soil layers. This is mainly due to the exclusion of σε

2 in
iagonal) of posterior parameters for 0–10 cm soil carbon content.



Fig. 5.MCMC estimated variograms without and with inclusion of σε
2 for 0–10 cm soil layer with uncertainty levels.
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modelling the variogram structure. Clark (2010) also found that the ap-
parent estimation of variance can be significantly reduced by acknowl-
edging the measurement error.

4.2. MCMC parameter estimation

The marginal distributions of Matérn variogram parameters along
with the linear trend model parameters, including the two-
dimensional scatter plots of posterior samples are illustrated in Fig. 4.
The probability distribution functions (pdfs) of the linearmodel param-
eters appear to be well defined, and approximate a Gaussian distribu-
tion. There is a significant correlation between the intercept and the
parameters of covariates; Band 5 and NDVI.

The near normal marginal distribution of c0 and c1 of variogram pa-
rameters appear to be well defined. However, the pdf of r extended
Fig. 6.Marginal distributions of posterior parameters for 40–50 cm soil carbon contentwithout
to the web version of this article.)
over the entire prior range, implying that the pdf of r is poorly defined.
Also, there were significant scatter correlations between variogram pa-
rameters. c0 and c1 were positively correlated, and the smoothness pa-
rameter (v) was positively correlated with the nugget (c0) while r and
c1 were also positively correlated. These correlations between variogram
parameters add significant uncertainty to variogram parameters.

The modelling with σε
2 displayed similar marginal distributions of

model parameters while the range was poorly defined for the topsoil
layer. Correlation between trend models and variogram parameters
for both soil layers displayed a similar pattern for both scenarios of
testing; with and without σε

2.
Variogram structures from both scenarios were well defined by

the MCMC simulations. Similar to the REML approach, modelling
with σε

2 reduced the total variation of the variogram and the nugget
value (Fig. 5). Unlike REML, the uncertanity of the variogrammodels
added σε
2. (For interpretation of the references to colour in thisfigure, the reader is referred



Fig. 7. MCMC estimated variograms without and with inclusion of σε
2 for 40–50 cm soil layer with uncertainty levels.
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could be estimated through the MCMC simulation which are
expressed by 2.5 and 97.5 percentile values of the simulated
distributions in Tables 2a and 2b. When the mean parameter values
from MCMC were compared with the REML values, the total
variation was reduced.

Fig. 6 presents the histograms of themarginal posterior distributions
of the linear and variogrammodels' parameters for the 40–50 cm layer.
The maximum a-posteriori probability (MAP) of each model parameter
is depicted by the (blue) cross in each histogram. These values are the
mode of the posterior distribution of each parameter.
Fig. 8. Empirical probability density functions of posterior parameters for 0–10 cm soil carbon c
the references to colour in this figure legend, the reader is referred to the web version of this a
As per the top layer, the linear model parameters appeared rather
well defined and exhibit approximate Gaussian distribution. How-
ever, the posterior variogram parameters extend through the entire
range of the prior parameters, which is indicative of the variogram
parameters being not well defined. This relatively large parameter
uncertainty can lead to unrealistically large prediction uncertainties.
The presence of outliers along with the correlations between
variogram parameters can cause this type of behaviour, and is also
seen in the exponentially increasing 97.5 percentile of the variogram
(Fig. 7a). Noticeably, the sill value is reduced by approximately 50%,
ontent. (Blue) the cross indicates the MAP value of each parameter. (For interpretation of
rticle.)



Table 2a
Posterior parameters of the linear spatial model and the variogrammodels for 0–10 cm layer. β represents coefficients of the linear trend. c0, C1, and r are the variogram parameters; nug-
get, sill, and range respectively. v is the smoothness parameter of the covariance function.

