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A B S T R A C T

Peatlands offer a series of ecosystem services including carbon storage, biomass production, and climate regulation. Climate change and rapid land use change are
degrading peatlands, liberating their stored carbon (C) into the atmosphere. To conserve peatlands and help in realising the Paris Agreement, we need to understand
their extent, status, and C stocks. However, current peatland knowledge is vague—estimates of global peatland extent ranges from 1 to 4.6 million km2, and C stock
estimates vary between 113 and 612 Pg (or billion tonne C). This uncertainty mostly stems from the coarse spatial scale of global soil maps. In addition, most global
peatland estimates are based on rough country inventories and reports that use outdated data. This review shows that digital mapping using field observations
combined with remotely-sensed images and statistical models is an avenue to more accurately map peatlands and decrease this knowledge gap. We describe peat
mapping experiences from 12 countries or regions and review 90 recent studies on peatland mapping. We found that interest in mapping peat information derived
from satellite imageries and other digital mapping technologies is growing. Many studies have delineated peat extent using land cover from remote sensing, ecology,
and environmental field studies, but rarely perform validation, and calculating the uncertainty of prediction is rare. This paper then reviews various proximal and
remote sensing techniques that can be used to map peatlands. These include geophysical measurements (electromagnetic induction, resistivity measurement, and
gamma radiometrics), radar sensing (SRTM, SAR), and optical images (Visible and Infrared). Peatland is better mapped when using more than one covariate, such as
optical and radar products using nonlinear machine learning algorithms. The proliferation of satellite data available in an open-access format, availability of machine
learning algorithms in an open-source computing environment, and high-performance computing facilities could enhance the way peatlands are mapped. Digital soil
mapping allows us to map peat in a cost-effective, objective, and accurate manner. Securing peatlands for the future, and abating their contribution to atmospheric C
levels, means digitally mapping them now.

1. Introduction

Peatlands cover about 3% of the earth's land surface, holding be-
tween 113 and 612 Pg (Peta gram = 1015 g, or equivalent to Gigatonne)
of carbon (C) (Jackson et al., 2017; Köchy et al., 2015). This is

equivalent to about 5–20% of the global soil C stock, 15–72% of at-
mospheric C, and 18–89% of global terrestrial C biomass. Peatlands can
be found in arctic, boreal, temperate, and tropical regions (Fig. 1).
Types of peatland vary, but all have accumulated a significant amount
of organic matter over a long period (Wieder et al., 2006). Under
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natural conditions, peatlands are carbon sinks with an estimated ac-
cumulation rate between 0.5 and 1 mm per year since the last glacial
period. For over 1000 years, peatlands have been mined for fuel and
fertilizer, and used for grazing and agriculture. Agricultural use re-
quires draining the peat, causing consolidation, enhanced peat de-
composition, and subsequent land subsidence (Hoogland et al., 2012).

Climate change and rapid land use change have turned peatlands
into carbon source ecosystems. Peat mining, drainage, agriculture, and
potential negative feedback with the warming environment are re-
leasing the carbon stored in peats, and adding to atmospheric carbon
dioxide (CO2). Concerns of elevated greenhouse gas emissions from
degraded peatlands have sparked international interest. The EU 2030
climate and energy framework emphasises that forests, agricultural
land and wetlands (and thus peatlands), will play a central role in
realising the Paris Agreement. Under this framework, from 2021, all EU
member states need to report on the emissions and removals of
greenhouse gases from wetlands (European Parliament, 2018). Other
global initiatives on peatlands include the FAO (Joosten et al., 2012),
the UN Framework Convention on Climate Change (UNFCCC), the In-
ternational Union for the Conservation of Nature, and the establishment
of the Global Peatlands Initiative.

Global peatlands are degrading and immediate action is necessary
to prevent further decline. Comprehensive, worldwide mapping is es-
sential to better understand peatland extent and status, and to protect
peatland from further degradation. Research into and monitoring of
peatland should be improved to provide better maps and tools for rapid
assessment to support action and multi-stakeholder engagement
(Crump, 2017).

Much effort is focused on measuring aboveground biomass, how-
ever C stored in peat can be 10–30 times larger than its aboveground
biomass. As such, C loss and potential emissions reduction are better
targetted in areas of deep peat (Law et al., 2015). However, mapping
peatland extent and its C stock is not a simple exercise. Nearly 100 years
ago, soil surveyor William Edgar Tharp from the U.S. Soil Survey ex-
plained that the first problem in mapping peat soils lies in defining the
extent of the investigation (Tharp, 1924). Peat occurs worldwide but as
fragmented pockets. Consequently, it has often been neglected by soil
surveyors, as evidenced by the lack of large-scale digital soil mapping
studies on peat (see Table 4).

Traditional mapping approaches determined peatland extent and
distribution by manually delineating peat based on aerial photography

(Cruickshank and Tomlinson, 1990; Vitt et al., 2000). With advances in
digital soil mapping (DSM) (McBratney et al., 2003), soil C has been
successfully mapped throughout the world, and global estimates of soil
C stocks have improved over the last decade (Arrouays et al., 2014).
However, digital mapping efforts specific to peatlands are modest and
global C stock estimates for peatlands vary considerably, between 113
and 612 Pg (Jackson et al., 2017).

Digital mapping techniques can help generate accurate peatland
maps and identify regions with the highest threats, priorities, and dri-
vers of change. These maps can also be used in climate models to assess
the sensitivity and feedback to future climate change. Protecting, re-
storing, and managing peatlands can be offered as part of the national
climate change mitigation policy to achieve the Paris Agreement
(Crooks et al., 2011).

This article aims to review the state-of-the-art of digital mapping of
peatlands, methods for estimating C stock, and highlights some op-
portunities and challenges to accurately measuring and monitoring the
world's peatlands. Section 2 describes peatland definitions and forma-
tion. Section 3 describes how carbon stocks in peatland are currently
calculated. Section 4 provides an overview of global and regional es-
timates of peatland, highlighting the variability in these values and
proposing some reasons for this variability. Section 5 presents 12 case
studies of national or regional peatland mapping. Section 6 reviews 90
studies that have explicitly mapped peatlands using digital techniques,
illustrating the biggest gaps in digital peat mapping and the main
avenues to improve mapping. Section 7 reviews some proximal and
remote sensors that are useful for mapping peat.

2. Peatland definition and formation

2.1. Peatland definition, types, and ecosystem services

There is no globally accepted definition for ‘peatland’. In this paper,
we use the broad definition from Joosten and Clarke (2002):

• Peat is a sedentarily accumulated material consisting of at least 30%
(dry mass) of dead organic material.

• A peatland is an area with or without vegetation with a naturally
accumulated peat layer at the surface.

The term “mire” describes a wetland ecosystem where peat

Fig. 1. A global estimate of peatland and its distribution along the latitude (map from Xu et al., 2018, creative common).
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accumulates (Moore and Bellamy, 1974) or a peatland where peat is
currently being formed (Joosten, 2009), although it is difficult to know
if peat is still forming or not.

The definition of ‘organic soil’ varies between soil classification
systems. Organic layer thickness is usually part of the description.
According to the World Reference Base for Soil Resources (WRB) and
the USDA soil taxonomy, histosols must have organic materials ≥40 cm
overlying unconsolidated soil materials. The USDA system specifies that
the organic materials should have at least 12–18% organic carbon (OC).
Histosols can be further distinguished into sapric, hemic, and fibric
categories based on their decomposition stages; however the classifi-
cation criteria could also be different according to different systems
(Kolka et al., 2016). Other national classification systems may have a
different definition of organic soils.

In the ecology literature, peatlands are distinguished from other
landscapes based on morphology and landscape position (bogs, convex
raised above the surrounding landscape, acid and nutrient-poor and
fens, flat or concave situated in depressions with higher pH and richer
nutrient content), and land use potential. Classifications include om-
brogenous peats (or ombrothropic) that are fed only by precipitation,
and geogenous (or geo or minerothropic) that are also fed by water
which has been in contact with the mineral bedrock or substrate
(Joosten and Clarke, 2002).

Despite covering only 3% of the earth's land surface, peatlands
provide many ecosystem services (Kimmel and Mander, 2010) in-
cluding:

- Biomass production for agricultural use including horticulture,
dairy, and forestry.

- An energy source. Peat has been extracted as an energy source or
fuel and horticultural growing media.

- Carbon storage. Peat is one of the largest C stores per unit area.
- Water regulation. Peat serves as a water reservoir and as part of the

hydrological cycle which can mitigate flood via water absorption.
- Climate regulation. As one of the largest terrestrial C components,

peat influences the direction and magnitude of carbon cycle-climate
feedbacks.

- Biodiversity support including unique habitats for rare and endemic
species.

- Research and education. Peatland is not currently well understood
or documented, offering great scope for research and education.

- Recreation and art. Peatland can serve as a natural recreation area
and contribute to art.

2.2. Rates of formation

Based on radiocarbon date estimates, peatland has been accumu-
lating since the last glacial maximum, some 20,000 years ago. Average
global peatland C accumulation rates were reported at 20–140 g C
m−2 yr−1 (Mitra et al., 2005). Yu et al. (2010) found that northern
peatland formation peaked around 11,000–9000 years ago (average
accumulation rate of 18.6 g C m−2 yr), tropical peatland formation
began > 20,000 years ago and peaked about 8000–4000 years ago, and
southern peatland formation peaked about 17,000–13,500 years ago.
They noted the dominant factors controlling peatland formation in
northern regions are climate and seasonality.

In Ireland, for example, peatland is divided into blanket bog and
raised bogs (Hammond, 1979). A third type: fen, has been extensively
drained and only a very small area remains. Raised bogs are found
primarily in the middle of Ireland whereas blanket bogs are found
predominantly along the western seaboard and in mountainous areas
(Connolly and Holden, 2009; Renou-Wilson et al., 2011).

Raised bogs and blanket bogs have different genesis, both of which
have been influenced by drainage, climate, hydrology, geomorphology,
nutrient status and glacial geology. Raised bogs developed in the post-
glacial lacustrine environment left after the retreat of the British-Irish

Ice Sheet. Over time, as the lakes themselves are infilled with dead
vegetation, conditions suitable for peat moss (Sphagnum) growth oc-
curs. This is followed by the “accumulation of water-saturate peat
above the original water surface” (Van Breemen, 1995). The surface
becomes disconnected from the groundwater and the peatland becomes
an ombrotrophic bog. The genesis of blanket bogs is related to a com-
bination of the deterioration of the climate and land clearance between
5100 and 3100 BP. Increased rainfall led to the paludification of soils
and the formation of blanket bogs on relatively flat or gently sloping
areas (Van Breemen, 1995).

Meanwhile in the tropics, peat is mostly governed by sea level and
monsoon intensity. Coastal peat swamps in the tropics developed as
organic matter accumulated on marine clay and mangrove deposits of
river deltas and coastal plains during the mid- to late Holocene
(5000 years ago). Peat deposits in a bog in Kalimantan, Indonesia, date
back to the Late Pleistocene around 26,000 years ago (Page et al.,
2004). Accumulation was most rapid in the early Holocene
(∼11,000–8000 years ago) and continued at a reduced rate until now
(Page et al., 2004). These peatlands mostly occupy low altitude coastal
and sub-coastal environments but may extend inland for distances
of > 150 km along river valleys and across catchments. Conditions that
encourage peat accumulation are poor drainage, permanent water-
logging, high rainfall, and substrate acidification. Most of the peatlands
of Southeast Asia have a characteristically domed, convex surface.
Their water and nutrient supply are derived entirely from rainfall
(ombrogenous) and the organic substrate on which plants grow is nu-
trient-poor (Andriesse, 1988). Reported accumulation rates were 39 to
85 g C m−2 year−1 in the Peruvian Amazon (Lähteenoja et al., 2009),
1.3 to 529 g C m−2 year−1 in Indonesia, 6.6 to 38 g C m−2 year−1 in
Brazil (Silva et al., 2013), and 46 to 102 g C m−2 year in Panama
(Upton et al., 2018).

2.3. Peat domes

Peat swamps or bogs usually accumulate in mounds, also called peat
domes, where waterlogged peat accumulates above the level of the
surrounding stream system. Peat dome development is described by a
conceptual model of water flow, an interplay between the water table
and organic matter accumulation (Andriesse, 1988). Peat starts accu-
mulating in an initial depression. In regions between two rivers, the
accumulation of peat tends to canalize the main flow of water within
the basin. The accumulation continues with vertical and horizontal
growth of peat (as a dome) which restricts the inflow of water until it
only receives rainfall as a water supply.

Several studies have tried to model peat dome development. Ingram
(1982) modelled the limiting shape of a temperate peat dome based on
the soil physics principle as a balance between rainfall and groundwater
flow. The model states that the steady-state shape of a peat dome is an
elliptic function of a ratio between recharge and hydraulic conductivity.
The dome shape is mainly due to impeded drainage. Using morpholo-
gical field data from a pristine peat forest in Brunei Darussalam, Cobb
et al. (2017) developed a mathematical model that predicts the shape of
a peat dome. The model showed that in areas bound by rivers, dome
formation starts at the edges. The interior of the peat dome continues
growing at an approximately uniform rate, and the rate of carbon se-
questration is proportional to the area of the still-growing dome in-
terior. The model also predicted that once the peatland surface is suf-
ficiently domed, water is shed so rapidly that waterlogging ceases and
peat can no longer accumulate. The shape of the dome sets a limit on
how much carbon a peat dome can sequester and preserve, and fluc-
tuations in net precipitation on timescales from hours to years can re-
duce long-term peat accumulation.

While process-based models have been developed and calibrated on
a small (field) scale, empirical models still offer the most practicable
approaches for mapping peatlands (Fig. 2).
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2.4. Drivers of peat distribution

The factors of peat formation and distribution have been studied at
different spatial scales (Limpens et al., 2008). Like soil carbon
(Wiesmeier et al., 2019), there is a hierarchical process governing the
development of peat (Fig. 3).

At a global scale over a millennial time scale, rainfall distributed
continuously during the growing season allows biomass production and
inhibits decomposition by maintaining the groundwater table. Cooler
temperatures decrease evaporation, extending the available supply of
water, and decreasing decomposition. Prolonged periods of drought
(< 40 mm rain/month) and warmer months (temperature > 10 °C)
limit peat development (Lottes and Ziegler, 1994). Charman et al.
(2015) reaffirmed that climate is the most important driver of peatland
accumulation rates over millennial timescales in the continental USA,
but that successional vegetation change is a significant additional in-
fluence. At the landscape and regional scale the hydrology, topography
and land cover affect C fluxes from the plants to peat, water, and the
atmosphere. The presence of certain species of vegetation adapted to

waterlogged and nutrient-poor conditions is a useful indicator of
peatlands. At a local scale the depth of the water table and vegetation
composition are good predictors for peat respiration (Limpens et al.,
2008).

The range of environmental factors controlling organic matter ac-
cumulation at different spatial scales is summarised in Fig. 3. These
factors affect our ability to map peat at various spatial scales (extent
and resolution). The spatial scale required for mapping also depends on
the required use and application. For example, global reporting would
only require coarse-scale information, while local management requires
detailed peat thickness and water information. Thus, one way to im-
prove peat mapping is to identify indicators that are useful for quan-
tification peat extent and carbon stock as a function of spatial scales
(Wiesmeier et al., 2019). Specific remote and proximal sensors can be
used as predictors for peat extent and C stock at a range of scales.

The scale of required peatland mapping influences the choice of
mapping technique. As discussed, at the global and continental scale,
climate and vegetation appear to be important drivers of peatland
distribution (Xing et al., 2015), which can be represented with global
climate and vegetation maps. At the landscape scale, topography, ve-
getation, and hydrogeology are important factors (Buffam et al., 2010),
and these factors can be represented via Digital Elevation Models
(DEM), optical and radar images. At the local scale, detailed hydrology,
biochemistry, and plant-soil interactions can be represented via high-
resolution proximal and remote imaging techniques such as Lidar,
electrical resistivity survey and detailed vegetation indices (Fig. 3).

3. Accounting for C stock in peat

Accounting for C stored in peatland is essential for inventory and
conservation purposes (Law et al., 2015). The amount of C in peat
depends on the peat's extent, thickness, and density, and can be cal-
culated in two ways—a deposition model and an accounting model.

Carbon content based on peat deposition rates is calculated as:

= ×C A Cr.s
j

t

i i
(1)

where Cs is Carbon stock in unit mass (Mg), A is the area, and Cr is the

4                      3                     2                     1                      0

El
ev

at
io

n 
(m

)

Modern peat surface

River

-300            
-900            

-1200            
-1500            

-1800            

-2100            

-2400            
-2700            

Clay

Distance from river (km)

0

3

6

Fig. 2. Modelled morphogenesis of Mendaram peat dome in Brunei Darussalam
showing the shape of peat dome over time, including modelled peat surface
(number beside contours represent the number of years BP). The deepest peat
layers before 2250 years BP represent uniformly deposited mangrove peat on a
gently sloping clay plain (based on Cobb et al., 2017).

Fig. 3. Drivers of peat formation, indicators of peat occurrence, and sensors that can be used to measure the indicators as a function of spatial scale.

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

4



average C accumulation rate (in Mg m−2 kyr) for period j and t is the
age of the peatland (kyr) (Yu et al., 2010). The average C accumulation
rates can be estimated from radiocarbon dating. For example, in Fin-
land there was a monotonic increasing trend in apparent carbon ac-
cumulation rates during the Holocene, from ∼ 15 g C m−2 yr−1 in the
early Holocene to ∼ 45 g C m−2 yr−1 in the late Holocene. Models that
take into account the loss of peat C through decomposition have also
been developed (Yu et al., 2010). Such models are useful for large scale
estimates where field observations are not available.

Another way of calculating C stock is based on empirical data. First,
an average carbon density Cd (in Mg m−2) is calculated for a particular
peat type or unit based on n observations:

= × ×C C dd
i

n

c bi i (2)

where Cc is organic carbon content by mass (g of C/g of dry soil), ρb is
bulk density (in Mg/m3), and d is peat thickness (m). Carbon stock is
then calculated for m peat type classes or units in the area:

= ×C C As
i

m

d ii
(3)

This accounting method is preferred in field to regional scale sur-
veys as it is based on empirical observations.

To use the above formulas and calculate C stock in peat, estimates of
peat thickness, bulk density, and C content are required.

3.1. Peat thickness

Peat thickness (or depth to mineral layer) is an important variable
that needs to be measured in the field. Changes in water content can
cause peat to shrink and swell (Camporese et al., 2006). Parry et al.
(2014) reviewed approaches for estimating peat thickness. The easiest
method is manual probing or coring. Probing involves pushing an ex-
tendable metal pole (~ 1 cm in diameter) into the ground until it hits a
resistance or mineral layer, then recording the depth and the geo-
graphical position with a global positioning system (GPS). The Russian
peat borer, also called the Macaulay corer (Jowsey, 1966) was designed
to sample peat materials at depth as well. It has a chamber within the
corer which traps samples when the corer is twisted. The main issues
with manual coring or probing are that small-scale local variability
affect the results, and the volume of measurement is relatively small.
Section 7.1 discusses proximal sensors for measuring or inferring peat
thickness.

3.2. Bulk density

Peats have a low bulk density (BD) compared to mineral soil, and
BD varies considerably within an area. In addition to calculating C
stock, BD is a useful indicator or predictor of several physical char-
acteristics including hydraulic conductivity, smouldering combustion
vulnerability, and water retention (Thompson and Waddington, 2014).
Bulk density has a close relationship with the degree of peat decom-
position, with lower values indicating less decomposition. Päivänen
(1969) found a value of around 0.09 Mg m−3 in undecomposed peats to
0.23 Mg m−3 in decomposed peats (Silc and Stanek, 1977). In tropical
peatlands, natural peats can have a BD of 0.05 Mg m−3 or less, and
compacted peat has a density of around 0.15 Mg m−3 (Kool et al.,
2006).

Bulk density is well-predicted from organic matter content in mi-
neral soils, and pedotransfer functions have been developed to estimate
BD from soil organic matter content as measured by the loss on ignition
(LoI) method. However, this relationship does not hold for soil with
high organic matter content or peats (Adams, 1973).

A study from the blanket peatlands on Dartmoor, England, found
that BD decreases with depth while the C content increases with depth

(Parry and Charman, 2013). However, in tropical peatlands, BD under
forest slightly increases with depth, but in oil palm plantations com-
paction causes an increase in surface BD (Tonks et al., 2017).