Method β0 β1 β2 β3 β4 C0 C1 r v

REML -0.488 0.006 0.003 0.004 -3.159 0.340 0.554 5000.0 0.200
REML +σε

2 -0.482 0.006 0.004 0.003 -2.960 0.267 0.526 5000.0 0.200
MCMC- 2.5 percentile -0.985 0.002 0.001 -0.014 -3.896 0.015 0.319 659.4 0.021
MCMC mean -0.427 0.006 0.004 0.010 -2.916 0.143 0.556 5030.2 0.091
MCMC- 97.5percentile 0.362 0.008 0.006 0.027 -1.609 0.280 0.721 9833.9 0.174
MCMC+σε

2 -2.5 percentile -0.921 0.005 0.002 -0.031 -3.583 0.007 0.251 572.9 0.054
MCMC+σε

2- mean -0.302 0.006 0.004 0.008 -2.813 0.104 0.623 5041.5 0.095
MCMC+σε

2-97.5 percentile -0.157 0.010 0.006 0.027 -2.444 0.342 0.979 9177.4 0.248

Table 2b
Posterior parameters of the linear spatial model and the variogram models for 40–50 cm layer. β represents coefficients of the linear trend. C0, C1, and r are the variogram parameters;
nugget, sill, and range respectively. v is the smoothness parameter of the covariance function.

Method β0 β1 β2 β4 C0 C1 r v

REML 0.563 -0.001 0.003 -0.420 0.329 0.370 5000.0 0.500
REML +σε

2 0.599 -0.002 0.003 -0.319 0.137 0.358 5000.0 0.500
MCMC 2.5-percentile -0.778 -0.003 0.000 0.985 0.216 0.296 1964.4 0.169
MCMC- mean 0.359 -0.001 0.003 -0.315 0.289 0.694 6616.8 0.380
MCMC- 97.5percentile 0.910 0.002 0.060 0.224 0.389 1.443 9778.3 0.690
MCMC+σε

2 2.5-percentile -0.559 -0.004 0.000 1.478 0.031 0.159 1294.7 0.150
MCMC+σε

2 mean 0.344 -0.001 0.004 0.516 0.111 0.475 5786.7 0.425
MCMC+σε

2 97.5 percentile -0.962 0.002 0.007 0.379 0.163 1.419 9822.8 0.929

Table 3a
Comparison of validation results of REML-BLUP, MCMCmethods with and without σε

2 for
0–10 cm layer. Cea is the measured value using dry combustion.

Test Statistics REML-EBLUP REML-EBLUP
+ σε

2
MCMC MCMC

+σε
2

RMSE-all (Cea,NIR,MIR) 0.20 0.20 0.19 0.19
RMSE- Cea 0.05 0.05 0.11 0.11
RMSE- NIR and MIR 0.15 0.15 0.25 0.25
CCC-all (Cea,NIR,MIR) 0.45 0.47 0.45 0.45
CCC-all - Cea 0.44 0.55 0.46 0.47
CCC-all - NIR/MIR 0.45 0.47 0.45 0.45
Mean prediction variance 0.51 0.25 0.51 0.49
Mean SSD-all (Cea,NIR,MIR) 0.39 0.80 0.39 0.40
Median SSD-all
(Cea,NIR,MIR)

0.10 0.21 0.11 0.11

Mean SSD- Cea 0.22 0.45 0.23 0.23
Median SSD- Cea 0.08 0.16 0.08 0.08
Mean SSD- NIR and MIR 0.50 1.08 0.53 0.52
Median SSD- NIR and MIR 0.15 0.32 0.17 0.16
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and the uncertainty levels are considerably reduced with the inclu-
sion of σε

2 (Fig. 7b).

4.3. Estimating error variance through MCMC simulation

The possibility of defining the pdf of error variance parameters is
also examined. The empirical probability density functions of the
posterior parameters including the error variance parameters
σε(MIR)
2 and σε(NIR)

2 for topsoil carbon content are given in Fig. 8. The
marginal distribution of σε(MIR)

2 was relatively well defined here,
with MAP values of 0.35 and 0.47 for the top layer and 0.14 and
0.23 for the bottom layer for σε(MIR)

2 and σε(NIR)
2 respectively. The re-

spective measured values were 0.07, 0.21 and 0.17, 0.22. These re-
sults indicate that there is a possibility of estimating the σε

2 through
the MCMC simulation.

Tables 2a and 2b illustrate the posterior parameters of the linear
trend model and the variogram parameters. The MCMC derived poste-
rior parameters display a significant uncertainty. It is difficult to com-
pare the optimised parameters of each model since they are derived
from different likelihood functions. However, the optimised linear
model parameters of REML and the mean values of the MCMC simula-
tions were quite similar between the scenarios for the top soil layer
(Table 2a). The variogram parameters differed between the scenarios
and between the models. There is a considerable difference in the c0
and v of the optimised variogram parameters while the range values
of all models were quite similar. With the inclusion of σε

2, the co value
was reduced due to filtering out σε

2 from the nugget.
The optimised linearmodel parameters fromREML and themeans of

the MCMC simulations were quite similar for all models tested for the
40–50 cm layer (Table 2b). The c1 variogram parameter values of all
models were quite similar and the other parameters c0, r, vwere signif-
icantly different between models. The spatial range parameter of the
MCMC approach was almost half of the REML derived estimate.