3.3. Carbon content

The best way to measure C content in organic soils and peat is the
loss on ignition (LOI) method. A sample is dried, weighed, placed in a
furnace set at 550 °C to ‘burn off’ the organic matter (OM), then
weighed again. The mass loss after ignition is attributed to OM. Carbon
content is derived from the OM content using the van Bemmelen con-
version factor of 0.58. Carbon is assumed to be 58% of OM, however
this value is variable. From 20 peat samples in Indonesia, Farmer et al.
(2014) found a factor of 0.53 more accurately represented the C content
of OM. Meanwhile, Klingenfuß et al. (2014) evaluated this conversion
factor for various peatlands in Northern Germany and found that the
factor varies between 0.49 and 0.58, mostly influenced by the botanical
origin of peat-forming plants. Sphagnum peats have a lower C content
(0.49) compared to peats of vascular plants (0.58) and amorphous peats
(0.51).

Warren et al. (2012) proposed that for tropical peats with a C
content > 40%, C density can be predicted based on BD:

= × +C (468.72 BD) 5.82.d (4)

Farmer et al. (2014) showed that the accuracy of Eq. (4) is reduced
with increasing BD density and suggested that Eq. (4) was applicable
for BD values between 0.05 and 0.16 g cm−3.

Rudiyanto et al. (2016a) compiled a dataset of 568 observations
from tropical peatlands with BD values between 0.01 and 0.57 g cm−3,
and C content ranges between 0.11 and 0.62 g g−1. They showed that at
C contents above 0.5 g g−1, there is no relationship between Cc and BD.
For peat with a BD < 0.25 g cm−3, they found an average value of Cc of
0.549 g g−1, and within these values, Cc values are constant with
varying BD values. Thus, Cd can be estimated from an average C content
(Cc in g g−1), multiplied by BD:

= × = ± ×C C BD 0.5491 0.0218 BDd c (5)

The equation above is in contrast with the regression approach of
Warren et al. (2012) and Farmer et al. (2014) who fitted a linear re-
gression to the data.

In Canada, Bauer et al. (2006) developed pedotransfer functions for
estimating C density of peat based on field-based variables (strati-
graphic depth and material type), and laboratory measurements (BD
and ash content). They warned that these estimates are only for use in
regional surveys.

4. Global and regional estimates of peatland and carbon stock

Global and regional estimates of peatland areas and their C stock
vary wildly according to the definition of peat, assumed C density, and
thickness (Tables 1 & 2). Most estimates are based on very rough
country inventories and reports such as by the FAO (Andriesse, 1988),
World Bank (Bord na Mona, 1984), and World-Energy-Council (2013).
Indonesia, for example, has estimates ranging from 130,260 to
265,600 km2 (Table 2). Despite the uncertainty of the values and as-
sessment methodology, these estimates are still being used in scientific
reports and decision making.

Global peatland area was estimated between 3.3 and 4.6 million
km2 (Table 1). Most global peat maps (e.g. Yu et al., 2010) are created
by compiling regional and national peat maps, and histosols from the
Harmonized World Soil Database (HSWD) (Nachtergaele et al., 2009).
The HSWD is a global soil map product at a resolution of 30 arc-second
(about 1 km × 1 km at the equator) which was combined with regional
and national maps as an update to the 1:5 million FAO-UNESCO Soil
Map of the World.

Estimates of global C stock in peatland is even more variable,
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between 113 and 612 Pg. The large variation between estimates could
be due to the different definitions of peatlands and the assumed C
density and peat thickness. The average global C density for histosols
(0–100 cm) according to Batjes (1996) is 77.6 (std. dev. 36.5) kg/m2,
which is double the values calculated by Köchy et al. (2015) but half of
the number by Yu et al. (2010). Criteria for peat thickness range from
0.3 m in Finland and Ireland, up to 0.6 m in New Zealand (Table 2).

Table 2 shows some estimates of peat areas (km2) for selected
counties and regions which are reviewed in this paper. The global
studies gave variable estimates of peat area, and many studies used
estimates from Andriesse (1988) which was based on Bord na Mona
(1984), an initiative on using peat as fuel (Clarke, 2010). The numbers
quoted from global studies are full of uncertainties. According to
Andriesse (1988), this is due to several factors:

• Numbers are copied from the literature and accepted without
checking the accuracy of the data.

• Estimates are based on the coarse scale FAO-UNESCO World Soil
Map.

• Peatlands have variable definitions and classifications in different
countries.

It is discouraging to find that after 30 years, we still do not have
better estimates of global peat information. While countries in Europe
have come together for a compiled European peatland map
(Tanneberger et al., 2017), information from other parts of the world
remains sketchy. Additionally, rapid land use change such as clearing
for agriculture means existing maps are quickly outdated. A more ac-
curate estimate of global peatlands, as well as the ability to rapidly
update maps, is essential to address climate change concerns.

Table 2. Estimates of peat areas (km2) for selected counties based on
international publications and country estimate.

5. National peatland mapping: 12 case studies

Mapping peat presents different challenges in different countries.
Varying definitions and peat types, difficult access, and the quality of
legacy data mean that no one mapping technique will suit all nations.
The time and monetary cost of traditional soil surveys are too prohi-
bitive for mapping on a national scale, while inconsistencies between
mappers can present challenges. In response, some institutions are

turning to digital soil mapping (DSM) to refine existing maps and
generate new ones. Conventional soil maps still contain valuable soil
data that can be extracted and used to update existing maps, while
remote sensors can estimate several soil properties at once (see section
7). These reduce the need for expensive, on-the-ground, soil assess-
ments.

This section describes peat mapping attempts by 12 countries, in-
cluding challenges to mapping in that country. The case studies start
with countries using conventional mapping approaches and work up to
nations that use digital soil mapping techniques.

5.1. Brazil

In the Brazilian Soil Classification System (SiBCS), peat soils are
considered Organossolos—poorly evolved soils consisting of organic
material of black, very dark grey or brown colour. The exact area of
Organossolos in Brazil is debatable. In the 1: 5000,000 map Solos do
Brasil approximately 2200 km2 of Organossolos Háplicos Hêmicos were
identified, corresponding to 0.03% of the country. However, the
Organossolos are also mapped in association with Podzols, Gleysols,
Fluvisols and Arenosols (Dos Santos et al., 2011), and the value may be
inflated. Using legacy data from 129 profiles of high OC content,
Valladares (2003) estimated peats covered 6100 km2 corresponding to
around 0.07% of the Brazilian land area. The study by Pereira et al.
(2005) estimated of 10,000 km2 of Organossolos, or just over 0.1%.
Considering that Brazil has > 12,200 km2 of mangroves, distributed
across > 7000 km of its coastline where the presence of organic soils is
likely, the exact area of Organossolos is still uncertain.

Organossolos are difficult to quantify accurately as they occur as
inclusions in complex areas of hydromorphic soils and mangroves,
which are often difficult to discriminate. In addition, Pereira et al.
(2005) also pointed out that—for the entire country—only coarse-scale
soil maps are available which cannot accurately represent Orga-
nossolos. Further complications arise considering that soils with a high
OC content can be found throughout Brazil (Fig. 4) (Beutler et al.,
2017). Based on the legacy data examined by Valladares (2003), Or-
ganossolos can be found from sea level (0 m) in poorly drained en-
vironments, up to 2000 m in low temperature and cool climate en-
vironments (mountainous regions). Most occur between < 10 m and
800–1600 m.

Table 1
Estimates of global and tropical peatlands area and C stock with calculated C density and average thickness.

Extent Area
(106 km2)

C stock (Pg) C density (kg m−2) Average peat thickness (m) Assumed
C content
(kg m−3)

Author

Global 3.9–4.1 329 82.6 1.5 55 (Maltby and Immirzi, 1993)
Global 77.6 1.0 77.6 (Batjes, 1996)
Global 3.8 447 120.8 2.2 55 (Joosten, 2009)
Global 4.0 612

(530–700)
153.0 2.8 55 (Yu et al., 2010)

Global
(Histosols)

3.3 113 34.2 1.6 55 (Köchy et al., 2015)

Global 4.013 (Kolka et al., 2016)
Global 543 2 (Jackson et al., 2017)
Global

(Histosols)
0.65-1.55 (Hengl et al., 2017)

Global 4.232 (Xu et al., 2017)
Global 4.632 597.8 (Leifeld and Menichetti, 2018)

Tropics 0.41 70.0 168.7 3.1 55.0 (Maltby and Immirzi, 1993)
Tropics 0.44 88.6

(82–92)
200.9 4.0 50.4 (Page et al., 2004)

Tropics 0.40 24.2 60.5 1.2 50.4 (Köchy et al., 2015)
Tropics 1.70 350 205.8 4.1 50.4 (Gumbricht et al., 2017)

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

6



Ta
bl
e
2

Es
tim

at
es

of
pe

at
ar

ea
s

(k
m

2 )
fo

r
se

le
ct

ed
co

un
tie

s
ba

se
d

on
in

te
rn

at
io

na
lp

ub
lic

at
io

ns
an

d
co

un
tr

y
es

tim
at

e.

Co
un

tr
y/

Re
gi

on
Pe

at
ar

ea
s

(B
or

d
na

M
on

a,
19

84
)

(k
m

2 )

Pe
at

ar
ea

s
(J

oo
st

en
,2

00
9)

(k
m

2 )

Pe
at

ar
ea

s
(W

or
ld

-
En

er
gy

-C
ou

nc
il,

20
13

)
(k

m
2 )

Pe
at

ar
ea

s
(G

um
br

ic
ht

et
al

.,
20

17
)

(k
m

2 )

In
-c

ou
nt

ry
es

tim
at

e
of

pe
at

ar
ea

s
(k

m
2 )

Cr
ite

ri
a

of
pe

at
th

ic
kn

es
s

as
or

ga
ni

c
so

il
(m

)

N
at

io
na

lp
ea

t
de

fin
iti

on

Fi
nl

an
d

10
4,

00
0

79
,4

29
89

,0
00

–
66

,2
14

0.
3

H
is

to
so

ls
(U

SD
A

So
il

Ta
xo

no
m

y)
Sw

ed
en

70
,0

00
65

,6
23

66
,0

00
–

61
,1

86
0.

4
Ca

na
da

1,
50

0,
00

0
1,

13
3,

92
6

1,
11

3,
28

0
–

1,
13

6,
00

0
0.

4
O

rg
an

ic
so

il
w

ith
>

17
%

or
ga

ni
c

ca
rb

on
co

nt
en

t
ac

cu
m

ul
at

io
ns

(S
oi

l
Cl

as
si

fic
at

io
n

W
or

ki
ng

G
ro

up
,1

99
8)

ov
er

40
cm

in
th

ic
kn

es
s

(N
at

io
na

l
W

et
la

nd
s

W
or

ki
ng

G
ro

up
,1

99
7)

.
Sc

ot
la

nd
–

–
–

–
17

,2
63

0.
5

Pe
at

so
il

ha
s

a
m

in
im

um
of

60
%

or
ga

ni
c

m
at

te
r

in
th

e
su

rf
ac

e
ho

ri
zo

n,
an

d
>

50
cm

th
ic

k
(S

oi
lS

ur
ve

y
of

Sc
ot

la
nd

,1
98

4)
.

N
et

he
rl

an
ds

28
00

34
50

–
–

40
29

0.
4

Th
e

D
ut

ch
so

il
cl

as
si

fic
at

io
n

sy
st

em
(D

e
Ba

kk
er

an
d

Sc
he

lli
ng

,1
98

9)
di

st
in

gu
is

he
st

w
o

ty
pe

so
fo

rg
an

ic
so

ils
:p

ea
ts

oi
ls

(p
ea

tl
ay

er
>

40
cm

th
ic

k
an

d
st

ar
tin

g
w

ith
in

40
cm

fr
om

th
e

su
rf

ac
e)

an
d

pe
at

y
so

ils
(p

ea
t

la
ye

r
10

–4
0

cm
th

ic
k

an
d

st
ar

tin
g

w
ith

in
0.

4
m

fr
om

th
e

su
rf

ac
e)

.T
he

pe
at

so
ils

ar
e

fu
rt

he
r

su
bd

iv
id

ed
in

to
th

in
(p

ea
t

la
ye

r
40

–1
20

cm
th

ic
k)

an
d

th
ic

k
(p

ea
t

la
ye

r
>

12
0

cm
th

ic
k)

pe
at

so
ils

.
U

SA
56

9,
40

0
22

3,
80

9
62

5,
00

1
–

23
4,

00
6

0.
4

H
is

to
so

ls
,s

oi
ls

w
ith

a
su

rf
ac

e
or

ga
ni

c
la

ye
r

>
40

cm
th

ic
k.

Pe
rm

af
ro

st
-

aff
ec

te
d

or
ga

ni
c

so
ils

ar
e

cl
as

si
fie

d
as

th
e

H
is

te
ls

su
bo

rd
er

in
th

e
G

el
is

ol
s

or
de

r
(K

ol
ka

et
al

.,
20

16
).

Ir
el

an
d

11
,8

00
11

,0
90

11
,8

00
–

14
,4

75
0.

3
on

dr
ai

ne
d

0.
45

on
un

dr
ai

ne
d

O
rg

an
ic

so
il

m
at

er
ia

ls
w

hi
ch

ha
ve

se
de

nt
ar

ily
ac

cu
m

ul
at

ed
an

d
ha

ve
at

le
as

t
30

%
(d

ry
m

as
s)

or
ga

ni
c

m
at

te
r

ov
er

a
de

pt
h

of
at

le
as

t4
5

cm
on

un
dr

ai
ne

d
la

nd
an

d
30

cm
de

ep
on

dr
ai

ne
d

(H
am

m
on

d,
19

79
).

In
do

ne
si

a
17

0,
00

0
26

5,
50

0
20

6,
95

0
22

5,
42

0
13

0,
26

0
0.

5
O

rg
an

os
ol

,s
oi

ls
w

ith
or

ga
ni

c
la

ye
r

>
50

cm
,a

nd
or

ga
ni

c
C

co
nt

en
t

>
12

%
(S

ub
ar

dj
a

et
al

.,
20

16
)

A
us

tr
al

ia
13

30
(Q

ue
en

sl
an

d)
10

,8
28

13
50

–
11

,9
00

0.
4

O
rg

an
os

ol
s,

so
ils

th
at

ar
e

no
tr

eg
ul

ar
ly

in
un

da
te

d
by

sa
lin

e
w

at
er

an
d

ei
th

er
ha

ve
>

0.
4

m
of

or
ga

ni
c

m
at

er
ia

ls
w

ith
in

th
e

up
pe

r
0.

8
m

or
ha

ve
or

ga
ni

c
m

at
er

ia
ls

to
a

m
in

im
um

de
pt

h
of

0.
1

m
if

di
re

ct
ly

ov
er

ly
in

g
ro

ck
or

ot
he

r
ha

rd
la

ye
rs

(I
sb

el
l1

99
6)

.
Ta

sm
an

ia
–

99
10

–
–

96
10

0.
4

A
s

ab
ov

e.
N

ew
Ze

al
an

d
15

,0
00

19
61

36
10

–
25

05
0.

3,
0.

4
So

ils
th

at
ha

ve
ho

ri
zo

ns
th

at
co

ns
is

to
fo

rg
an

ic
so

il
m

at
er

ia
lt

ha
t

w
ith

in
60

cm
of

th
e

so
il

su
rf

ac
e

ar
e

ei
th

er
—

30
cm

or
m

or
e

th
ic

k
an

d
ar

e
en

tir
el

y
fo

rm
ed

fr
om

pe
at

or
ot

he
r

or
ga

ni
c

so
il

m
at

er
ia

ls
th

at
ha

ve
ac

cu
m

ul
at

ed
un

de
r

w
et

co
nd

iti
on

s
(O

ho
ri

zo
ns

),
or

—
40

cm
or

m
or

e
th

ic
k

an
d

ar
e

fo
rm

ed
fr

om
pa

rt
ly

de
co

m
po

se
d

or
w

el
l

de
co

m
po

se
d

lit
te

r
(F

an
d

H
ho

ri
zo

ns
)

(H
ew

itt
,2

01
0)

.
Ch

ile
10

,4
70

10
,9

96
10

,4
72

32
,6

05
0.

4
H

is
to

so
ls

of
U

SD
A

So
il

Ta
xo

no
m

y
Br

az
il

15
,0

00
54

,7
30

23
,8

75
31

2,
25

0
22

00
0.

4
O

rg
an

os
so

lo
s,

po
or

ly
ev

ol
ve

d
so

ils
m

ad
e

up
of

or
ga

ni
c

m
at

er
ia

lo
fb

la
ck

,
ve

ry
da

rk
gr

ey
or

br
ow

n
co

lo
ur

(E
m

br
ap

a
So

lo
s,

20
13

).

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

7



5.2. Chile

The exact extent and location of peatland in Chile is uncertain. The
latest data from the National Forest Corporation (CONAF) traditional
mapping approach reported a total area of 32,605 km2, around 4.31%
of the country. In Chile, peatlands are found in two main areas. In the
north of the country, “bofedales”, the high altitude peatland of the
Andes can be found with an area about 308.5 km2 (Fig. 5). These are
unique ecosystems which survive despite the arid to hyper-arid condi-
tions of the area (Squeo et al., 2006). They are usually dominated by
Juncaceae and Bofedales (Villagrán and Castro, 1997) and have his-
torically been used for grazing by wild and domestic animals. They
usually have a higher rate of C accumulation than boreal peatlands and
the biggest threat to them is climate change and decreasing rainfall.
Llanos et al. (2017) estimated accumulation rates in areas of Peru with
similar conditions to the Chilean bofedales, ranging between 10 and
350 g C m−2 y−1.

The largest group of peatlands are in the south of the country,
starting at around 39.5° S and extending to Chilean Patagonia. The
southern peatlands are dominated by Sphagnum, accumulating, on
average, 16 g C m−2 y−1 (McCulloch and Davies, 2001). Peatlands with
sphagnum vegetation can be identified using optical and radar images
(Fig. 6). Due to its relative isolation, Patagonian peatlands are usually
under low human pressure, but peatlands closer to populated areas are
starting to be harvested. Human activity such as roads or mega-projects
like hydroelectric power plants also threatens these vulnerable eco-
systems (Rodrigo and Orrego, 2007).

In Chile, peatlands are currently recognised as a non-metallic re-
source in the Mining Code, giving priority to extraction over con-
servation. Like most of the national legislation related to natural re-
sources, this code was issued during a 17-year-long dictatorship and
needs a complete re-evaluation.

5.3. Indonesia

Peat maps of Indonesia can be divided into two groups: national and
local scales. At a national scale (1:250, 000) there are several versions
of the peat extent and thickness map. The first one is in a vector format
made by an NGO, Wetlands International, in 2004 (WI map, Fig. 7)
(Wahyunto et al., 2006; Wahyunto and Subagjo, 2003; Wahyunto and
Subagjo, 2004). The WI map was digitized manually based on legacy

source data from the Land Resource Evaluation and Planning Project
(1985–1990), the Bogor Agriculture and Land Research Center, Land
System Maps from the Regional Planning Program for Transmigration,
RePPProT (1985–1989). These maps were derived from manual deli-
neateion based on Landsat satellite imageries of 1990 and 2002.

Subsequently, the WI map was updated by the Ministry of
Agriculture in 2011 and again in 2018 (MoA map) (BBSDLP, 2011;
BBSDLP, 2018). The Ministry of Environment and Forestry also pub-
lished its version in 2011–2013 (MoEF map). The MoA map was de-
rived from the WI map with additional peatland data and soil maps of
Indonesia delineated with the help of SPOT5 images. Although both the
WI and MoA maps may underestimate peatland extent and thickness
(Hooijer and Vernimmen, 2013) and have a relatively coarse scale (1:
250,000), these maps are still useful as an indication of peat extent
(Warren et al., 2017). Recently, the MoA map became the official
government map of peatlands in Indonesia.

Before the 1990s, peatlands were considered marginal lands and
exploited without environmental concerns. In 1995, the Mega Rice
Project attempted to develop 1 million ha of peatlands in Central
Kalimantan for rice cultivation (Indonesian Presidential Decree No. 82/
1995). The project failed miserably. Rice did not grow, and the heavily
drained peats were degraded, fuelling fires during extended dry sea-
sons. Rapid deforestation, excessive peatland drainage, and intensive
fire have increased carbon gas emissions to the atmosphere via the loss
of biomass (Margono et al., 2014b), peat oxidation (Itoh et al., 2017),
and combustion (Page et al., 2002). With increasing awareness of cli-
mate change issues – particularly greenhouse gas emissions from agri-
cultural sectors and land and forest fires – peat management has be-
come a controversial issue in Indonesia. The Indonesian government
attempted to restore degraded peatlands by issuing Government Reg-
ulation (PP) No. 71 Year 2014 and No. 57 Year 2016, on the con-
servation and management of peat ecosystems. Peatland with a thick-
ness > 3 m must be conserved. In 2016, the Indonesian government
also established the peatland restoration agency (Badan Restorasi
Gambut, BRG) to coordinate and facilitate peat restoration. One es-
sential factor in peatland restoration is the availability of a high-re-
solution peat map.