4.4. Comparing model performance

4.4.1. Prediction accuracy
Tables 3a and 3b summarises the validation results of all models for

the 0–10 cm and 40–50 cm layers. The MCMC results represent the
averages of 1000 simulations from the last 1000 MCMC parameter
realisations. The RMSE and CCC values for all models were quite similar
indicating that the differences between the prediction accuracy of the
models were insignificant. Although the values slightly differ between
the two spectral inferencing techniques, the RMSE and CCC values
stayed the same, confirming the predictions from both scenarios were
almost identical. The same statisticswere calculated separately for sam-
ples which were measured using the lab-based measurements and
spectrally inferred soil carbon values. The accuracy of all models was
comparatively higher for the measured soil carbon (Cea) than the NIR/
MIR inferred carbon content.

When we consider the 40–50 cm validation results, overall the con-
clusions are similar to the top 0–10 cm layer. However, the CCC values
for all modelling scenarios of the bottom layer were greater than the re-
spective values of the upper layer. Usually the accuracy of carbon pre-
dictions decreases with increasing depth. However, this study
produced contradictory results. This can be due to the environment in
which the study is situated. In the study site, the sub-soil variation is
driven by the presence of marl (loose, earthy deposits consisting chiefly
of an intimate mixture of clay and calcium carbonate) rather than the



Table 3b
Comparison of validation results of REML-BLUP, MCMCmethods with and without σε

2 for
40–50 cm layer. Cea is the measured value using dry combustion.

Test Statistics REML-EBLUP REML-EBLUP
+ σε

2
MCMC MCMC

+σε
2

RMSE-all (Cea,NIR,MIR) 0.19 0.19 0.19 0.19
RMSE- Cea 0.19 0.09 0.12 0.11
RMSE- NIR and MIR 0.19 0.19 0.20 0.19
CCC -all (Cea,NIR,MIR) 0.63 0.64 0.63 0.60
CCC - Cea 0.87 0.90 0.88 0.85
CCC - NIR/MIR 0.60 0.62 0.61 0.58
Mean prediction variance 0.38 0.19 0.38 0.19
Mean SSD-all (Cea,NIR,MIR) 0.51 1.10 0.49 1.29
Median SSD-all
(Cea,NIR,MIR)

0.17 0.35 0.16 0.42

Mean SSD- Cea 0.32 0.62 0.30 0.92
Median SSD- Cea 0.11 0.20 0.12 0.31
Mean SSD- NIR and MIR 0.51 1.04 0.50 1.30
Median SSD- NIR and MIR 0.17 0.36 0.17 0.44
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other environmental factors used in this study. Thus, the carbon content
in the subsurface layer appears to be mainly determined by a spatial
random process, rather than being a reflection of the environmental co-
variates. This indicates that themeasured soil carbon content is an indi-
rect measure or proxy for the presence of sub-soil marl. Rather usefully,
with the models used in this study, once the covariance structure is ac-
curately estimated, the accuracy of the predictions increases. Carbon
content in the top soil layer of the study site is closely related to environ-
mental factors which make it difficult to fully capture the soil carbon
variability through the deterministic model. There are always unac-
counted relationships in the linear trend, andhence the prediction accu-
racies remain low.
Fig. 9. 0.2% contouring of spatially predicted soil carbon for 0–10 cm layer. Figure shows sm
4.4.2. Prediction uncertainty
For both REML and MCMC modelling approaches, the median and

mean SSD values greatly improved (almost doubled) when σε
2 was in-

cluded in the spatial model. This is mainly due to the much lower pre-
diction variance associated with the aforementioned scenario
(Tables 3a, 3b). The prediction variance values show that when the
measurement error is acknowledged, the prediction uncertainty nearly
halved.

We also compared the reliability of the uncertainty of prediction esti-
mates by calculating the percentage of predictions that occupy the predic-
tion range within the defined 95% confidence limits for all tested models.
For the REML approach, 96.6% of data were within the 95% confidence
range while for the MCMC approach 96.8% was within the CI range.
Thus, all approaches display more or less a similar outcome.