For effective spatial planning and policy making, a local peat map
with a resolution of 1:50,000 or spatial resolution of 30 m or finer is
required. Many studies discriminate between peatlands based on sa-
tellite imageries (visible and infrared bands) (Wijedasa et al., 2012;
Yoshino et al., 2010), and radar images (Hoekman et al., 2010;
Novresiandi and Nagasawa, 2017). Others tried to map thickness solely
based on elevation (Jaenicke et al., 2008). Only a few studies have used
digital mapping techniques to map peat thickness (for example, Illés
et al., 2019).

Rudiyanto et al. (2016b) and Rudiyanto et al. (2018) proposed an
open digital mapping methodology as a cost-effective way to map peat
thickness and estimate C stock in Indonesian peatlands. The method
uses open data in an open-source computing environment. The digital
mapping methodology predicts field observations with a range of fac-
tors that are known to influence peat thickness distribution such as
DEM from the Shuttle Radar Photography Mission (SRTM), geo-
graphical information, and radar images using machine-learning
models. This method also provides the uncertainty of the estimates
according to error propagation rules. This approach has been used to
map 50,000 ha of peatlands in the eastern part of Bengkalis Island in
Riau Province. Results showed that the digital mapping method can
accurately predict the thickness of peat, explaining up to 98% of the
variation of the data with a median relative error of 5% or an average
error of 0.3 m. The procedure also incorporates uncertainty of estimates
of peat thickness and C density for estimating C stock. The estimate of
the cost and time required for map production is two to four months
with a cost between $0.3 to $0.5 per ha. This DSM method can be up-
scaled to map peatlands for the whole of Indonesia.

Fig. 4. Distribution within Brazil of soils with high content of organic C
(Beutler et al., 2017, Creative Commons License).
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5.4. New Zealand

National-scale soil maps have been published at a 1:50,000 scale as
part of the New Zealand Land Resource Inventory (NZLRI, Lynn et al.,
2009), and distributed as part of the Fundamental Soil Layers (FSL,
Landcare-Research, 2000). The NZLRI polygons boundaries were drawn
manually based on stereoscopic analysis of aerial photographs along
with field verification. The dominant soil type was assigned to each
polygon. The FSL dataset pre-date the newer S-Map project (Lilburne
et al., 2012), which at the time of writing (late 2018) covers about 30%
of the country. National peat maps have been derived from the FSL
dataset by selecting the soil polygons mapped as organic under the
NZSC. The resulting map (Fig. 8) was improved by adding an un-
disturbed peatland map that was mapped using expert interpretation of
aerial imagery used by Ausseil et al. (2015).

5.5. Ireland

Peatlands in Ireland are heterogeneous and complex (Fig. 9). They
include everything from intact fully functioning bogs to drained agri-
cultural pastures, and this presents mapping challenges. Hammond
(1979) produced a map of Irish peatlands, combining fieldwork and
older data including the 1921 Geological Survey map (Anonymous,
1921). Hammond (1979) calculated that peatlands comprised 17.2% of
the national land area. Connolly et al. (2007) produced the Derived
Irish Peat Map (DIPM), a probability map of peatland extent, by com-
bining several maps (CORINE 1990 (O’Sullivan, 1992)) and The Gen-
eral Soil Map of Ireland (Gardiner and Radford, 1980) within a GIS and
calculating the probably of peatlands occurring at a location. The DIPM
calculated peatland extent to be 13.8%. In 2009, Connolly and Holden
produced an updated version of this map (Fig. 9) based on newly

Fig. 5. Location of bofedales (data from CONAF).
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released spatial data including CORINE 2000 and the Indicative Soil
Map of Ireland (Reamonn Fealy, personal communication by email).
The extent of peatland in the DIPM version 2 was 20.6%, however,
many identified small area peatlands (< 7 ha) were excluded. Their
inclusion would increase the peatland extent to 25% of the national
land area. The recent publication of digital soil maps in the Irish Soils
Information System (Creamer et al., 2014) does not add any clarity as
Hammond's peatland map was used to represent peatlands in this new
national soil map.

Uncertainty around the full spatial extent of peatlands and their
condition may have implications for the governmental strategy for
using wetlands as a part of the GHG mitigation strategy under the Paris
Agreement (National Mitigation Plan, 2017; National Peatland
Strategy, 2015). Significant challenges remain to map the extent and
condition of Irish peatlands. These challenges relate to climate change
mitigation, ecosystem service provision and natural capital. In parti-
cular, the lack of extensive information on the impact of degradation on
DOC losses may also present issues in terms of net ecosystem C balance,
though much more work is needed on this issue.

5.6. USA, with an example from Minnesota

Based on the SSURGO (Soil Survey Geographic database, map scale

between 1:12,000 to 1:63,360), Histosols in the USA are estimated at
100,794 km2 or 1.28% of the country. Including Alaska, Puerto Rico,
and Hawaii (according to STASGO2, a general soil map of USA at
1:250,000), histosols account for 152,837 km2 or 1.64% of the land
area. The total peatland in the USA, including 88,994 km2 of histels in
Alaska, is around 242,000 km2 or 2.6% of the land area (Fig. 10).

The state of Minnesota has approximately 2.5 million hectares of
peatlands, most of which occurs in the northern part of the state. St. Louis
County lies in the northeast part of the state and has several large peatlands,
as well as hundreds of smaller ones. Mapping the peatlands took place
mainly between 1992 and 2010, as part of the National Cooperative Soil
Survey. Most of the peatlands in Minnesota are one of two topographical
types and they both occur in St. Louis County. The first is small and con-
fined to depressions—usually ice-block depressions—in the landscape.
These peats are formed by when sediment accumulates in the depressions,
aquatic plants grow, and organic matter accumulates. Soil types would be
mostly classified as Hemists and Saprists.

The other type of peat occurs on flat or nearly level landscapes. In both
Minnesota and St. Louis County, the predominant landscapes with extensive
larger peatlands of this type are glacial lake plains. These peatlands blanket
the landscape, formed from surplus moisture and slowly permeable un-
derlying soil materials. Soil types here are mostly Hemists and Fibrists.

The challenges in mapping were to consistently identify soil types

Fig. 6. The identification of peat extent in an area in Patagonia (red dots in the left figure). The green areas correspond to Sphagnum peatland which can be
recognised via Sentinel 1 composite of different polarisations angles. Bottom right is a classification of peatland based on Sentinel 1 and 2 data.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and correlate them to ecological sites. Early in the project it became
clear that using estimates of unrubbed and rubbed fibre content to
classify materials resulted in inconsistencies between mappers.
Researchers adopted the Von Post method of identifying the degree of
decomposition to more accurately identify and separate saprists,
hemists, and fibrists.

Researchers identified a relationship between hydrology, soil type
and vegetation. Peatlands found in smaller closed depressions tend to
receive moisture and nutrients from surrounding uplands. Those that
were wetter generally supported deciduous shrubs or grass/sedge ve-
getation and were more decomposed than saprists. Dryer areas sup-
ported more mixed vegetative cover with some trees and ericaceous
shrubs. These were mapped as hemists. In many cases, the larger
peatlands supported a complex vegetative pattern. These complexities
may stem from underlying subtleties in the landscape that affect the
hydrology, subsequent chemistry, and degree of decomposition. Areas
near the centre of the landscape are mainly raised bogs that receive
their moisture from rainfall and support sphagnum moss, ericaceous
shrubs, and black spruce. They have a convex cross-section and are the
driest part of the peatlands. These areas were mapped as fibrists. Areas
around the margins of the raised bogs were mapped as hemists. These
areas were wetter and generally have few stunted trees and sphagnum
mosses. Water tracks that had a flat or concave cross-section and
channel water through these peatlands also occur between raised bogs
and were also mapped as hemists. After this model was developed,
these individual areas within the larger peatlands were separated
mainly using air photo interpretation.

Predictive models for mapping peat thickness has been tested by
Buffam et al. (2010) for a smaller area in northern Wisconsin. They
found that mean peat thickness for small peat basins could be predicted
from basin edge slope at the peatland/upland interface calculated from
a DEM.

5.7. Australia

Literature regarding the extent and nature of peatlands in Australia
are well summarised in Pemberton (2005), Whinam and Hope (2005),
and Grover (2006). Outside Tasmania, peatlands in Australia are not
extensive as the climate does not favour their formation (Cambell,
1983). Because of their small extent, peats often do not appear on soil
maps and there is no accurate estimate of their extent in Australia
(McKenzie et al., 2004). An estimate of the area of organic soils in
mainland Australia (excluding Tasmania) based on the Atlas of

Fig. 7. The peat extent and thickness map of Indonesia from the Wetland International 2004 1:250,000 map.

Fig. 8. Distribution of peatlands in New Zealand.
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Australian Soils which is at a coarse scale of 1:2000,000 (Northcote
et al., 1960–68) is around 2300 km2.

There has been limited detailed mapping of peat formation in
Tasmania. Field data is scarce due to the access constraints in the in-
hospitable south-west wilderness environments. Pemberton (1989)
undertook considerable fieldwork throughout the south-west region
while mapping the Land System of Tasmania, producing 1:250,000
nominal-scaled conceptual land system component maps based on
grouped similarities of rainfall, elevation, vegetation, topography and
soils. These maps were later updated to include soil order estimates of
each land system component (Cotching et al., 2009) (Fig. 11A). The
approximate total area of peatland in Tasmania is 9600 km2. However,
it must be stressed that many of these components are conceptual, ra-
ther than field mapped, at a scale of 1:250,000.

More recently, a DSM approach (McBratney et al., 2003) was ap-
plied by the Department of Primary Industries Parks Water and En-
vironment (DPIPWE) in Tasmania as regional contributions to the Soil
and Landscape Grid of Australia (Grundy et al., 2015). Part of this was
to map soil organic carbon (SOC) content at 80 m resolution across the
whole state for standard GlobaSoilMap (Arrouays et al., 2014) depths
(Kidd et al., 2015). Using these DSM surfaces, a depth-weighted mean

of each layer was used to generate an estimated SOC content map across
the state for 0 to 30 cm. This was then split into areas of SOC < 18% as
being non-peat soils, and SOC > 18% being considered peat soils
(Isbell, 2002). Fig. 11B shows the predicted extent of peat soils
(SOC > 18%) using the Tasmanian depth-weighted DSM.

While generally showing similar spatial patterns to the land systems
derived in Fig. 11A estimates (south-west peat predominance), the DSM
products show more spatial detail and are better aligned with terrain.
Average annual rainfall and terrain-based derivatives were found to be
the most important predictors of SOC in Tasmania (high rainfall and
lower slopes) (Kidd et al., 2015). The DSM peat-estimate (0 to 30 cm,
SOC% > 18) corresponds to a total area of 11,478 km2. However, this
mapping appears to be missing areas of coastal peat soils (many clas-
sified as Podzols) around the far north-west, north-east, Flinders and
King Islands, and was produced using limited site data in the south-
west. This map should also be considered as a regional estimate of peat
extent, due to the sparsity of calibration data used.

5.8. Scotland

A recent work by Poggio et al. (2019) explored the use of legacy soil

Fig. 9. The extent of peatland in Ireland.
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data for mapping the extent of peatlands in Scotland using the DSM
approach. The primary sources of data are the Soil Survey of Scotland
(MLURI, 1984) that developed the classification and soil mapping
system for the 1:250,000 soil map of Scotland, and a number of studies
on mapping of habitats and vegetation, some of which is typically as-
sociated with peatlands (Joint Nature Conservation Committee, 2011;
MLURI, 1993; Morton Rowland et al., 2011).

The Scottish Soils Database contains information and data on soils
from locations throughout Scotland. It contains the National Soil
Inventory of Scotland (NSIS) profiles described on a regular 5 km grid of
locations (Lilly et al., 2010) and data from a large number of soil pro-
files taken to characterize the soil mapping units. The total number of

soil profiles is about 7000. The profiles were classified according to a
Scottish classification (MLURI, 1984), and for mapping purposes, they
were re-classified in three classes (Bruneau and Johnson, 2014):

• Mineral soils: soils without a thick organic horizon.
• Organo-mineral soils: soils with a thick organic horizon but not peat

(e.g., peaty podzol, peaty gley).
• Peats: organic soils deeper than 50 cm.

The study used covariates that are freely and globally available,
described peat distribution directly or indirectly, and scorpan factors
topography, vegetation, climate, and geographical position.

Fig. 10. Histosols in the conterminous USA based on SSURGO.

Fig. 11. (A) Dominant organosols soil units in Tasmania from the 1:250,000 land system map. (B) DSM predicted organic soils with SOC > 18%.

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

13



The Sentinel-1 (S1) mission provides data from a dual-polarization
C-band Synthetic Aperture Radar (SAR) instrument. This includes the
S1 Ground Range Detected (GRD) scenes, processed using the Sentinel-
1 Toolbox to generate a calibrated, ortho-corrected product. Each scene
was pre-processed with Sentinel-1 Toolbox using the following steps:
thermal noise removal, radiometric calibration, and terrain correction
using the SRTM 30. The final corrected images were converted to
decibels via the log scaling = 10 x log10(value) and quantized to 16-
bits. The data were pre-processed, prepared, mosaicked and down-
loaded from Google Earth Engine (Gorelick et al., 2017). The VV and
VH polarization for the images available in 2016 were used to calculate
seasonal median values (i.e., spring, summer, autumn, and winter) of
the ratio of the two polarisations.

Sentinel-2 (S2) is a wide-swath, high-resolution, multi-spectral
imaging mission. It supports Copernicus Land Monitoring studies in-
cluding the monitoring of vegetation, soil and water cover, as well as
observation of inland waterways and coastal areas. Each band re-
presents Top of Atmosphere (TOA) reflectance scaled by 10,000. The
data were mosaicked and downloaded from Google Earth Engine
(Gorelick et al., 2017).

The SRTM DEM with no-data voids (Jarvis et al., 2006) was used to
derive terrain attributes. All covariates were resampled to
100 m × 100 m resolution using the median of each grid cell.

An extension of the scorpan-kriging approach, i.e., hybrid geosta-
tistical Generalized Additive Models (GAM; (Wood, 2006)), combining
GAM with kriging (Poggio and Gimona, 2014) was used in the mod-
elling. The modelling steps were: 1) fitting a GAM to estimate the trend
of the variable, using a spatial smoother with covariates; and 2) kriging
GAM residuals as a spatial component to account for local details.

The model showed a good overall accuracy of 72% with a Kappa
coefficient of 0.58 for predicting the three soil classes. The validation
statistics showed an accuracy for peat of 59%. The organo-mineral soils

are difficult to separate from peat and have an accuracy of 50%. This
mix-up is probably due to the vegetation similarity between the shal-
lower peats and the organo-mineral soils.

The most important covariates in the model were the topographic
features and the information derived from Sentinel 1 in the vegetative
season. Sentinel 2 provided useful information despite the limited
temporal availability.

Fig. 12 shows the probability of each pixel to be considered as peat.
The highest values can be found on the island of Lewis, on the west
coast and the mountainous areas. This result is in agreement with the
patterns identified with traditional soil mapping (MLURI, 1984). The
total area of peatland in Scotland found in this study is about 30% of
the total area of Scotland, with differences and variability due to model
and covariates used.

The use of radar data is very important in cloudy regions such as
Scotland. Digital soil mapping allows the integration of recent remote
sensing data into the modelling, and it allows the production and
communication of a measure of uncertainty for the output maps.

5.9. The Netherlands

The Dutch National Soil Map at scale 1:50,000 was finalized in the
early 1990s, after more than three decades of surveying. Approximately
15 years after the map was completed it became evident that the map
was becoming outdated, especially for areas with organic soils. Large
areas of organic soils are drained and under intensive agricultural use
that causes oxidation and compaction of peat.

A reconnaissance survey of peat soils in the eastern part of the
Netherlands showed that the area of peat soils had reduced by about
50% (De Vries et al., 2009). Since the 1:50,000 soil map is the most
important source of soil information in the Netherlands, the Dutch
government commissioned an extensive updating programme in 2008.
Approximately 400,000 ha of peatland were marked to be surveyed,
targeting thin peat soils, and thick peat soils in the north of the country.

Though the programme started with conventional soil mapping,
after two years it became evident that completing the update with
conventional mapping was not feasible. Instead, DSM would be used. A
first experiment to update the 1:50,000 soil map with DSM was pub-
lished in 2009 (Kempen et al., 2009), though the focus was not on solely
on organic soils. The authors used a multinomial logistic regression
model. A few years later, this method was extended to account for
spatial autocorrelation for an area with organic soils in the province of
Drenthe (Kempen et al., 2012a). The authors showed that DSM could
produce soil class maps that were as accurate as maps produced with
conventional mapping but at a fraction of the cost (Kempen et al.,
2012b).

Building on this research, in 2012, a method was developed to op-
erationalize DSM to update the 1:50,000 map for the peatlands. Instead
of mapping soil classes directly, this method mapped soil classes from
two quantitative diagnostic soil properties: the thickness and starting
depth of the peat layer. From these two properties, five major soil
groups were constructed. The method implemented a two-step simu-
lation approach because the sampling data were zero-inflated. In the
first step, peat presence/absence indicators were simulated from
probabilities of peat occurrence that were predicted with a generalized
linear model. In the second step, conditional peat thickness values were
simulated from kriging with external drift predictions. The indicator
and peat thickness simulations were combined to obtain simulations of
the unconditional peat thickness. A similar approach was followed for
the starting depth. From the simulated soil properties, probability dis-
tributions of soil groups were derived, thus taking uncertainty fully into
account. These groups were further refined with information on static
soil properties derived from the 1:50,000 map to obtain soil classes
according to the 1:50,000 legend. The prediction models used a set of
newly acquired point data and legacy point data that were updated for
peat thickness before being used. The uncertainty associated with the

Fig. 12. A probability map of peat soils in Scotland based on digital soil
mapping approach.
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updated peat thickness values in the legacy dataset was quantified and
accounted for by the prediction models. The method is described ex-
tensively by Kempen et al. (2015) and De Vries et al. (2014) for map-
ping a 187,525 ha area in the northern peatlands. The method was then
applied to other regions with organic soils. By 2014, the 1:50,000 map
was updated for 403,000 ha of peatlands. Peat layer thickness was
tested via auger at 7300 new sampling sites. The peat mapping pro-
gramme resulted in a new updated peat thickness map (Fig. 13).

Table 3 provides an absolute and relative overview of the surface
area distribution of the peat thickness classes according to the 1:50,000
soil map from 1995 and the updated map from 2014. The results show
that the surface area with organic soils shrank by almost 25%, while the
surface area for which originally thick peat soils were mapped shrank
by 33% and now cover 14% of the updated area. As a result, 40% of
peaty soils will now be classified as mineral soils (having < 10 cm peat
in the profile). For the thin and thick peat soils, approximately 30% of
the area dropped into a lower peat thickness class.

Table 3. Surface area distribution of peat thickness classes in the
Netherlands according to the original 1:50,000 national soil map

(1995) and the updated version of the map (2014). Column ‘Change’
indicates the relative change in the areal extent.

5.10. Finland

The Geological Survey Finland (GSF) surveys about 30,000 ha of
Finland's 9 million hectares of peatlands every year. For the past four
decades, GSF has studied approximately 2 million hectares of peatlands,
most of which were drained peatlands. This information is needed for
public officials to set policies on agriculture and forestry practices,
along with the protection of habitat and groundwater, and setting aside
peatlands for recreational use. GSF's knowledge was also crucial in
mapping peatlands for the Finnish Soil database 1:250,000 (Lilja and
Nevalainen, 2006) as a joint project between GSF and the Natural Re-
sources Institute Finland.

The mapping process delineates peat deposits using topographic
maps (1:20,000), topographic databases (1:10,000), aerial photo-
graphs, and the GSF peat database. In the topographic database, the
minimum area for a mire was 1000 m2 and for a paludified area 5000
m2

. The peat database had > 10,000 records of mires larger than 20 ha
and over 900,000 drilling points. Mire thickness is quite variable in
Finland—some are very thin, especially in Western Finland
(Ostrobothnia), while deeper mires are commonly found in smaller
areas where the topography is fluctuating. Using classified airborne
radiometric potassium (40K) data with peat drilling data, the thickness
of peat deposits were separated in two classes: 1) Thinner than 0.6 m
and 2) thicker than 0.6 m. Wet soils, mostly in low topographic posi-
tions, were also identified (Fig. 14). In Northern Finland (Lapland) GPR
measurements were also used to scale radiometric data (Väänänen
et al., 2007).

Important development work during the mapping project was the
classification of airborne geophysical data for the further interpretation
of peatlands. The mires were divided to three categories of thickness by
radiation attenuation of 40K%: paludified areas < 0.3 m (0.6–0.9%),
thin peats (0.3–0.6%) and thick peats (< 0.3%) (Väänänen et al.,
2007). Special attention was paid to the thickness of peat on narrow
mire patterns, where the topography varied sharply. Because of the
mires, the agricultural peatlands (fields) were also separated by re-
ference points and field observations.

Peatland information from the Finnish Soil database has been used
in numerous projects and recently in the creation of national SOC-map
of Finland as part of the Global SOC map. GSF peat researchers have
introduced a new three-point grid mapping system for mapping

Fig. 13. Updated peat thickness map of the Netherlands. The grey-shaded areas
in the western part of the country were not surveyed. These areas were mapped
as thick peat soils on the 1:50,000 map and since the original peat layers in
these areas were typically 2 to 6 m thick, it was assumed that these soils would
still be classified as ‘thick peat soils’.

Table 3
Surface area distribution of peat thickness classes in the Netherlands according
to the original 1:50,000 national soil map (1995) and the updated version of the
map (2014). The column ‘Change’ indicates the relative change in the areal
extent.

Peat thickness 1995 2014 Change

ha % ha % %

0–10 cm 0 0 90,580 23
10–40 cm 221,926 55 162,593 40 −27
40–120 cm 98,672 24 94,574 23 −4
> 120 cm 82,270 20 55,121 14 −33
Total 402,868 100 402,868 100

Fig. 14. The thickness of peat mapped with classified airborne radiometric
potassium (K) in the Koivusuo area, Finland.
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peatland. The approach takes full advantage of GPS, field computers,
and high-speed data analysis to create digital datasets that give better
aerial coverage over traditional methods, and are ideal for 3D model-
ling.

5.11. Sweden

The area of peat in agricultural land in Sweden was estimated by
Hallgren and Berglund (1962) and more recently, using digitized maps
by Berglund and Berglund (2010) and Pahkakangas et al. (2016).

Organic soil data was retrieved from the Swedish geological survey
(SGU). The GIS-database has one layer of information on peat type at
0.5 m depth, and one layer with shallow peat. Most of the country was
mapped with high precision (1:25,000–1:100,000) but some of the
northwestern parts of the country were mapped with less detail
(1:750,000). For some minor areas where no soil information from SGU
was available, low 40K gamma radiation was used as a proxy for peat
soil, since water filled peat soil blocks the radiation (Ek et al., 1992). A
40K radiation value of 1.4 or less was used as an indication of peat soil
(Berglund and Berglund, 2008). The total area of peat in Sweden is
estimated to be 6,118,644 ha (Pahkakangas et al., 2016) and the dis-
tribution of organic soil in each county is shown in Fig. 15A.

To access European Union (EU) subsidies, all farmers in EU coun-
tries must report their land use. This information is stored in databases
regulated by the Swedish board of agriculture. The agricultural land is
divided into “blocks” and can be retrieved as map layers for GIS ana-
lysis. Based on this data, 3,232,039 ha of land in Sweden is defined as
agricultural land and represents 7.9% of the total Swedish land area.

A map of organic soils in Sweden was created using the databases
from SGU with soil information. In areas lacking this information
gamma 40K data was used. Using ArcGIS 10.3.1 this was cross refer-
enced with the map of agricultural land, generating a map of agri-
cultural land on peat. The total area of organic soil used in agricultural
production is estimated to be 225,722 ha (7% of the total agricultural
area). About 80% is used as arable land and 20% for pasture. The
distribution of agriculture on the organic soil within each county is
shown in Fig. 15B.

5.12. Canada

Peatland mapping in Canada can be traced back to the Canada Land
Inventory (Coombs and Thie, 1979), which used aerial photography
acquired from the 1940s to the 1960s to delineate areas suitable for
forestry and agriculture (1:250,000 scale), from those with excess soil
moisture (i.e. wetlands, of which a majority peatlands). Synthesizing
this data with soil pedon data culminated in the Soil Landscapes of
Canada product, a polygonal 1:1,000,000 scale soil survey which covers
the entire landmass of Canada. Derivatives of the Canada Land In-
ventory and Soil Landscapes of Canada were soon adapted to mapping
peatlands (Tarnocai, 1984), with the current edition (Tarnocai et al.,
2011) using a map scale of around 1:1,000,000. This map estimated a
total peatland area of 1.13 × 106 km2, or 12.5% of the total land area.

Remote sensor-derived peatland maps in Canada are split between
comprehensive nation-wide or continental products, and more regional
analyses. The Canada Wetland Inventory (Fournier et al., 2007) is based
primarily on 30 m Landsat supervised classification, and covers much of
the southern and managed boreal forest of Canada, with limited cov-
erage in northern regions. Recently, multi-sensor remote sensing
methods have yielded excellent results at high resolution in smaller,
regional studies. Hird et al. (2017) produced peatland maps of the Al-
berta province using multispectral satellite data, DEM, synthetic aper-
ture radar (SAR) with training data from forest inventory plots
(Fig. 16). Bourgeau-Chavez et al. (2017) used a similar approach in-
cluding a study area with high permafrost abundance. Airborne LiDAR
mapping has shown strong potential to delineate peatland at high re-
solutions (e.g. Millard and Richardson, 2013; Chasmer et al., 2016),
though LiDAR coverage is very limited. Most surveys are sparse, but
there is some comprehensive coverage near urban areas, agricultural
lands, and some actively managed forests. Airborne radiometric
methods have not been widely used in Canada to map peatlands. Na-
tional land cover maps primarily derived from multispectral imagery
that capture open peatlands, such as the EOSD product from Wulder
et al. (2008), classify only very broad peatland classes such as moss and
open wetland. They do not distinguish between forested peatland and
uplands with a similar conifer forest cover. Similarly, the North
American Land Change Monitoring System (Latifovic et al., 2017) de-
fines a distinct open wetland class, though many of the boreal grassland
and shrubland classifications far below the northern tree line are
themselves likely to be peatlands.

Given the large area of treed and forested peatlands in Canada,
forest inventory has also been used to map much of the peatlands in
Canada with a significant tree component. At a national scale, 250 m
resolution maps of forested and treed peatland have been produced by
Thompson et al. (2016) for the entire boreal land area of Canada. Forest
inventory methods however, cannot capture treeless peatlands more
common in northern regions, in maritime climates, and sites recently
burned in wildfires.

Few peatland maps cover the entire Canadian land area, and more
intensive mapping efforts using multi-sensor remote sensing methods
often only cover small fractions of the estimated 113 Mha of peatlands
in Canada (Tarnocai et al., 2011). To produce optimal peatland maps
that span the large gradient of forest cover and composition, successful
peatland mapping syntheses should incorporate terrain metrics, optical
multispectral and radar remote sensing, as well as forest inventory and
structured data as a cohesive product. To date, this synthesis does not
exist, and existing peatland maps compromise on resolution and scale
(Tarnocai et al., 2011), or more limited accuracy at either end of the
vegetation spectrum, be it in open systems (Thompson et al., 2016) or
densely forested ones (Bourgeau-Chavez et al., 2017).

5.13. Summary

Based on these 12 case studies, national approaches to peat mapping
vary based on access to peatland and available resources. EU countries

Fig. 15. (A) Distribution and coverage (% of total land area) of organic soils in
each county in Sweden (B) Distribution and coverage of organic soil (% of total
agricultural area) in each county in Sweden (from Pahkakangas et al., 2016).
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with a rich data infrastructure—such as Finland and Sweden—can
provide accurate peat maps using country-wide gamma radiometric
surveys. Examples from the two countries show that shallow peats can
be distinguished from deeper ones using gamma 40K.

The USA has the most detailed soil maps derived from conventional
mapping methods (map scale between 1:12,000 to 1:63,360). Regions
such as the Netherlands and Scotland have traditional soil maps at a
coarser scale, and have updated peat extent and thickness maps at a
finer resolution using DSM. The Netherlands have also mapped peat
thickness at a fine scale. These countries benefitted from having good
legacy soil data and expertise in DSM. The Scotland example demon-
strated that an accurate and consistent peatland map at a country scale
can be made using freely-available covariates. The DSM maps were at
least as accurate as conventional maps, but were created at a fraction of
the cost. Tasmania is planning to update its peat map (extent and
thickness) using the DSM approach.

Canada has used remote sensing approaches and DSM techniques to
map large areas (Hird et al., 2017). Digital soil mapping approaches
have been trialled in several areas in Indonesia, but not extended to a
national scale. The challenge is convincing countries such as Indonesia,
Chile, Brazil, and other nations with a large area of peatlands to adopt
DSM techniques for country-wide peatland mapping. In these countries,
peatlands are often in pockets and difficult to access, suggesting map-
ping efforts should focus on combining remotely sensed images and
field observations.

6. A review of digital peat mapping studies

6.1. Digital soil mapping

Digital soil mapping (DSM) studies are framed based on the scorpan
spatial prediction function approach (McBratney et al., 2003):

= +P f s c o r p a n e( , , , , , , )x (6)

Where peat properties at spatial position x is a function of soil
factors (s), climate (c), organisms which include land use, human ef-
fects, and management (o), relief (r), parent materials (p), age or time
(a), spatial position (n), and e is the spatially correlated errors. This
model links field observations (e.g. the presence of peat or thickness of
peat) to spatial environmental variables that are captured by proximal
or remote sensors via a spatial prediction function f. The model assumes
the factors are in steady-state, and the observations should cover the
entire range of variation in covariates so that the model can be extra-
polated to the whole area. The form of f can be a simple linear model,
logistic regression, or machine learning models such as regression trees
and random forests (Table 4).

Minasny and McBratney (2016) stated that DSM requires three
components: the input in the form of field and laboratory observational
methods, the process used in terms of spatial and non-spatial soil in-
ference systems, and the output in the form of spatial soil information
systems, which includes outputs in the form of rasters of prediction
along with the uncertainty of prediction.

Fig. 16. Comparison of four peatland maps over the same area of northeastern Alberta, Canada using the same colour scale (see panel d). Panel (a) is Tarnocai et al.
(2011) with peatland proportion per polygon, including both bogs and fens. Panel (b) is the North American Land Cover Monitoring System from Latifovic et al.
(2017), with any pixels classified as wetland, shrubland, or grassland-lichen-moss coloured as 75–100%. Panel (c) is the forested and treed peatland map from
Thompson et al. (2016); panel (d) is the wetland probability map from Hird et al. (2017).

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

17



Ta
bl
e
4

St
ud

ie
s

on
m

ap
pi

ng
pe

at
ch

ar
ac

te
ri

st
ic

s
us

in
g

di
gi

ta
la

pp
ro

ac
he

s,
ar

ra
ng

ed
ba

se
d

on
ex

te
nt

of
th

e
st

ud
y

ar
ea

.

A
re

a
Ex

te
nt

(k
m

2 )
M

ap
gr

id
sp

ac
in

g
(m

)
M

ap
pe

d
Pe

at
ch

ar
ac

te
ri

st
ic

s
Ca

lib
ra

tio
n

da
ta

Co
va

ri
at

es
Pr

ed
ic

tio
n

m
od

el
M

od
el

Va
lid

at
io

n⁎
M

ap
U

nc
er

ta
in

ty
⁎

Re
fe

re
nc

e

G
lo

ba
l

51
0

×
10

6
50

,0
00

Pe
at

la
nd

co
ve

r
Le

ga
cy

so
il

m
ap

s
Cl

im
at

e
m

ap
s,

so
il

m
ap

s
Cl

as
si

fic
at

io
n

tr
ee

IV
N

(W
u

et
al

.,
20

17
)

Tr
op

ic
s

an
d

su
bt

ro
pi

cs
co

un
tr

ie
s

4.
7

×
10

6
23

2
m

Tr
op

ic
al

w
et

la
nd

s
an

d
pe

at
la

nd
s

27
5

fie
ld

w
or

k
da

ta
M

O
D

IS
,m

on
th

ly
m

ea
n

pr
ec

ip
ita

tio
n,

m
on

th
ly

ev
ap

ot
ra

ns
pi

ra
tio

n,
SR

TM
,

w
et

ne
ss

in
de

x

Ex
pe

rt
ru

le
cl

as
si

fic
at

io
n

N
N

(G
um

br
ic

ht
et

al
.,

20
17

)

Co
ng

o
ba

si
n

3.
7

×
10

6
50

Pe
at

ex
te

nt
9

gr
ou

nd
tr

an
se

ct
s

le
ng

th
2.

5–
20

km
,2

50
m

sp
ac

in
g

al
on

g
tr

an
se

ct
(n

=
21

1)

SR
TM

D
EM

,A
LO

S
PA

LS
A

R,
La

nd
sa

t
M

ax
im

um
lik

el
ih

oo
d

cl
as

si
fic

at
io

n
CV

Y
(D

ar
gi

e
et

al
.,

20
17

)

Ce
nt

ra
lS

ib
er

ia
,R

us
si

a
3.

0
×

10
6

10
,0

00
W

et
la

nd
ty

pe
s

EN
VI

SA
T,

Sc
an

SA
R

(C
-b

an
d)

an
d

Q
ui

kS
ca

t
(K

u-
ba

nd
)

sc
at

te
ro

m
et

er
da

ta

Si
m

pl
e

th
re

sh
ol

d-
ba

se
d

cl
as

si
fic

at
io

n
N

N
(B

ar
ts

ch
et

al
.,

20
07

)

So
ut

he
as

t
A

si
a

2.
5

×
10

6
Pe

at
sw

am
p

la
nd

co
ve

r
Le

ga
cy

so
il

m
ap

s
G

eo
Co

ve
r

la
nd

co
ve

r,
M

O
D

IS
,S

RT
M

IS
O

D
A

TA
cl

us
te

ri
ng

N
N

(Y
os

hi
no

et
al

.,
20

10
)

Su
nd

a
la

nd
:P

en
in

su
la

r
M

al
ay

si
a,

Su
m

at
ra

,
an

d
Bo

rn
eo

2
×

10
6

30
Pe

at
sw

am
p

fo
re

st
Le

ga
cy

so
il

m
ap

s
La

nd
sa

t5
an

d
La

nd
sa

t
7

m
ul

ti-
te

m
po

ra
li

m
ag

es
Su

pe
rv

is
ed

cl
as

si
fic

at
io

n
IV

N
(W

ije
da

sa
et

al
.,

20
12

)

In
do

ne
si

a
1.

9
×

10
6

60
W

et
la

nd
co

ve
r

W
et

la
nd

m
ap

SR
TM

D
EM

,L
an

ds
at

,A
LO

S
PA

LS
A

R
Ba

gg
ed

cl
as

si
fic

at
io

n
tr

ee
N

N
(M

ar
go

no
et

al
.,

20
14

a)
Ka

lim
an

ta
n

74
3,

33
0

10
0

La
nd

co
ve

r
Ex

pe
rt

ju
dg

em
en

t
A

LO
S

PA
LS

A
R

U
ns

up
er

vi
se

d
cl

as
si

fic
at

io
n

Q
ua

lit
at

iv
e

N
(H

oe
km

an
et

al
.,

20
10

)
W

es
t

Si
be

ri
a

lo
w

la
nd

,
Ru

ss
ia

59
2,

44
0

Pe
at

ex
te

nt
,t

hi
ck

ne
ss

&
C

st
oc

k
Le

ga
cy

so
il

m
ap

s
an

d
ob

se
rv

at
io

ns
M

ul
tis

pe
ct

ra
ls

at
el

lit
e

da
ta

(v
is

-IR
)

G
eo

st
at

is
tic

al
in

te
rp

ol
at

io
n

IV
N

(S
he

ng
et

al
.,

20
04

)
Fi

nl
an

d
33

8,
00

0
Pe

at
de

po
si

ts
Le

ga
cy

so
il

m
ap

s
G

am
m

a
ra

di
om

et
ri

c
K

M
an

ua
lc

la
ss

ifi
ca

tio
n

N
N

(L
ilj

a
an

d
N

ev
al

ai
ne

n,
20

06
)

A
lb

er
ta

,C
an

ad
a

34
0,

00
0

30
Pe

at
la

nd
ec

os
ys

te
m

ty
pe

Fi
el

d
da

ta
,s

ys
te

m
at

ic
an

d
ra

nd
om

sa
m

pl
in

g
A

LO
S

PA
LS

A
R,

ER
S-

1
&

ER
S-

2,
La

nd
sa

t5
TM

Ra
nd

om
Fo

re
st

s
IV

N
(B

ou
rg

ea
u-

Ch
av

ez
et

al
.,

20
17

)
N

or
th

er
n

Ir
el

an
d

14
1,

13
0

50
Pe

at
an

d
m

in
er

al
so

il
cl

as
s

an
d

C
st

oc
k

68
62

To
ps

oi
ls

am
pl

es
G

am
m

a
ra

di
om

et
ri

c,
D

EM
Li

ne
ar

m
ix

ed
m

od
el

CV
Y

(R
aw

lin
s

et
al

.,
20

09
)

Ta
ig

a
zo

ne
of

W
es

tS
ib

er
ia

14
0,

00
0

pe
at

la
nd

s/
m

ir
es

La
nd

sa
t7

an
d

in
di

ca
tio

n
ch

ar
ac

te
ri

st
ic

s
of

th
e

ve
ge

ta
tio

n
ph

yt
oi

nd
ic

at
io

n
m

et
ho

d
N

N
(B

az
an

ov
et

al
.,

20
09

)
St

.P
et

er
sb

ur
g

re
gi

on
of

Ru
ss

ia
10

0,
00

0
30

Sp
ec

tr
al

ch
ar

ac
te

ri
st

ic
s

of
pe

at
G

ro
un

d
da

ta
La

nd
sa

t
Ex

pe
rt

kn
ow

le
dg

e
N

N
(K

ra
nk

in
a

et
al

.,
20

08
)

St
.P

et
er

sb
ur

g
re

gi
on

,
Ru

ss
ia

80
,0

00
10

00
Fr

ac
tio

na
lc

ov
er

of
pe

at
la

nd
s

M
O

D
IS

Re
du

ce
d

m
aj

or
ax

is
(R

M
A

)
re

gr
es

si
on

m
od

el
Y

N
(P

flu
gm

ac
he

r
et

al
.,

20
07

)
Th

e
Pu

na
an

d
H

ig
h

A
nd

ea
n

ec
or

eg
io

ns
of

no
rt

hw
es

te
rn

A
rg

en
tin

a

14
3,

00
0

30
Tw

o
ca

te
go

ri
es

:P
ea

tb
og

an
d

N
o

Pe
at

bo
g

53
di

gi
tiz

ed
po

ly
go

n
ba

se
d

on
G

oo
gl

e
Ea

rt
h

La
nd

sa
tT

M
5

an
d

8
M

ax
im

um
lik

el
ih

oo
d

cl
as

si
fic

at
io

n
N

N
(I

zq
ui

er
do

et
al

.,
20

15
)

Pa
st

az
a-

M
ar

añ
ón

ba
si

n
(P

er
uv

ia
n

A
m

az
on

ia
12

0,
00

0
30

Pe
at

co
ve

r
Tr

an
se

ct
s

at
13

ac
ce

ss
ib

le
w

et
la

nd
si

te
s

La
nd

sa
tT

M
Su

pe
rv

is
ed

cl
as

si
fic

at
io

n
N

N
(L

äh
te

en
oj

a
et

al
.,

20
12

)
Sw

ed
en

35
,0

00
20

0
A

gr
ic

ul
tu

ra
lp

ea
t

ex
te

nt
D

ig
iti

ze
d

m
ap

s
of

Q
ua

te
rn

ar
y

de
po

si
ts

A
ir

bo
rn

e
ga

m
m

a
K

da
ta

G
am

m
a

K
cl

as
se

s
Lo

ca
l

va
lid

at
io

n
N

(B
er

gl
un

d
an

d
Be

rg
lu

nd
,2

01
0)

Sc
ot

la
nd

80
,0

00
10

0
Pe

at
or

m
in

er
al

so
il

co
ve

r
Le

ga
cy

so
il

da
ta

(n
=

72
1)

D
EM

,L
an

dc
ov

er
,S

oi
lm

ap
,M

on
th

ly
m

ea
n

te
m

pe
ra

tu
re

an
d

ra
in

fa
ll,

G
eo

lo
gy

m
ap

,L
an

ds
at

A
rt

ifi
ci

al
ne

ur
al

N
et

w
or

k
IV

N
(A

itk
en

he
ad

,
20

17
)