4.5. Comparing predictions at un-sampled locations

Since the REML approach produced comparable results to the more
technically and computationally expensive MCMC techniques, we se-
lected the former approach to predict the soil carbon content across
the study area.

Fig. 9 illustrates the effect of filtering σε
2 from the data. We drew

0.2% contours of the predicted carbon content from both methods
to examine the smoothing effect when measurement error is
acknowledged. When σε

2 is ignored, the predictions are made using
a more continuous variogram leading to intense contouring around
the data points. By contrast, the σε

2 filtered map provides more
realistic and smoother predictions of soil carbon content.

Fig. 10 depicts the comparison of the spatial prediction of soil car-
bon over the study area for both modelling scenarios. Fig. 10a repre-
sents the soil carbon content when modelling with σε

2. Soil carbon
oother predictions around data points when the measurement error is acknowledged.



Fig. 10. REML-BLUP predictions and prediction variances of soil carbon for (1)0–10 cm and for (2) 40–50 cm soil layers. (a) predictions for modelling with σε
2, (b) the difference of soil

carbon predictions with and without incorporating σε
2. (c) difference between prediction variances between the two scenarios
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content of the topsoil layer is closely related to the environmental
covariates NDVI and the elevation of the study area. High carbon
contents are mostly seen in highly elevated forested areas. High car-
bon content towards the south of the study area is caused by the
presence of marl. Fig. 10b and c respectively are the differences be-
tween predictions and prediction uncertainties of both modelling
scenarios. Negative values indicate higher corresponding cell values
when σε

2 is ignored. If we used a common σε
2 for data points, theoret-

ically, the difference between predictions of both scenarios should be
zero. However, in this study we used different σε

2 for each data type
leading to a difference between predictions. The colours towards
the top of the colour legend indicate positive values closer to zero,
whereas the colours towards the bottom of the colour legend indi-
cate negative values closer to zero. Accordingly, soil carbon content
of 0-10 cm soil layer is mostly over predicted when σε

2 ignored. For
the 40–50 cm soil depth, a substantial part of the study the corre-
sponding map shows that the soil carbon content is slightly under
predicted when σε

2 is ignored. The influence of environmental covar-
iates on soil carbon content is minimal for the 40–50 cm soil depth
and the prediction differences of this soil layer is more closer to
zero than the top soil layer. Perhaps, the effect of environmental co-
variates has also contributed to non- zero prediction differences
between the two testing scenarios other than the difference between
σε
2 among data points.
Fig. 10c shows the difference between prediction variances for

the two scenarios; with and without inclusion of σε
2 for both soil

layers. The difference is minimal in the vicinity of the observation
points, and it gradually increases as distance increases from the
points for both soil layers. Negative values indicate the exclusion of
σε
2 has resulted in higher prediction uncertainty, but in contrast,

the prediction variance have clearly reduced by the inclusion of σε
2.

This indicates that the filtering of measurement error from data
yields a higher prediction certainty.

5. Conclusions

• The use of rapidly acquired spectroscopicmeasurements of soil at-
tributes as input data in spatial modelling is rapidly growing. It is
important to use this data appropriately. In short, measurement
error should be accounted for in the digital soil mapping frame-
work.

• Filtering measurement error from the data leads to filtering the σε
2

from the total variation (sill) of the variogram. The inclusion of error
variance lowers the overall uncertainty of spatial predictions.
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Acknowledging themeasurement error is an effectiveway to improve
confidence in prediction.

• MCMC can be used for estimating the distribution function of error
variance parameters. This is an important finding that can be used in
spatial modelling of soil to compute σε

2 estimated directly from data
in the absence of laboratory accuracy comparisons.

• In terms of the accuracy of predictions and goodness of the calibration
models of REML-EBLUP +σε

2 provides a comparable accuracy to
MCMC.

• The LMM approach utilised in this study can be used to account for
other types of measurement error, including data estimated from
pedotransfer functions. Further work needs to include the effect of
spatial position errors in the LMM.

• Although this study is focused on filtering the measurement errors of
soil carbon data, the technique is amenable for other data (for exam-
ple soil, air, and water data) sources with known uncertainty. If the
uncertainty of data is not explicitly quantified, the MCMC techniques
can be used to quantify the measurement errors.
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