Ir
el

an
d

84
,0

00
30

0
Pe

at
ex

te
nt

So
il

m
ap

s
Pe

at
la

nd
M

ap
of

Ir
el

an
d,

La
nd

Co
ve

r
Ex

pe
rt

ru
le

s
IV

N
(C

on
no

lly
an

d
H

ol
de

n,
20

09
)

(c
on

tin
ue
d
on

ne
xt

pa
ge

)

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

18



Ta
bl
e
4

(c
on

tin
ue
d)

A
re

a
Ex

te
nt

(k
m

2 )
M

ap
gr

id
sp

ac
in

g
(m

)
M

ap
pe

d
Pe

at
ch

ar
ac

te
ri

st
ic

s
Ca

lib
ra

tio
n

da
ta

Co
va

ri
at

es
Pr

ed
ic

tio
n

m
od

el
M

od
el

Va
lid

at
io

n⁎
M

ap
U

nc
er

ta
in

ty
⁎

Re
fe

re
nc

e

St
Pe

te
rs

bu
rg

,R
us

si
a

80
,0

00
10

00
Pe

at
la

nd
ex

te
nt

/c
ov

er
Fo

re
st

in
ve

nt
or

y
m

ap
M

O
D

IS
Co

rr
es

po
nd

en
ce

an
al

ys
is

N
N

(P
flu

gm
ac

he
r

et
al

.,
20

07
)

A
m

az
on

ia
n

Pe
ru

35
,6

00
30

pe
at

la
nd

ve
ge

ta
tio

n
ty

pe
s

Le
ga

cy
da

ta
,

21
8

gr
ou

nd
da

ta
fo

r
cl

as
si

fic
at

io
n,

24
fo

re
st

ce
ns

us
pl

ot
s,

33
pe

at
co

re
s

La
nd

sa
tT

M
,

A
LO

S
PA

LS
A

R,
SR

TM
D

EM

Im
ag

e
cl

as
si

fic
at

io
n

N
N

(D
ra

pe
r

et
al

.,
20

14
)

M
ac

ke
nz

ie
Ri

ve
r

Ba
si

n,
Ca

na
da

25
,0

00
1:

50
00

0
Pe

at
de

pt
h,

pe
at

C
di

st
ri

bu
tio

n
20

3
pe

at
de

pt
h

fr
om

di
ffe

re
nt

si
te

s
O

rd
in

ar
y

kr
ig

in
g

Y
Y

(B
ei

lm
an

et
al

.,
20

08
)

So
ut

h
Su

m
at

ra
,C

en
ta

l
Ka

lim
an

ta
n,

W
es

t
Pa

pu
a

15
,0

00
10

00
Pe

at
do

m
e

vo
lu

m
e

54
2

fie
ld

ob
se

rv
at

io
ns

SR
TM

D
EM

,L
an

ds
at

TM
M

an
ua

ld
el

in
ea

tio
n

an
d

kr
ig

in
g

N
N

(J
ae

ni
ck

e
et

al
.,

20
08

)

D
re

nt
he

pr
ov

in
ce

,t
he

N
et

he
rl

an
ds

16
,7

50
25

Pe
at

&
m

in
er

al
so

il
cl

as
se

s
16

,2
82

so
il

pr
ofi

le
de

sc
ri

pt
io

ns
D

EM
,g

ro
un

dw
at

er
le

ve
lm

ap
,

la
nd

co
ve

r,
pa

le
og

eo
gr

ap
hy

,
ge

om
or

ph
ol

og
y,

so
il

m
ap

M
ul

tin
om

ia
ll

og
is

tic
re

gr
es

si
on

CV
Y

(K
em

pe
n

et
al

.,
20

09
)

D
re

nt
he

,t
he

N
et

he
rl

an
ds

16
,7

50
So

il
ty

pe
s

in
pe

at
la

nd
s

12
5

sa
m

pl
in

g
lo

ca
tio

ns
27

en
vi

ro
nm

en
ta

lc
ov

ar
ia

te
s

fr
om

D
EM

,D
EM

+
po

in
t

m
ea

su
re

m
en

ts
,

la
nd

co
ve

r,
so

il,
Pa

le
og

eo
gr

ap
hy

m
ap

s

Th
e

ge
ne

ra
liz

ed
lin

ea
r

ge
os

ta
tis

tic
al

m
od

el
(G

LG
M

)
Y

Y
(K

em
pe

n
et

al
.,

20
12

a)

Se
rr

a
do

Es
pi

nh
aç

o
M

er
id

io
na

l(
Sd

EM
),

Br
az

il

11
,8

01
30

Pe
at

ex
te

nt
Fi

el
d

w
or

k
A

er
ia

lp
ho

to
gr

ap
hs

,G
oo

gl
e

Ea
rt

h,
La

nd
sa

ta
nd

ra
da

r
im

ag
es

m
ax

im
um

lik
el

ih
oo

d
su

pe
rv

is
ed

cl
as

si
fic

at
io

n
Y

N
(S

ilv
a

et
al

.,
20

13
)

Pe
ri

gl
ac

ia
lt

er
ra

in
,

Eu
ro

pe
an

Ru
ss

ia
n

A
rc

tic

17
,5

00
2.

4
an

d
30

H
ig

h-
re

so
lu

tio
n

m
ap

pi
ng

of
ec

os
ys

te
m

ca
rb

on
st

or
ag

e

fie
ld

ob
se

rv
at

io
ns

Q
ui

ck
Bi

rd
sa

te
lli

te
im

ag
es

,L
an

ds
at

TM
im

ag
es

m
ul

tip
le

le
ve

ls
eg

m
en

ta
tio

n
fo

r
cl

as
si

fic
at

io
n

Y
N

(H
ug

el
iu

s
et

al
.,

20
11

)

Zo
ig

e,
Ti

be
t

Pl
at

ea
u

Ch
in

a
18

,0
00

60
Pe

at
ex

te
nt

Ex
pe

rt
ju

dg
em

en
t

La
nd

sa
t

Se
gm

en
ta

tio
n

ba
se

d
on

re
fle

ct
an

ce
&

cl
us

te
ri

ng
N

N
(F

an
,1

98
8)

D
jo

ge
,T

ib
et

an
Pl

at
ea

u
10

,0
00

30
La

nd
co

ve
r

(i
nc

l.
pe

at
la

nd
)

Fi
el

d
su

rv
ey

La
nd

sa
tT

M
Su

pe
rv

is
ed

cl
as

si
fic

at
io

n
N

N
(K

um
pu

la
et

al
.,

20
04

)
D

en
m

ar
k

73
00

25
0

Pe
at

ex
te

nt
(p

re
se

nc
e

of
pe

at
)

ov
er

2
pe

ri
od

s
Le

ga
cy

so
il

de
sc

ri
pt

io
ns

(n
=

25
,7

39
)

In
di

ca
to

r
kr

ig
in

g
N

Y
(G

re
ve

et
al

.,
20

14
)

N
or

th
er

n
H

ig
hl

an
ds

La
ke

D
is

tr
ic

t,
W

is
co

ns
in

,
U

SA

70
00

Pe
at

th
ic

kn
es

s
&

C
st

oc
k

Fi
el

d
su

rv
ey

D
EM

Li
ne

ar
re

gr
es

si
on

N
Y

(B
uff

am
et

al
.,

20
10

)

A
lb

er
ta

,C
an

ad
a

59
00

1
Bu

rn
de

pt
h

Pl
ot

su
rv

ey
Te

m
po

ra
lm

ul
tis

pe
ct

ra
lL

id
ar

Li
ne

ar
in

te
rp

ol
at

io
n

N
N

(C
ha

sm
er

et
al

.,
20

17
)

Ce
nt

ra
lK

al
im

an
ta

n,
In

do
ne

si
a

28
00

30
Pe

at
bu

rn
sc

ar
de

pt
h

41
si

te
sf

ro
m

tr
an

se
ct

so
f

20
km

lo
ng

Li
da

r
D

TM
,L

an
ds

at
TM

Li
ne

ar
in

te
rp

ol
at

io
n

N
N

(B
al

lh
or

n
et

al
.,

20
09

)
Ec

ua
do

ri
an

pá
ra

m
o

27
15

30
Pe

at
la

nd
co

ve
r

&
ca

rb
on

st
oc

k
Fi

el
d

ob
se

rv
at

io
ns

,
pr

ef
er

en
tia

ls
am

pl
in

g
(m

ax
.W

al
ki

ng
di

st
an

ce
of

4
km

)

M
ul

tit
em

po
ra

lL
an

ds
at

TM
,P

A
LS

A
R,

RA
D

A
RS

A
T-

1,
SR

TM
/A

ST
ER

D
EM

Ra
nd

om
Fo

re
st

N
N

(H
ri

bl
ja

n
et

al
.,

20
17

)

Lo
re

to
,A

m
az

on
ia

n
Pe

ru
27

00
30

Pe
at

la
nd

co
ve

r
Fo

re
st

pl
ot

,d
et

er
m

in
ed

sy
st

em
at

ic
al

ly
La

nd
sa

tT
M

,A
LO

S
PA

LS
A

R,
SR

TM
D

EM
Ra

nd
om

Fo
re

st
N

N
(H

er
go

ua
lc

'h
et

al
.,

20
17

)
O

ga
n

Ko
m

er
an

g
Ili

r,
So

ut
h

Su
m

at
ra

61
00

90
Pe

at
th

ic
kn

es
s,

C
st

oc
k

Le
ga

cy
da

ta
SR

TM
D

EM
A

po
w

er
m

od
el

N
N

(R
ud

iy
an

to
et

al
.,

20
15

)
O

ga
n

Ko
m

er
an

g
Ili

r,
So

ut
h

Su
m

at
ra

an
d

Ka
tin

ga
n,

Ce
nt

ra
l

Ka
lim

an
ta

n,
In

do
ne

si
a

61
00

,9
32

30
Pe

at
th

ic
kn

es
s,

C
st

oc
k

Le
ga

cy
da

ta
Ba

se
d

on
tr

an
se

ct
sa

m
pl

in
g

SR
TM

D
EM

,D
is

ta
nc

e
to

ri
ve

rs
,

La
nd

sa
tT

M
Cu

bi
st

Re
gr

es
si

on
tr

ee
,

Ra
nd

om
Fo

re
st

s
IV

Y
(R

ud
iy

an
to

et
al

.,
20

16
b)

(c
on

tin
ue
d
on

ne
xt

pa
ge

)

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

19



Ta
bl
e
4

(c
on

tin
ue
d)

A
re

a
Ex

te
nt

(k
m

2 )
M

ap
gr

id
sp

ac
in

g
(m

)
M

ap
pe

d
Pe

at
ch

ar
ac

te
ri

st
ic

s
Ca

lib
ra

tio
n

da
ta

Co
va

ri
at

es
Pr

ed
ic

tio
n

m
od

el
M

od
el

Va
lid

at
io

n⁎
M

ap
U

nc
er

ta
in

ty
⁎

Re
fe

re
nc

e

Ta
nj

un
g

Pu
tin

g
N

at
io

na
l

Pa
rk

,I
nd

on
es

ia
40

00
30

Pe
at

cl
as

se
s

Le
ga

cy
pe

at
m

ap
Te

rr
aS

A
R-

X,
La

nd
sa

t
TM

Ca
no

ni
ca

ld
is

cr
im

in
an

t
an

al
ys

is
N

N
(W

ija
ya

et
al

.,
20

10
)

O
ke

fe
no

ke
e

Sw
am

p,
So

ut
he

as
t

G
eo

rg
ia

,
U

SA

37
02

50
0

Pe
at

an
d

sa
nd

su
rf

ac
e,

pe
at

th
ic

kn
es

s
Su

rv
ey

da
ta

G
PS

su
rv

ey
,t

op
og

ra
ph

y
m

ap
s,

ai
rp

ho
to

kr
ig

in
g

N
N

(L
of

tin
et

al
.,

20
00

)

A
cr

os
s

Ca
na

da
25

0
Tr

ee
d

bo
re

al
pe

at
la

nd
s

In
ve

nt
or

y
gr

ou
nd

pl
ot

s
fr

om
th

e
Ca

na
di

an
N

at
io

na
lF

or
es

t
In

ve
nt

or
y

(N
FI

)
(n

=
54

0)

Bi
op

hy
si

ca
la

nd
bi

oc
lim

at
ic

ra
st

er
da

ta
lo

gi
st

ic
re

gr
es

si
on

m
od

el
,

bo
os

te
d

re
gr

es
si

on
tr

ee
(B

RT
)

m
od

el

N
N

(T
ho

m
ps

on
et

al
.,

20
16

)

Ja
m

es
Ba

y
Lo

w
la

nd
s

in
Fa

r
N

or
th

O
nt

ar
io

,C
an

ad
a

17
56

5
Pe

at
la

nd
ty

pe
s,

Pe
at

th
ic

kn
es

s
&

C
st

oc
k

14
0

gr
ou

nd
ob

se
rv

at
io

ns
vi

a
ra

nd
om

sa
m

pl
in

g

SP
O

T
5

Su
pe

rv
is

ed
cl

as
si

fic
at

io
n

fo
r

pe
at

ex
te

nt
&

kr
ig

in
g

fo
r

pe
at

th
ic

kn
es

s
&

C
st

oc
k

N
N

(A
ku

m
u

an
d

M
cL

au
gh

lin
,

20
14

)
M

os
co

w
O

bl
as

t
15

00
10

Pe
at

bo
gs

an
d

pe
at

la
nd

s
w

ith
di

ffe
re

nt
ar

ea
gr

ad
at

io
ns

SP
O

T
5

N
N

(S
ir

in
et

al
.,

20
14

)

U
sa

Ri
ve

r
ba

si
n,

N
or

th
ea

st
Eu

ro
pe

an
Ru

ss
ia

16
25

2.
4,

30
La

nd
co

ve
r

cl
as

si
fic

at
io

n
an

d
C

st
oc

k
So

il
m

ap
,s

oi
ls

am
pl

es
fo

r
SO

C
vi

a
tr

an
se

ct
s

an
d

st
ra

tifi
ed

ra
nd

om
sa

m
pl

in
g

Q
ui

ck
bi

rd
,

La
nd

sa
t

Se
gm

en
ta

tio
n

cl
as

si
fic

at
io

n
N

N
(H

ug
el

iu
s

et
al

.,
20

11
)

U
sa

Ri
ve

r
Ba

si
n,

w
es

t
of

th
e

U
ra

lM
ou

nt
ai

ns
,

no
rt

he
as

te
rn

Eu
ro

pe
an

Ru
ss

ia

16
25

2.
4

M
ap

pi
ng

th
e

de
gr

ee
of

de
co

m
po

si
tio

n
an

d
th

aw
re

m
ob

ili
za

tio
n

po
te

nt
ia

lo
f

so
il

or
ga

ni
c

m
at

te
r

H
ig

h-
re

so
lu

tio
n

la
nd

co
ve

r
m

ap
N

N
(H

ug
el

iu
s

et
al

.,
20

12
)

Ke
m

in
m

aa
,c

en
tr

al
bo

re
al

re
gi

on
of

so
ut

h-
w

es
te

rn
Fi

nn
is

h
La

pl
an

d

11
00

5
Pe

at
la

nd
bi

ot
op

es
48

da
ta

se
tf

or
tr

ai
ni

ng
;

58
fo

r
te

st
in

g
H

yM
ap

™
im

ag
in

g
sp

ec
tr

om
et

er
,

di
el

ec
tr

ic
pe

rm
itt

iv
ity

(ε
),

el
ec

tr
ic

al
co

nd
uc

tiv
ity

(σ
),

an
d

pH
,a

nd
si

te
ty

pe
s

U
ns

up
er

vi
se

d
cl

as
si

fic
at

io
n

w
ith

pa
rt

iti
on

in
g

ar
ou

nd
m

ed
oi

ds
(P

A
M

),
fu

zz
y

m
ap

pi
ng

w
ith

m
ul

tic
la

ss
Su

pp
or

t
ve

ct
or

m
ac

hi
ne

cl
as

si
fic

at
io

n

Y
N

(M
id

dl
et

on
et

al
.,

20
12

)

Is
le

of
Le

w
is

,S
co

tla
nd

22
00

60
Pe

at
la

nd
cl

as
s

G
ro

un
d

tr
ut

h
da

ta
A

er
ia

lp
ho

to
gr

ap
h,

La
nd

sa
t

im
ag

e
O

rd
in

at
io

n
an

al
ys

is
EV

N
(S

to
ve

an
d

H
ul

m
e,

19
80

)
N

or
th

-e
as

t
of

Le
w

is
,

Sc
ot

la
nd

50
0

30
Pe

at
la

nd
cl

as
s

Fi
el

d
da

ta
La

nd
sa

tT
M

PC
A

,U
ns

up
er

vi
se

d
cl

as
si

fic
at

io
n,

N
eu

ra
ln

et
w

or
ks

N
N

(B
ro

w
n

et
al

.,
20

07
)

D
ar

tm
oo

r,
so

ut
h-

w
es

t
En

gl
an

d
10

00
25

0
Pe

at
th

ic
kn

es
s

Fi
el

d
da

ta
vi

a
st

ra
tifi

ed
sa

m
pl

in
g

(n
=

10
00

)
sl

op
e,

el
ev

at
io

n
Re

gr
es

si
on

EV
N

(P
ar

ry
et

al
.,

20
12

)
D

ar
tm

oo
r,

So
ut

h
W

es
t

En
gl

an
d

47
1

5
M

ap
pi

ng
bl

an
ke

t
pe

at
la

nd
SO

C,
bu

lk
de

ns
ity

an
d

ca
rb

on
co

nt
en

t

29
co

re
s

Pe
at

th
ic

kn
es

s
m

ap
gr

id
-b

as
ed

m
ap

al
ge

br
a,

re
gr

es
si

on
be

tw
ee

n
bu

lk
de

ns
ity

,c
ar

bo
n

co
nt

en
t

an
d

de
pt

h

N
N

(P
ar

ry
an

d
Ch

ar
m

an
,2

01
3)

D
ar

tm
oo

r,
So

ut
h

W
es

t
En

gl
an

d
40

6
50

Pe
at

th
ic

kn
es

s
an

d
C

st
oc

k
13

34
fie

ld
ob

se
rv

at
io

ns
Li

da
r-

de
ri

ve
d

te
rr

ai
n

at
tr

ib
ut

es
an

d
ga

m
m

a
ra

di
om

et
ri

c
da

ta
Li

ne
ar

re
gr

es
si

on
Y

Y
(G

at
is

et
al

.,
20

19
)

D
ar

tm
oo

r,
So

ut
h

W
es

t
En

gl
an

d
12

2
25

0
Pe

at
th

ic
kn

es
s

42
5

fie
ld

ob
se

rv
at

io
ns

D
EM

(5
m

re
so

lu
tio

n)
de

ri
ve

d
at

tr
ib

ut
es

Re
gr

es
si

on
kr

ig
in

g
CV

Y
(Y

ou
ng

et
al

.,
20

18
)

Si
te

s
ac

ro
ss

En
gl

an
d,

Sc
ot

la
nd

,W
al

es
an

d
Ir

el
an

d

10
0–

10
00

20
0

Pe
at

ex
te

nt
Le

ga
cy

so
il

m
ap

s
G

am
m

a
ra

di
om

et
ri

c
M

an
ua

li
nt

er
pr

et
at

io
n

N
N

(B
ea

m
is

h,
20

14
)

Is
le

of
M

an
,U

K
50

0
0.

2
Pe

at
ex

te
nt

Sa
m

pl
in

g
at

4
si

te
s

(n
=

46
2)

A
er

ia
lp

ho
to

gr
ap

h
Su

pe
rv

is
ed

cl
as

si
fic

at
io

n
IV

N
(W

ei
ss

er
t

an
d

D
is

ne
y,

20
13

)
Ea

st
m

ai
n,

Q
ué

be
c,

Ca
na

da
60

0
10

W
et

la
nd

cl
as

si
fic

at
io

n
im

ag
e

se
gm

en
ta

tio
n

SP
O

T-
4,

O
bj

ec
t-b

as
ed

cl
as

si
fic

at
io

n
N

N
(G

re
ni

er
et

al
.,

20
08

)

(c
on

tin
ue
d
on

ne
xt

pa
ge

)

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

20



Ta
bl
e
4

(c
on

tin
ue
d)

A
re

a
Ex

te
nt

(k
m

2 )
M

ap
gr

id
sp

ac
in

g
(m

)
M

ap
pe

d
Pe

at
ch

ar
ac

te
ri

st
ic

s
Ca

lib
ra

tio
n

da
ta

Co
va

ri
at

es
Pr

ed
ic

tio
n

m
od

el
M

od
el

Va
lid

at
io

n⁎
M

ap
U

nc
er

ta
in

ty
⁎

Re
fe

re
nc

e

Be
ng

ka
lis

,S
um

at
ra

,
In

do
ne

si
a

50
0

30
Pe

at
th

ic
kn

es
s,

C
st

oc
k

Le
ga

cy
da

ta
SR

TM
D

EM
,A

LO
S

PA
LS

A
R,

Se
nt

in
el

1, D
is

ta
nc

e
to

ri
ve

rs

Cu
bi

st
Re

gr
es

si
on

tr
ee

,
Ra

nd
om

Fo
re

st
s

IV
Y

(R
ud

iy
an

to
et

al
.,

20
16

b)

La
ke

Ku
or

ta
ne

,W
es

te
rn

Fi
nl

an
d

78
7

25
La

nd
co

ve
r

cl
as

s
(i

nl
.

Pe
at

la
nd

)
A

er
ia

li
m

ag
er

y
cl

as
s

A
LO

S
PA

LS
A

R
Pr

ob
ab

ili
st

ic
N

eu
ra

lN
et

w
or

k
IV

N
(A

nt
ro

po
v

et
al

.,
20

14
)

Bl
ue

G
em

co
al

be
d,

Ke
nt

uc
ky

,U
SA

83
8

30
4.

8
G

eo
ch

em
ic

al
m

ap
in

pe
at

bo
g

45
sa

m
pl

es
/l

oc
at

io
ns

25
at

tr
ib

ut
es

Kr
ig

in
g

in
te

rp
ol

at
io

n
us

in
g

se
qu

en
tia

lG
au

ss
ia

n
si

m
ul

at
io

n

N
Y

(G
eb

oy
et

al
.,

20
13

)

G
re

at
D

is
m

al
Sw

am
p

N
at

io
na

lW
ild

lif
e

Re
fu

ge
,V

A
,U

SA

45
0

0.
7

Pe
at

Bu
rn

de
pt

h,
C

lo
ss

Fi
el

d
ob

se
rv

at
io

ns
Pr

e-
an

d
Po

st
-fi

re
Li

da
r

M
on

te
Ca

rl
o

Si
m

ul
at

io
n

N
Y

(R
ed

dy
et

al
.,

20
15

)

M
ad

re
de

D
io

s
Ri

ve
r

of
Pe

ru
29

4
30

Pe
at

ex
te

nt
an

d
pe

at
vo

lu
m

e
80

0
lo

ca
tio

ns
on

35
pe

at
la

nd
s,

an
d

42
9

lo
ca

tio
ns

w
ith

pe
at

th
ic

kn
es

s
m

ea
su

re
m

en
ts

on
10

pe
at

la
nd

s

La
nd

sa
t

m
ax

im
um

-li
ke

lih
oo

d
cl

as
si

fic
at

io
n

fo
r

pe
at

oc
cu

rr
en

ce
an

d
in

te
rp

ol
at

io
n

fo
r

pe
at

de
pt

h

N
N

(H
ou

se
ho

ld
er

et
al

.,
20

12
)

W
ic

kl
ow

M
ou

nt
ai

ns
,

Ir
el

an
d

10
0

10
00

Pe
at

th
ic

kn
es

s
62

1
fie

ld
ob

se
rv

at
io

ns
vi

a
tr

an
se

ct
s,

10
0

m
in

te
rv

al

El
ev

at
io

n,
sl

op
e

an
d

di
st

ur
ba

nc
e

da
ta

Pe
at

in
fe

re
nc

e
m

od
el

EV
N

(H
ol

de
n

an
d

Co
nn

ol
ly

,2
01

1)

Sc
ot

ty
Cr

ee
k

ba
si

n,
N

or
th

w
es

t
Te

rr
ito

ri
es

,C
an

ad
a

15
2

2
Pe

at
la

nd
cl

as
s

Le
ga

cy
pe

at
la

nd
ty

pe
m

ap
RA

D
A

RS
A

T-
2

Su
pp

or
t

Ve
ct

or
M

ac
hi

ne
IV

N
(M

er
ch

an
t

et
al

.,
20

17
)

W
es

t
of

Ir
el

an
d

11
7

1.
84

Pe
at

la
nd

dr
ai

n
Fi

el
d

da
ta

G
eo

ey
e-

1
m

ul
tis

pe
ct

ra
li

m
ag

e
O

bj
ec

t-b
as

ed
im

ag
e

an
al

ys
is

N
N

(C
on

no
lly

an
d

H
ol

de
n,

20
17

)
A

lfr
ed

Bo
g,

so
ut

he
as

te
rn

O
nt

ar
io

,C
an

ad
a

10
0

8
Pe

at
la

nd
cl

as
si

fic
at

io
n

50
0

ra
nd

om
ly

lo
ca

te
d

po
in

ts
Li

D
A

R
de

ri
va

tiv
es

Ra
nd

om
Fo

re
st

(R
F)

Y
Y

(M
ill

ar
d

an
d

Ri
ch

ar
ds

on
,2

01
5)

Ja
m

es
Ba

y,
Q

ue
be

c,
Ca

na
da

10
0–

20
0

0.
6

Pe
at

la
nd

de
gr

ad
at

io
n

G
ro

un
d

co
nt

ro
lp

oi
nt

A
er

ia
lp

ho
to

,Q
ui

ck
bi

rd
pa

nc
hr

om
at

ic
im

ag
e

O
bj

ec
t-b

as
ed

Im
ag

e
cl

as
si

fic
at

io
n

N
N

(D
is

sa
ns

ka
et

al
.,

20
09

)
M

er
Bl

eu
e

O
nt

ar
io

,
La

c
St

Pi
er

re
,Q

ue
be

c
H

ap
py

Va
ll

Ca
na

da

20
0

30
W

et
la

nd
cl

as
s

A
ir

ph
ot

o
in

te
rp

re
ta

tio
n

La
nd

sa
t,

RA
D

A
RS

A
T-

1
D

EM

D
ec

is
io

n
tr

ee
ba

se
d

on
ex

pe
rt

kn
ow

le
dg

e
N

N
(L

ia
nd

Ch
en

,
20

05
)

M
er

Bl
eu

e,
O

nt
ar

io
,

Ca
na

da
35

8
W

et
la

nd
cl

as
s

A
ir

ph
ot

o
in

te
rp

re
ta

tio
n

Li
da

r,
RA

D
A

RS
A

T-
2

Ra
nd

om
Fo

re
st

s
IV

N
(M

ill
ar

d
an

d
Ri

ch
ar

ds
on

,2
01

3)
Si

ak
,R

ia
u,

In
do

ne
si

a
50

10
0

Pe
at

ex
te

nt
A

rt
ifi

ci
al

ob
se

rv
at

io
ns

PA
LS

A
R

Im
ag

e
cl

as
si

fic
at

io
n

us
in

g
ex

pe
rt

ru
le

N
N

(N
ov

re
si

an
di

an
d

N
ag

as
aw

a,
20

17
)

Ba
ch

o,
pr

ov
in

ce
of

N
ar

at
hi

w
at

,T
ha

ila
nd

30
10

–2
00

Pe
at

th
ic

kn
es

s
an

d
vo

lu
m

e
42

6
fie

ld
ob

se
rv

at
io

ns
In

di
ca

to
r

kr
ig

in
g

N
Y

(S
ai

to
et

al
.,

20
05

)
Ba

lly
na

ho
ne

Bo
g

an
d

Sl
ie

ve
Be

ag
h,

N
.

Ir
el

an
d

14 20
Pe

at
th

ic
kn

es
s

Fi
el

d
ob

se
rv

at
io

ns
:

au
ge

r
&

G
PR

A
ir

bo
rn

e
ra

di
om

et
ri

c
da

ta
Kr

ig
in

g
an

d
co

kr
ig

in
g

N
Y

(K
ea

ne
y

et
al

.,
20

13
)

Ka
m

i-S
ar

ob
et

su
,J

ap
an

15
20

Su
rf

ac
e

pe
at

pr
op

er
tie

s;
C,

N
,b

ul
k

de
ns

ity
33

su
rf

ac
e

(0
−

20
)

fie
ld

ob
se

rv
at

io
ns

PA
LS

A
R,

N
D

VI
&

Li
da

r
D

SM
M

ul
tip

le
lin

ea
r

re
gr

es
si

on
N

N
(T

ak
ad

a
et

al
.,

20
09

)
A

lfr
ed

Bo
g,

So
ut

he
rn

O
nt

ar
io

17
30

Pe
at

la
nd

la
nd

co
ve

r
33

0
ob

se
rv

at
io

ns
RA

D
A

RS
A

T,
La

nd
sa

t
8

Ra
nd

om
Fo

re
st

s
N

N
(W

hi
te

et
al

.,
20

17
)

Bl
ea

kl
ow

Pl
at

ea
u

in
no

rt
he

rn
En

gl
an

d
7.

8
2

gu
lli

es
in

up
la

nd
pe

at
la

nd
s

Li
D

A
R

D
EM

G
ul

ly
m

od
el

s
N

N
(E

va
ns

an
d

Li
nd

sa
y,

20
10

)
Bo

un
da

ri
es

of
Fi

nl
an

d
6.

25
30

Tr
ee

le
ss

pe
at

la
nd

s
D

ig
iti

zi
ng

tr
ee

le
ss

pe
at

la
nd

po
ly

go
ns

La
nd

sa
t7

ET
M

+
Se

qu
en

tia
lm

ax
im

um
a

po
st

er
io

ri
(S

M
A

P)
,M

ax
im

um
lik

el
ih

oo
d

(M
L)

cl
as

si
fic

at
io

n,
Cl

us
te

ri
ng

N
N

(H
aa

pa
ne

n
an

d
To

ko
la

,2
00

7)

(c
on

tin
ue
d
on

ne
xt

pa
ge

)

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

21



Ta
bl
e
4

(c
on

tin
ue
d)

A
re

a
Ex

te
nt

(k
m

2 )
M

ap
gr

id
sp

ac
in

g
(m

)
M

ap
pe

d
Pe

at
ch

ar
ac

te
ri

st
ic

s
Ca

lib
ra

tio
n

da
ta

Co
va

ri
at

es
Pr

ed
ic

tio
n

m
od

el
M

od
el

Va
lid

at
io

n⁎
M

ap
U

nc
er

ta
in

ty
⁎

Re
fe

re
nc

e

BO
RE

A
S,

M
an

ito
ba

,
Ca

na
da

5
Pe

at
(v

eg
et

at
io

n)
ty

pe
s

72
ve

ge
ta

tio
n

pl
ot

s
Co

m
pa

ct
A

ir
bo

rn
e

Sp
ec

tr
og

ra
ph

ic
Im

ag
er

(C
A

SI
)

re
fle

ct
an

ce
da

ta
O

rd
in

at
io

n
an

d
cl

us
te

r
an

al
ys

is
N

N
(T

ho
m

as
et

al
.,

20
03

)
Vä

rn
am

o,
G

is
la

ve
d,

Li
nd

es
be

rg
,

D
or

ot
ea

,
M

ur
je

k,
Sw

ed
en

30
W

et
la

nd
cl

as
si

fic
at

io
n

To
po

gr
ap

hi
c

m
ap

,L
an

ds
at

TM
Cl

as
si

fic
at

io
n

by
th

re
sh

ol
ds

an
d

m
ax

im
um

-li
ke

lih
oo

d
cl

as
si

fic
at

io
n

N
N

(B
ro

ng
e

an
d

N
äs

lu
nd

-
La

nd
en

m
ar

k,
20

02
)

W
ed

ho
lm

e
Fl

ow
,U

K
4

30
La

nd
co

ve
r

cl
as

s
&

C
st

oc
k

La
nd

sa
tT

M
,

IK
O

N
O

S
M

ax
im

um
lik

el
ih

oo
d

cl
as

si
fic

at
io

n
N

N
(C

ri
ch

to
n

et
al

.,
20

15
)

Po
ld

er
G

ro
ot

-M
ijd

re
ch

t,
Th

e
N

et
he

rl
an

ds
4

25
Pe

at
th

ic
kn

es
s,

Pe
at

su
bs

id
en

ce
43

3
au

ge
r

ob
se

rv
at

io
ns

So
il

m
ap

s,
hr

ou
nd

w
at

er
le

ve
ls

,
El

ev
at

io
n

fr
om

Li
da

r
Kr

ig
in

g
&

M
ec

ha
ni

st
ic

M
od

el
EV

Y
(H

oo
gl

an
d

et
al

.,
20

12
)

Pe
ak

D
is

tr
ic

t,
N

or
th

Ce
nt

ra
lE

ng
la

nd
1

2
M

ap
pi

ng
gu

lly
ne

tw
or

ks
an

d
de

pt
h,

le
ad

co
nc

en
tr

at
io

ns
in

pe
at

la
nd

ca
tc

hm
en

ts

Li
da

r
D

EM
G

ul
ly

m
od

el
s

N
N

(R
ot

hw
el

le
t

al
.,

20
10

)

Co
rs

Fo
ch

no
th

e
w

es
tc

oa
st

of
W

al
es

,U
K

1
Pe

at
(v

eg
et

at
io

n)
ty

pe
s

86
ve

ge
ta

tio
n

pl
ot

s
H

yp
er

sp
ec

tr
al

da
ta

O
rd

in
at

io
n

an
d

PL
S

CV
N

(H
ar

ri
s

et
al

.,
20

15
)

La
kk

as
uo

m
ir

e
in

so
ut

he
rn

Fi
nl

an
d

2
1

m
ir

e
si

te
ty

pe
,m

ai
n

ty
pe

,
do

m
in

an
t

tr
ee

sp
ec

ie
s,

nu
tr

ie
nt

le
ve

l

gr
ou

nd
da

ta
Li

da
r

D
EM

&
de

ri
ve

d
te

rr
ai

n
va

ri
ab

le
s

Su
pe

rv
is

ed
cl

as
si

fic
at

io
n:

Ra
nd

om
Fo

re
st

(R
F)

,S
up

po
rt

Ve
ct

or
M

ac
hi

ne
s

(S
VM

),
an

d
th

e
k-

N
ea

re
st

N
ei

gh
bo

r
(k

N
N

)
m

et
ho

ds

N
N

(K
or

pe
la

et
al

.,
20

09
)

Th
e

Ra
hi

ve
re

bo
g,

ea
st

er
n

Es
to

ni
a

0.
91

5
bo

g
m

or
ph

ol
og

y,
th

ic
kn

es
s

an
d

ge
om

et
ry

of
th

e
pe

at
bo

dy

Th
ir

te
en

pe
at

co
re

s
G

PR
pr

ofi
le

s,
To

po
gr

ap
hi

c
el

ev
at

io
ns

fr
om

ai
r-

bo
rn

e
im

ag
e

Kr
ig

in
g

N
N

(P
la

do
et

al
.,

20
11

)

TA
H

U
RA

M
ua

ro
Ja

m
bi

,
Su

m
at

ra
,I

nd
on

es
ia

58
ha

&
5

ha
0.

1
Pe

at
bu

rn
de

pt
h

Fi
el

d
ob

se
rv

at
io

ns
Li

da
r

(p
re

-fi
re

)
&

U
A

V
(p

os
t-fi

re
)

La
nd

co
ve

r
cl

as
si

fic
at

io
n

N
N

(S
im

ps
on

et
al

.,
20

16
)

7
fie

ld
s

w
ith

in
rh

in
-

H
av

el
lu

ch
,N

or
th

ea
st

G
er

m
an

y

7–
20

ha
1

So
il

C
de

ns
ity

Fi
el

d
da

ta
Li

da
r,

el
ec

tr
om

ag
ne

tic
in

du
ct

io
n

(E
M

I)
Re

gr
es

si
on

&
kr

ig
in

g
N

N
(K

os
zi

ns
ki

et
al

.,
20

15
)

G
ro

ße
s

M
oo

r,
N

or
th

er
n

G
er

m
an

y
35

ha
0.

5
Pe

at
th

ic
kn

es
s,

SO
C,

an
d

SO
C

st
oc

k
34

so
il

co
re

s
(t

o
1

m
de

pt
h)

EC
a

fr
om

el
ec

tr
om

ag
ne

tic
in

du
ct

io
n

(E
M

I)
,

D
EM

fr
om

la
se

r
sc

an
ni

ng

M
ul

tip
le

lin
ea

r
re

gr
es

si
on

N
N

(A
ltd

or
ff

et
al

.,
20

16
)

A
lp

ot
M

oo
r

pe
at

do
m

e,
Pe

ak
D

is
tr

ic
t

N
at

io
na

l
Pa

rk
,U

K

10
ha

2
Co

nc
en

tr
at

io
n

of
m

ag
ne

tic
m

in
er

al
s

(0
–1

0
cm

)
Fi

el
d

tr
an

se
ct

s
Li

da
r

D
EM

M
ul

tip
le

lin
ea

r
re

gr
es

si
on

N
N

(R
ot

hw
el

la
nd

Li
nd

sa
y,

20
07

)

W
ed

ho
lm

e
Fl

ow
,U

K
7.

8
4

Pe
at

la
nd

cl
as

s
Ec

ol
og

ic
al

su
rv

ey
IK

O
N

O
S

m
ul

tis
pe

ct
ra

li
m

ag
e,

Li
da

r
M

ax
im

um
lik

el
ih

oo
d

cl
as

si
fic

at
io

n
N

N
(A

nd
er

so
n

et
al

.,
20

10
)

Cr
an

be
rr

y
bo

gs
in

M
as

sa
ch

us
et

ts
,U

SA
0.

5–
19

ha
Pe

at
th

ic
kn

es
s

G
PR

su
rv

ey
so

il
m

ap
un

its
,a

nd
su

rfi
ci

al
ge

ol
og

y
Li

ne
ar

m
od

el
N

N
(K

en
ne

dy
et

al
.,

20
18

)
La

G
ra

nd
e

Ri
ve

r
w

at
er

sh
ed

,Q
ue

be
c,

Ca
na

da

0.
2–

2
9

La
nd

co
ve

r
cl

as
s

an
d

Pe
at

ty
pe

Fi
el

d
da

ta
RA

D
A

RS
A

T-
1

Im
ag

e
cl

as
si

fic
at

io
n

N
N

(R
ac

in
e

et
al

.,
20

05
)

A
lp

in
e

pe
at

la
nd

in
th

e
H

el
en

Cr
ee

k
w

at
er

sh
ed

,B
an

ff
N

at
io

na
lP

ar
k,

Ca
na

da

1.
23

ha
0.

05
,0

.1
0,

0.
25

,0
.5

0,
1.

00
,a

nd
2.

00

M
ic

ro
to

po
gr

ap
hy

of
th

e
pe

at
la

nd
15

,2
86

po
in

ts
of

re
al

-
tim

e
ki

ne
m

at
ic

(R
TK

)
G

PS
su

rv
ey

an
d

11
6

ph
ot

os

O
rt

ho
ph

ot
o

St
ru

ct
ur

e
fr

om
m

ot
io

n
w

ith
m

ul
tiv

ie
w

st
er

eo
ph

ot
og

ra
m

m
et

ry
(S

fM
-M

VS
)

an
d

gr
ou

nd
-b

as
ed

ph
ot

os

Y
Y

(M
er

ce
r

an
d

W
es

tb
ro

ok
,2

01
6)

St
or

da
le

n
m

ir
e,

no
rt

he
rn

Sw
ed

en
0.

5
m

to
25

m
M

ap
pi

ng
hi

gh
la

tit
ud

e
pe

at
la

nd
hy

dr
op

er
io

d
fie

ld
m

ea
su

re
m

en
ts

of
w

at
er

ta
bl

e
de

pt
h

at
D

O
Y

13
0

to
25

1
be

tw
ee

n
20

03
an

d
20

10

A
LO

S
PA

LS
A

R
an

d
Li

D
A

R-
de

ri
ve

d
el

ev
at

io
n

Ra
nd

om
fo

re
st

s
Y

N
(T

or
bi

ck
et

al
.,

20
12

)

⁎
Va

lid
at

io
n:

IV
=

in
te

rn
al

va
lid

at
io

n
(r

an
do

m
w

ith
he

ld
or

sy
st

em
at

ic
sp

lit
of

da
ta

in
to

ca
lib

ra
tio

n
&

va
lid

at
io

n)
,C

V
=

cr
os

s
va

lid
at

io
n,

EV
=

ex
te

rn
al

va
lid

at
io

n,
va

lid
at

io
n

fr
om

an
in

de
pe

nd
en

t
da

ta
se

t,
N

=
no

va
lid

at
io

n.

B. Minasny, et al. Earth-Science Reviews 196 (2019) 102870

22



6.2. Review of digital mapping studies

Peat mapping studies pre-2000 often use air photos or Landsat
imageries to delineate peat areas. Pala (1982) used Landsat images and
a classification tool to identify the location and extent of wetlands types
over a 1700 km2 area in North Ontario, Canada, while Stove (1983a,
1983b) used Landsat images and principal component analysis to dis-
criminate between peat types in Scotland. Similarly, Fan (1988) clas-
sified Landsat images to identify peatlands in the Tibetan plateau.

Post-2000 there has been an increased interest in mapping peat
using information derived from satellite images. These studies mainly
involve delineating landcover from remote sensing, ecology, and en-
vironmental field studies. The beginning of the 2000s also saw the in-
creased availability of spatial data (digital elevation model, satellite
imageries), the availability of computing power for processing data, the
development of data-mining tools and GIS (Minasny and McBratney,
2016). These factors helped push research in digital soil mapping, and
enhanced publications of peat mapping using a variety of remote sen-
sing products.

Table 4 presents 90 studies that have explicitly mapped peatlands
using digital techniques. All but two studies were published in 2001 or
later.

Table 4. Studies on mapping peat characteristics using digital ap-
proaches.

In the proceeding sections, we will discuss the main factors that can
help drive more accurate peatland mapping.

6.3. How did these studies map peat?

Scale and resolution: Peatland has been mapped from a global to a
field scale, with a median extent of the study area between 1000 and
2000 km2 at a resolution of 30 m, coinciding with Landsat and STRM
DEM. The finest resolution is at 0.1 m with LiDAR, and the coarsest is
0.5° or 50 km. Resolution of the images corresponds to the mapping
extent and utility. For example, the 30 m resolution image may only be
suited for regional mapping but cannot detect small pockets of peat-
lands in highland areas (Silva et al., 2013).

Who and where: These studies were mainly published in the fields of
geography and remote sensing (38%), ecology & environment (36%),
soil science (25%). The study areas are in Canada (18%), Russia (12%),
Indonesia (11%), England (11%), Ireland (6%), Peru (5%), and the
remaining 37% from other parts of the world.

What was mapped: As most studies are from remote sensing and
ecological journals, peat is mapped as part of wetland types or land-
cover types (26%). Studies that map the extent of peat over an area (of
peat or non-peat class) can be found in 17% of the studies, and 17% of
the studies mapped the type of peats. Peat thickness is only explicitly
mapped in 18% of the studies, and C stocks were calculated in 11% of
the studies. The studies also variously mapped different parameters
such as peat burn depth, gully erosion, and peat degradation.

Inputs: Peatland or landcover classification is based on legacy soil or
land cover maps, field observations, or expert interpretation. Studies
based on field survey (as opposed to using legacy soil samples) are
collected from a low number of field observations because of access. For
example, the study by Dargie et al. (2017) was based on 211 samples
collected along transects in a relatively large area in the Congo basin.
Soil science studies tend to use legacy soil samples. Countries with rich
soil databases tend to have a large number of samples, e.g. Denmark
with a sampling density of 3 samples/km2, Drenthe province Nether-
lands 6/km2, and Parry et al. (2012) collected 1 sample per km2 in the
Dartmoor area in south-west England.

Covariates: About 25% of the studies use a single source for the
covariate, such as Landsat or ALOS PALSAR images. The most recent
studies used 2 or 3 sources for covariates, which was termed multi-
sensor (optical and radar), or multi-temporal images (Bourgeau-Chavez
et al., 2017; Hribljan et al., 2017). The most common covariates used

are Landsat images (31%), followed by Lidar (18%), ALOS PALSAR
(13%), and SRTM DEM (12%). While climate was identified as a major
factor in large-scale peat formation, it is absent in all of the surveyed
studies in Table 4. This is in contrast with mineral soil carbon mapping
studies, where climate layers are commonly used in regional mapping
(Minasny et al., 2013).

Validation: 64% did not perform any validation and only 5% of the
studies performed external validation. As machine learning tools are
data hungry and tend to overfit calibration data, there is a need for a
more robust validation measures in peat mapping studies.

Uncertainty: Only 19% of the studies define the uncertainty of the
map. Producing a map of peat type, extent, thickness or carbon stock
should be accompanied by its confidence of prediction.

6.4. Interpolation functions

6.4.1. Classification approach
Supervised classification is the most common approach for mapping

peat type. Peat extent is mapped by classifying optical and radar images
using a supervised classification algorithm (e.g., maximum likelihood,
logistic regression or machine learning algorithms). Unsupervised
classification is also used by clustering algorithms to group satellite
imageries (such as Landsat) into landcover classes and assigning land-
cover type to these classes. Classification can also be done using field
observation data of peat type (White et al., 2017).

There is no general rule on which classification methods work best;
however, unsupervised classification is generally used in areas with few
field observations while supervised classification works well where
there is general site knowledge or field observations. Studies on soil
class mapping indicated that complex machine learning models tend to
be more accurate than simple or moderately complex models (e.g. lo-
gistic regression) (Brungard and Boettinger, 2010).

In ecological and geographical studies, peat observations are col-
lected on a transect or based on a convenient sampling procedure. This
sampling design is common in tropical forests where access is limited. A
subset of these samples will measure peat thickness using an auger. The
general workflow is based on land cover classification, and is sum-
marised as follows:

- Land cover is mapped using a supervised classification with satellite
images.

- Peat thickness and C density are calculated from field data. A core
sample is usually divided into n layers, and bulk density and C
content measured for each layer. The carbon density Cd (Mg m−2) is
calculated using the following equation:

= × ×C C dd
i

n

c bi i

where, Cc is organic carbon content by mass (g of C/g of dry soil), ρb is
bulk density (in Mg/m3), and d is peat thickness (m).

- An average C density for each land cover is calculated.
- The average C stock (in Mg) is applied to each land cover (i = 1,..,
m) multiplied by its area A and C stock (Cs) was calculated as:

= ×C C A .s
i

m

d ii

6.4.2. Regression approach
Studies using regression models commonly relate peat observations

using various regression functions. The simplest form is interpolating
peat thickness data using ordinary kriging (Keaney et al., 2013). Kriging
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works well when there are dense field observations with good spatial
coverage.

For much of the world, optical and radar images are freely available,
and can be used as covariates to predict peat. Field observations can be
intersected with layers of environmental data or covariates, and a
model fitted by various means. This model is then used to predict all
other locations on the raster.

In some of the studies, explicit spatial models were derived to pre-
dict peat thickness, such as regression analysis from terrain attributes
(e.g., elevation and slope) (Holden and Connolly, 2011; Parry et al.,
2012); a peat thickness inference model (Holden and Connolly, 2011); a
power function of the distance to a river (Hooijer and Vernimmen,
2013); an exponential function of elevation and slope (Parry et al.,
2012); and an empirical function of elevation (Rudiyanto et al., 2015).

Only a few papers used regression and machine learning models to
derive a spatial prediction of peat thickness (Aitkenhead, 2017;
Rudiyanto et al., 2016b). Only a limited study that combined regression
with kriging of the model residuals, termed regression kriging (Young
et al., 2018).

Studies in digital soil mapping indicate that machine learning
models tend to work better than linear regression (Rudiyanto et al.,
2017). However, the prediction accuracy is more sensitive to training
sample size compared to the model type used (Somarathna et al., 2017).

6.5. Summary

These 90 studies show that although peat type varies throughout the
world, peat can be mapped using the DSM approach. Mapping at a
resolution of 30 m can be done quite accurately using freely-available
remotely-sensed information. Multi-source covariates (radar and op-
tical) provide geographical information, elevation, optical, and radar
images provide better information than a single covariate. Adding
multi-temporal dimensions to optical and radar covariates provide
useful information for mapping peat type, and machine learning models
provide better accuracy than linear models. Some notable gaps in
current peat mapping are:

• Uncertainty needs to be quantified.
• Climate, as a major factor in peat formation, should be considered

when mapping peat at a regional scale or larger.

The next section provides a more detailed discussion on sensors that
can improve peat mapping.

7. Using sensors to improve peat mapping

Mapping peat needs covariates that can reflect its extent or thick-
ness, or factors related to peat formation. However, the tools that
produce those covariates operate at different spatial scales, as shown in
Fig. 3. Fig. 17 shows the electromagnetic spectrum and highlights areas
that are useful for sensing peat: radio waves, microwaves, infrared, and
gamma rays. The following sections describe common proximal and
remote sensing systems that could be used for peat mapping.

7.1. Proximal geophysical methods for sensing peat thickness

Proximal sensors refer to sensors that operate close to the ground.
Typically, the horizontal resolution of those sensors is between 0.1 and
1 m, and the vertical resolution is 0.01–0.1 m. Proximal sensors can
cover an area between 1 m2 to 1000 ha (Fig. 3) and penetrate up to tens
of meters. Many proximal sensors used in geophysical surveys have
been tested to measure peat thickness. Most of them are based on the
unique electrical properties of peat, i.e., its high water content (Comas
and Slater, 2004). Peat has a high porosity (around 90%) and is mostly
saturated, and thus its electrical conductivity (or inverse of resistivity)
depends mainly on its water content and concentrations of the dissolved
ions. Walter et al. (2015) found that electrical conductivity is also re-
lated to peat decomposition stages, with values generally below 3 mS
cm−1 and lower values found on undecomposed peats (around 0.2 mS
cm−1).

The relative dielectric permittivity (εr) of a material is the ability to
polarize electrically. It is measured by the speed of an electromagnetic
wave travelling through it. The dielectric permittivity of dry organic
material is quite low, around 1.5, 2–3 for dry mineral materials, and 80
for water. Since peat contains a high amount of water, its dielectric
permittivity is around 63 ± 8 (Parry et al., 2014), much higher than
saturated soil at around 25–30.

A suite of instruments in the broad field of electromagnetic (EM)
geophysics have been employed for measuring peat (Heagy et al.,
2017). To map peatland, these instruments measure physical electrical
conductivity (or resistivity), and electric permittivity. Measuring EM

Fig. 17. The electromagnetic spectrum, highlighting areas useful for sensing peat.
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data on the ground surface helps predict information about subsurface
physical properties. Based on numerical models of Maxwell's equations,
a model can predict the EM responses given the subsurface properties.
In soil mapping, it is more common to measure the EM responses and
find a set of subsurface properties that match. This is known as the
‘inverse problem’.

7.1.1. Ground penetrating radar
Ground penetrating radar (GPR) is an active proximal sensing

method. It is based on electromagnetic wave propagation which mea-
sures the soil dielectric permittivity. GPR has been used since the 1980s
(Bjelm, 1980) and 1990s (Warner et al., 1990). It sends short pulses of
high frequency (10–1000 MHz) EM waves through the ground surface.
The wave propagates downwards and is reflected when it encounters
boundaries between layers which have differences in permittivity.
Depth is estimated from the wave velocity—from the time between
transmission and detection of the wave. Lower frequency waves pene-
trate deeper into the ground, however resolution decreases.

GPR signals can penetrate up to 10 m in peatlands, with a resolution
of 10–15 cm (Slater and Reeve, 2002). As peat has a dielectric per-
mittivity of around 50–70, and saturated mineral soils around 25–40, it
is relatively easy to tell the two media apart. Variation in the degree of
peat decomposition may also cause a change in GPR response (Lowe,
1985; Warner et al., 1990). Reflections from boundaries between dif-
ferent types of peat deposits can be identified. Holden et al. (2002) also
showed that GPR could be used to map out natural soil pipes in blanket

peat. Most studies were in northern America and Europe.
There is a limitation for peat mapping when the electrical con-

ductivity of peat is high. EM wave propagation is attenuated, reducing
the depth of penetration. Comas et al. (2015) evaluated a GPR system
(100 MHz) for mapping tropical peatland in Indonesia. They found that
GPR is effective for mapping shallower peat (3–4 m), and able to pick
up the peat/mineral interface up to a one centimeter resolution.
However, this system could not detect peat deeper than 9 m. Campos
et al. (2017) used GPR to detect buried peat bogs in highlands of Minas
Gerais in Brazil, identifying four peat bog typologies such as “en-
trenched bogs”, “subsurface bogs”, “structural bogs”, and “hanging
bogs”.

Most GPR studies are done on transects, using field coring to cali-
brate the EM wave velocity (Fig. 18A). Rosa et al. (2009) indicated from
a study in Quebec, Canada, that at least 30 calibration points are re-
quired to minimize the EM velocity error in each survey.

7.1.2. Electrical resistivity imaging
Also called electrical tomography, electrical resistivity imaging is

one of the oldest geophysical investigation techniques (Daily et al.,
1992). It involves burying metal electrodes in the ground, applying a
voltage, and measuring the resistance to the flow of the electric current.
A typical resistivity survey system consists of four or more equally
spaced metal electrodes (a ‘Wenner array’), inserted into the soil. An
AC-power source supplies current flow between the two outer elec-
trodes and the resultant voltage difference between the two inner

Fig. 18. (A) GPR with 100 MHz antennae profile on a transect in West Kalimantan: TG2.1–TG.2.3 and two additional core samples with layer thickness; (B) inverted
image of resistivity survey using a four-electrode Wenner-type array with 1 m electrode spacing. The dots represent interpreted peat–mineral soil interface. Figure
from Comas et al. (2015), Creative Common License.
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electrodes is measured. By placing many electrodes along a transect, the
system can generate an image of the electrical resistivity variation in 2-
D (along the transect and with depth) (Comas et al., 2015). The elec-
trical measurements can be “inverted” by using a model describing the
flow of electricity in soils.

Resistivity imaging is time-consuming, mostly done on a transect,
and few full 3-D inversions have been performed. An example from
Comas et al. (2015) in Fig. 18B shows different layers of material with
different resistivities along a 100 m transect. The upper layer (60 and
200 Ω m) correlates with peat layer, and the underlying layer with high
resistivity (200 and 300 Ω m) includes both a transition layer composed
of a mixture of sand and clay (with some organics) and a clayey mineral
layer.

7.1.3. Electromagnetic induction
Electromagnetic induction (EMI) instruments are one of the most

popular proximal soil sensors as they do not require physical contact
with the soil (Saey et al., 2012; Huang et al., 2016). Commercially
available instruments (e.g., Geonics EM38 and DUALEM-1) which allow
sensing on-the-go are widely used in precision agriculture.

The EMI sensor transmits a primary electromagnetic field which
induces electrical currents in the soil. These currents generate a sec-
ondary electromagnetic field which is detected by the sensor's receiver.
The secondary field is proportional to the ground current and is used to
calculate the “apparent” or “bulk” electrical conductivity (ECa) for the
volume of soil. A multi-coil offset electromagnetic induction instru-
ment, capable of simultaneously recording several integral depths,
could be used to map peat depth as the apparent electrical conductivity
(ECa) of peat materials (and its large water content) have distinct va-
lues from mineral materials.

Linear regression relating peat thickness and ECa has been devel-
oped. Theimer et al. (1994) related EM31 measurements with peat
thickness, with an average value of 10 mS/m for a 50 cm peat and
25 mS/m for a 2 m thick peat thick. They attributed the increase of ECa
to the increase in pore water electrical conductivity. Altdorff et al.
(2016) used measurements of different ECa depth ranges to predict peat
thickness and C stock for a field in Germany. Theoretically, the ECa
data can be inverted to represent EC values with depth. However, the
authors did not provide meaningful estimates of peat layer depth,
possibly because of the small depth range of the peat layer. Koszinski
et al. (2015) used the EM38DD device in several peatlands in Germany
and a two-layer model (Saey et al., 2012) to relate ECa measurement
with peat thickness or the depth to mineral soil. Probing data using a
linear regression model as the two-layer model proved to be inaccurate.
Efficient ECa inversion algorithms for EMI instruments (Huang et al.,
2016) could offer more accurate mapping of peat thickness.

Airborne multi-frequency EMI surveys, mostly used for near-surface
geology and mining studies, can penetrate 70–100 m. In a 124 ha area
of Soidinsuo in Central Finland, airborne electromagnetic data was
inverted using a 1-D electromagnetic induction model calibrated using
field data. The resulting peat thickness map is agreeable with GPR data
(Fig. 19).

The results from these studies suggest that to predict peat thickness
or depth to mineral layer, EMI instruments need to be calibrated to
local conditions.

7.1.4. Seismic reflection, gravity, and magnetic methods
Various geophysical methods have been used to survey and locate

coal deposits. These include broad scale airborne geophysical surveys
(gravity, magnetic, or electromagnetic induction) to delineate

Fig. 19. Peat thickness estimated using a) electromagnetic induction data with 1D layer inversion, and b) ground penetrating radar (GPR) and drilling data. (From
Airo et al., 2013, used with permission).
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sedimentary areas, followed by detailed ground surveys (Kang, 2009).
Seismic refraction tomography was used to interpret shallow subsurface
geology and Avalos et al. (2016) demonstrated that low seismic velocity
can be used to infer peat deposits. Gravity and magnetic survey are
well-developed for coal exploration but they have not been widely used
for peat mapping. Their depth of penetration is much deeper than peat
deposits and most of these instruments do not directly measure peat.

7.2. Remote sensing of peats

For large scale peat mapping, proximal sensors have little value.
Remote sensors operate at a horizontal resolution of around 1 m–1 km,
which can cover areas from a field (0.1 ha) to the globe. According to
Lawson et al. (2015), tropical (and other) peatland has unique char-
acteristics that make it mappable via remote sensing. Characteristics
include distinctive vegetation types and structures, unique topography,
and a high water table.

Geophysical airborne surveys, usually used to survey high economic
value minerals and hydrocarbons, have also proved to be useful for
mapping soils and peatlands. Examples in Finland and Sweden (section
5) show these surveys can identify parent materials as well as mapping
peat thickness. Fine to medium resolution spatial and temporal data are
now freely available from the Landsat, Sentinel and MODIS satellite
platforms. Satellites that measure earth's surface moisture may be
useful to generate rough peat maps. Gravity Recovery and Climate
Experiment (GRACE) is available at 0.5 degree resolution (about
50 km), and Soil Moisture Active Passive (SMAP) available at 3 km
resolution. These images provide a very coarse resolution which may
only be useful for continental or global coarse mapping.

This section discusses some common remote sensing instruments,
satellites, and airborne sensors that could map peatlands.

7.2.1. Gamma radiometrics
A gamma radiometer records the amount of radioactive isotopes in

the soil. It is based on the principle that each gamma ray photon relates
to a discrete energy window which is characteristic of the source iso-
tope. Radiometric mapping predominantly reflects the variation in the

amount of naturally occurring radioisotopes of potassium (40K), ur-
anium (238U-series) and thorium (232Th-series) as they produce high-
energy gamma-rays with sufficient intensities to be picked up by a
detector.

Radionuclides in the soil are adsorbed by clay minerals, iron oxides,
and organic matter. Due to weathering processes, radionuclides are lost
from the soil, which results in a characteristic gamma-ray spectrum.
The soil's gamma intensity is directly related to the mineralogy and
geochemistry of the parent material and its degree of weathering.
Radiometric surveys, mainly aerial-based, have therefore been used for
uranium exploration and geological mapping on a large scale (Wilford
and Minty, 2006). Gamma radiometrics have also been widely used as
covariates to map soils and regolith distribution in Australia (Wilford,
2012). A proximal gamma radiometer survey also allows fine-scale
characterisation of soils (Stockmann et al., 2015).

Gamma-ray attenuation theory predicts that the behaviour of wet
peat is distinct from most other soil types. The peat gamma signal is
distinct mainly due to its high water content and low density (Fig. 20)
(Beamish, 2013).

Based on the attenuation theory, Beamish (2013) speculated that
the attenuation levels observed across wet peatlands could not, in
general, be used to map variations in peat thickness. Beamish (2013)
noted that the low gamma values form spatially-coherent zones (natural
clusters) and can be interpreted as areas of increased water content for
each soil type. Peat, in particular, is remarkably skewed to low count
behaviour in its radiometric response. The higher amplitude intra-peat
zones may be due to areas with thin peat cover while the areas with the
lowest amplitudes coincide with the highest water content. Never-
theless, Keaney et al. (2013) and others found that the airborne gamma
radiometrics data are highly correlated to peat thickness.

National gamma radiometric surveys have been undertaken in
Australia (Wilford, 2012), Finland (Airo et al., 2014), Sweden (Lunden
et al., 2001), Northern Ireland (Beamish, 2014) and other countries.
These products have proved to be an invaluable data source for map-
ping peat extent. Berglund and Berglund (2010) calibrated 40K con-
centrations in a peatland area in Sweden. The 40K content of peatland
was on average 1% compared to a non-peat area which has a con-
centration of 2%. They used a threshold value of 1.4% for classifying
peat areas. The Finland survey (Airo et al., 2014) also found that 40K
was an invaluable measure of peat occurrence. The 40K concentration
was used to distinguish shallow (< 0.6 m) and deep peat (> 0.6 m).

Rawlins et al. (2009) encountered a problem when mapping soil
carbon distribution in Northern Ireland—carbon has a bimodal dis-
tribution due to the presence of peat and mineral soils. They developed
a linear mixed model into 3 regions based on peat, organo-mineral, and
mineral soil. Gamma 40K proved to be an important covariate for
mapping C concentrations in all 3 soil classes.

In another detailed study, Keaney et al. (2013) mapped peat
thickness for an area in the Republic of Ireland using field data cokriged
with a total count of airborne gamma radiometrics data (Fig. 21). They
further demonstrated that the gamma count coincides with peat
thickness as measured by GPR.

Radiometric data components, potassium (K), thorium (Th) and
uranium (U) and their ratios have proved to be useful to assist mapping
peat deposits (Hyvönen et al., 2003; Hyvönen et al., 2002). Never-
theless, as gamma radiometric surveys mainly capture surface in-
formation (top 30–50 cm), they cannot infer peat of greater thickness.
Additionally, airborne radiometric data are strongly dependent on
variations of gamma radiation or conductivity in bedrock, which can
obscure the signal on peats.

7.2.2. Visible and infrared sensors
Satellite images that provide earth's surface reflectance from the

visible, to near- and mid-infrared spectrum (400–13,000 nm) are now
widely available as low resolution (e.g. MODIS at 250 m), medium re-
solution (Landsat at 30 m, Sentinel 2 at 20 m), and high resolution

Fig. 20. Theoretical attenuation behaviour of gamma radiometric signal for
peats at different moisture content and variation with thickness assuming a
uniform half-space. A 90% attenuation level provides a reference level. (From
Beamish, 2013, Creative Common License.)
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(SPOT, QuickBird at ~2.5 m) (Dissanska et al., 2009). These images can
be trained to distinguish land cover or vegetation type, which may be
related to peat type. Temporal spectral indices have been investigated
to distinguish peat types (Fig. 22), while fine-resolution object-based
classification may be able to map features such as drains. The resolution
of the images can affect the accuracy of the prediction. High-spatial
resolution imagery could improve peatland classification by reducing
the uncertainty of mixed pixels (Rampi et al., 2014).

As an organic matter, peat has a unique spectral signature, with
lower reflectance in the near- and shortwave-infrared part of the elec-
tromagnetic spectrum (Krankina et al., 2008). However, as most peat-
land is covered with vegetation we cannot directly identify peat in the
visible and infrared regions. Many studies since the 1980s have deli-
neated peat based on Landsat multispectral satellite data (from 500 to
1100 nm), which reflects land cover or vegetation type (Stove, 1983a;
Stove and Hulme, 1980).

Harris and Bryant (2009) used spectra from Sphagnum mosses as
proxy indicators of near-surface hydrology in peatlands. Spectral in-
dices calculated from the near infra-red (NIR) and shortwave infrared
(SWIR) liquid water absorption bands were used to indicate peat
moisture status. Airborne hyperspectral imaging (in the visible and NIR
range) has been trialled for small areas for mapping peatland vegetation
types (Harris et al., 2015).

Shimada et al. (2016) postulated that peat thickness in a swamp
forest in Indonesia could be estimated from forest phenology via multi-
temporal satellite images (Shimada et al., 2016). They used monthly
NDVI values from a time series of MODIS satellite data. As vegetation
can be affected by season (especially dry seasons) and groundwater

level, seasonal NDVI fluctuation within a year may be indicative of peat
thickness. Such a model may be applicable in natural forest areas.

7.2.3. Radar
Radio detection and ranging (Radar) is one remote sensing tech-

nology that operates in the microwave portion (1 cm to 1 m) of the
electromagnetic spectrum. Radar imagery represents the amount of
energy backscattered from a surface which varies with the degree of
roughness of the surface (geometry), and with the type of object and its
received site environment. Radar has been prominent in wetland
mapping (Li and Chen, 2005) because:

• Unlike visible and infrared images, it is not susceptible to atmo-
spheric scattering and the environment (e.g., night or day, rain or
snow, fog or clear sky).

• It is relatively low cost.
• It offers real-time image processing.

In areas such as the tropics, Brazil, and Scotland, where cloud cover
is persistent throughout the year, radar data proves to be invaluable for
mapping peatlands (Poggio and Gimona, 2014). Microwave sensor
systems are commonly divided into two categories according to their
modes of operation—active and passive. Radar is categorized as an
active microwave sensor which provides the source of microwave ra-
diation to illuminate the target. Its basic principles are the transmission
and reception of pulses where high energy pulses are emitted, and the
returning echoes are recorded in the same antenna. The sensor can
receive information such as magnitude, phase, time interval between

Fig. 21. (A) Radiometric data for an area in Ireland; (B) radiometric data for peat bog; (C) 1996 Peat thickness data from legacy data; and (D) updated peat thickness
map cokriged from legacy data and gamma radiometrics. (from Keaney et al., 2013).
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pulse emission and return from the object, polarization, and Doppler
frequency.

There are two basic elements in an imaging radar system; Real
Aperture Radar or Side Looking Airborne Radar (RAR or SLAR) and
Synthetic Aperture Radar (SAR). Recent radar applications use SAR to
generate high-resolution images of the earth's surface, including prop-
erties such as slope, roughness, humidity, textural in-homogeneities,
and dielectric constant. Radar interferometry combines two or more
radar images over the same area to detect change. Radar interferometry
provides 3-D terrain and topographic features through an elevation
model. As radar can penetrate the vegetation canopy, it has been used
to retrieve soil surface moisture contents.

Some common spaceborne radar satellite platform and sensors in-
clude: ALOS-PALSAR (Advanced Land Observing Satellite); ENVISAT
(ESA); ERS1/2 (European Remote Sensing Satellite 1 and 2); JERS-1
(Japanese Earth Resources Satellite-1); LightSAR (a low cost, light-
weight L-band system); RADARSAT-2 (Canadian Space Program);
Sentinel-1 (European Space Agency); SEISM (Solid Earth
Interferometric Space Borne Mission); SIR-C/X-SAR (Shuttleborne
Imaging Radar); and TerraSAR-X (German Aerospace Centre). Some
products such as ERS-1/2, JERS-1, ENVISAT ASAR, and RADARSAT-1/
2 are available at a spatial resolution of 10 m or finer. Compared to
optical satellite data, radar imagery is available at a higher temporal
frequency.

The standard radar image processing procedures consist of digital
signal processing and image processing to extract information from
objects of interest. In soil mapping, identifying the polarization type
and data combination is an important part of radar image process. As
radar image is based on detecting the dielectric constant, not all types
of polarization are effective in mapping soil properties. Polarization
refers to the orientation and shape of the pattern traced by the tip of the

radar vector. The measurement of the energy at emission and at the
reception after backscattering by the observed target are identified by
the combination of the horizontal (H) and vertical (V) linearly polarized
radar waves (Henderson and Lewis, 2008).

A radar system covers several levels of polarization complexity, i.e.,
single polarized (HH or VV of HV or VH), dual polarized (HH and HV,
VV and VH, or HH and VV; and four polarizations (HH, VV, HV and
VH). This polarimetric scattering mechanism represents the character-
istics of soil status, especially those related to roughness, wetness, til-
lage, bare soils, etc. In tropical regions, vegetation cover becomes the
main problem in predicting soil properties. A combination of different
image polarization indices (such as HH/VV) provide complementary
information on peat properties.

Lower frequency systems (P-band, L-band, and C-band) could re-
trieve soil characteristics over vegetation because they can penetrate
deeper compared to the higher frequency systems (Zribi et al., 2014).
C– Band in the HH polarization mode was recognised to be most sen-
sitive to soil moisture and least sensitive to the surface roughness in the
presence of low biomass.

Recent advances use temporal (two or more dates) of L-band (such
as ALOS PALSAR) and/or C-band (e.g., ERS or Sentinel-1) SAR imagery
to distinguish different peatland types based on moisture or flooding
conditions. L- and/or C-band SAR have also been combined with optical
(vis-IR) data (such as Landsat) to further enhance discrimination of
peatland vegetation types (Bourgeau-Chavez et al., 2017; Hribljan
et al., 2017). Hoekman (2007) used JERS-1 time series to map out
flooding characteristics in the Mawas area in Central Kalimantan. He
further postulated that the flooding intensity of the peat swamp forest is
related to peat thickness, and thus peat thickness can be estimated
(Fig. 23).

Fig. 22. A composite of Landsat 8 Band 543 in Central Kalimantan, Indonesia, showing peatland polygon at 2 periods: dry season (21/8/2016) and the end of the
rainy season (14/03/2016). These two images show that peatland can be identified from the higher red tones during the dry season (compared to the rainy which
looks similar between peat and non-peatland), as long as the peatlands are still intact (with forest cover). For the deforested area, the red tone difference cannot be
observed. Note that one of the challenges in the tropics is the high cloud cover. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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7.2.3.1. Digital elevation model. Elevation and its derivatives from a
DEM are important predictors of peatlands. Although peatlands in
tropical regions such as Indonesia are in a relatively flat area, elevation
appears to be an important predictor in peat thickness modelling
because peat accumulates in dome-shaped structures (Figs. 2 and 24)
(Anderson, 1964, 1961; Jaenicke et al., 2008).

There are several sources of data that can be used to derive a DEM.
SRTM DEM: the SRTM (Shuttle Radar Topography Mission) was

flown on board the Space Shuttle Endeavor and mapped 80% of the

Earth's land mass from 11 to 22 February of 2000. The sensor was a C-
band Interferometric Synthetic Aperture Radar (InSAR) instrument.
Due to the relatively short wavelength (5.6 cm), the majority of the
return electromagnetic energy was affected by vegetation canopy
(Hensley et al., 2000). The freely-available 1 arc-second (around 30 m
resolution) DEM from the Shuttle Radar Topography Mission (SRTM)
proves to be an important covariate for mapping peats (Table 4).

ASTER Global DEM: Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) provides a global DEM at a resolution

Fig. 23. A. JERS-1 multi-temporal composite image of a peat dome in Mawas, Central Kalimantan, (B) Peat thickness map on a 300,000 ha section of Mawas area
derived from flood dynamics as detected from the JERS-1 time series. Figure courtesy of Dirk Hoekman used with permission.

Fig. 24. (A) A map of peat thickness in Ogan Komerang Ilir,
South Sumatra, Indonesia. (B) Landsat image. (C) The re-
lationship between peat thickness and elevation along a
transect across the peat dome. The dots refer to field ob-
servations of peat depth, and the dashed line is modelled peat
depth based on a digital mapping model. (Based on Rudiyanto
et al. (2016b)).
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of 90 m based on stereoscopic pairs and digital image correlation
methods (Hirano et al., 2003). This DEM has artefacts due to poor
stereo coverage at high latitudes, cloud interference, and water masking
issues (Reuter et al., 2009).

ALOS World 3D (AW3D): a global DEM, digital surface model, and
ortho-rectified image (ORI) was derived from the archived data of the
Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM)
onboard the Advanced Land Observing Satellite (ALOS), which oper-
ated from 2006 to 2011 (Tadono et al., 2014). It is freely available at a
resolution of 30 m DEM. The 5 m digital surface model product is
commercial.

TanDEM-X and WorldDEM: TanDEM-X (TerraSAR-X add-on for
Digital Elevation Measurement) was launched in June 2010 by the
German Aerospace Center (DLR). It is a synthetic aperture radar (SAR)
which generated a global DEM based on two satellites flying in close

formation (TanDEM-X and TerraSAR-X). It provides a 12 m resolution
DEM. The DLR, in conjunction with Airbus DS, commercially produced
and distributed the data (DEM and digital surface model) under the
brand name WorldDEM (Collins et al., 2015).

DEM products vary in resolution and quality. In lowland areas with
rapid land use changes, it is challenging to use the raw DEM as cov-
ariates for mapping. Fig. 25 shows three DEM products for the eastern
part of Bengkalis Island in Indonesia. The two main elevated areas are
peat domes. The difference in elevation is due to tree height differences
from deforestation and afforestation. Various algorithms were devel-
oped to retrieve a digital surface model out of a DEM.

Various terrain attributes can be derived from a DEM. Local attri-
butes such as slope and curvatures commonly describe local processes
(Holden and Connolly, 2011), while regional attributes such as topo-
graphic wetness index combined with upslope contributing flow area

Fig. 25. Three sources of DEM of the eastern part of Bengkalis Island, Indonesia: (A) SRTM, (B) ALOS W3D, and (C) TanDEM-X.

Fig. 26. Corrected DEM (or DTM) based on bare-earth SRTM and Merit DEM of Bengkalis island (Fig. 24).
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and slope describe hydrological processes. MrVBF multiresolution index
of valley bottom flatness (Gallant and Dowling, 2003), a topographic
index to identify areas of deposition at a range of scales, was shown to
be a good predictor of peat thickness in lowland area in Indonesia
(Rudiyanto et al., 2018). Margono et al. (2014a) calculated relative
changes in height with respect to hydrological stream flow which
proved to be a good predictor for wetland classification. Distances to a
river or other landscape features are also important covariates as found
by Mirmanto et al. (2003) and Rudiyanto et al. (2018). Depending on
the topography and formation of peats, different terrain attributes may
have different prediction capacities.

DEM resolution may also affect the predictability of peat areas. Fine
resolution LiDAR DEM characterises local topography, while a coarser
resolution DEM characterises local relief. A common unsupported belief
is that the use of a finer resolution DEM will improve the accuracy and
precision of the prediction over a coarser DEM. Knight et al. (2013)
compared DEMs derived from LiDAR at a 3 m resolution with a national
DEM at a 10 m resolution for mapping a palustrine wetland in Minne-
sota, USA. They also used a variety of datasets including high resolution
optical imagery, and radar. The study found that the choice of topo-
graphic attributes and resolution did not have statistically significant
influences on accuracy. The site was a relatively low wetland and to-
pographic diversities captured by the coarser DEM were sufficient. In a
more general DSM study, Samuel-Rosa et al. (2015) demonstrated that
using more detailed or fine scale covariates only slightly improved the
spatial prediction of soil properties. They further concluded that the
modest increase in accuracy might not outweigh the extra costs of using
more detailed covariates. Cavazzi et al. (2013) found that in flat
homogeneous areas, coarser resolution DEMs perform best in terms of
accuracy in prediction. Areas which are morphologically varied, such as
abrupt changes in topography reflected in steep slopes, are better
mapped with fine resolution DEM.

7.2.4. DEM correction
As shown in Fig. 25, the DEM is affected by vegetation height

(O'Loughlin et al., 2016), especially in lowlands, which may affect
prediction accuracy if used in modelling. O'Loughlin et al. (2016)
produced a ‘Bare-Earth’ DEM based on the SRTM. Tree cover per cent
was estimated from the MODIS satellite, and a global vegetation height
map (Simard et al., 2011) was used to remove the vegetation height.
Subsequently, Yamazaki et al. (2017) produced a global Multi-Error-

Removed Improved-Terrain DEM (MERIT DEM) at 3 arc sec resolution
(~90 m resolution) by removing bias, stripe noise, speckle noise, and
tree height using multiple satellite data sets and filtering techniques.
They used SRTM DEM (below N60°) and the AW3D DEM (above N60°)
as the baseline DEMs. The Geoscience Laser Altimeter System (GLAS)
aboard ICESat (Ice, Cloud, and land Elevation Satellite) that provided
global LiDAR data were used as the reference ground elevation for
correcting bias. A global tree density map and tree height map was used
to correct for vegetation. Further noise was removed by applying an
adaptive smoothing filter.

Fig. 26 shows the vegetation corrected DEM based on the bare-earth
(O'Loughlin et al., 2016) and the Merit DEM (Yamazaki et al., 2017)
products. Artefacts can be seen on the bare-earth model which suggest
that local correction for vegetation is essential. Meanwhile, the Merit
DEM seems to be over-smoothed.

Different DEM products captured in different years in areas with
dynamic land use allows us to estimate tree heights in the deforested
area (Avtar and Sawada, 2013). The tree height for the whole area can
be estimated using Landsat images, providing an accurate way to cor-
rect the DEM for trees. Fig. 14 shows the difference between SRTM and
AW3D DEM which has a time lag of 8 years, representing trees that
were lost due to deforestation. The tree height data were intersected
with a cloud-free Landsat 5 Thematic Mapper (TM) image that was
acquired close to the SRTM period. A neural network model was gen-
erated to predict vegetation height throughout the area based on
Landsat bands allowing the creation of a fine-scale tree height corrected
DEM (Fig. 27).

7.2.5. LiDAR
LiDAR (Light Detection and Ranging), often used in airborne map-

ping, can create a 3-D model of the earth's surface (Hopkinson et al.,
2005). Laser pulses reflect objects both on and above the ground sur-
face, enabling estimation of both ground surfaces and aboveground
objects such as trees. LiDAR is mostly useful for estimating tree biomass
and above ground C stock, but it can also be used to generate Digital
Terrain Models (DTM). To do this, ground points (points from LiDAR
pulses reflected from the ground surface) are first separated from ve-
getation points, then interpolated for the whole area based on mor-
phology and terrain (Maguya et al., 2014).

As the acquisition of LiDAR is expensive, it is commonly used in
areas < 400 km2 (Table 4) for mapping peat burn depth, gully

Fig. 27. (A) Landsat image is used to generate a land cover map, (B) modelled tree height estimated from the difference between AW3D DEM and SRTM, and (C) tree
corrected SRTM.
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networks, or as a covariate for mapping peat thickness (Gatis et al.,
2019). While LiDAR can provide high resolution DEM and DTM, it can
have errors in areas with dense, short-sward vegetation which disrupt
the return of the laser pulse from the ground surface. This under-
estimates the vegetation canopy height and surface-drainage network
depth (Luscombe et al., 2015).

7.2.6. Structure from Motion DEM
Digital elevation models can be created by overlapping aerial pho-

tographs taken from different viewing angles collected from a low-al-
titude unmanned aerial vehicle (UAV) system (Simpson et al., 2016).
The Structure from Motion technique (Fonstad et al., 2013) can be used
to reconstruct point clouds to produce DTMs (or vegetation corrected
DEMs). Fonstad et al. (2013) demonstrated this over a 5.2 ha peatland
in Jambi, Indonesia, by estimating burn depth based on pre-and post-
fire DTMs. The Fonstad et al. (2013) paper shows that it is possible to
use UAV to provide detailed optical and elevation data for areas that
required detailed study.

8. Conclusions and further research

Peatlands hold about 5–20% of global carbon stocks and provide a
variety of ecosystem services. Climate change and rapid land use
change are degrading peatlands, liberating their stored C into the at-
mosphere.

Various countries have regulations on the protection of peatlands
(Law et al., 2015), and some restoration efforts are underway. In 2016,
the Indonesian government established the peatland restoration agency
(Badan Restorasi Gambut, BRG) to coordinate and facilitate peat re-
storation. In Ireland, protected peatlands are linked to Natura 2000, an
EU network of nature protection sites. Restoration works following peat
extraction are underway and specific emission factors for rewetted
peatlands (Wilson et al., 2016a, 2016b) are being explored. In some
countries, however, peat has limited protection. In Chile, for example,
peatlands are currently recognised as a non-metallic resource in the
Mining Code, giving priorities to extraction over conservation.

Peatlands have been discussed at the global level by various UN
agencies (Crump, 2017). From 2021, the EU requires that member
states report on the emission and removals of greenhouse gases from
wetlands (European-Parliament, 2018). Such reporting requires un-
derstanding and quantifying current peatland extent, condition, C
stocks, and land use (Connolly, 2018). Bord na Mona (1984) argued
“peat for fuel” as a motivation for mapping and inventory. Now we
must map peatlands to mitigate climate change.

Current global peatland knowledge and mapping are poor.
Peatlands are fragmented, cover a relatively small land area (around
3% globally), and are often overlooked in large-scale soil surveys. There
is considerable uncertainty on the spatial extent of peatlands and their
C stock, both nationally and globally, with global estimates of C stored
in peatland ranging from 113 to 612 Pg.

Accurate peatland mapping is essential to secure and restore de-
graded peatlands, to better estimate soil C stocks, and to achieve the
Paris Agreement. Digital soil mapping is an avenue to map and quantify
global peatlands. Despite varying peat types across the globe (i.e.,
Northern, tropical vs Southern latitude), the framework using DSM
methods is universal. Local calibration of field observations and cov-
ariates is essential for more accurate peat maps and estimates of carbon
stocks. Models calibrated in Scotland, for example, cannot be applied in
Indonesia.

Based on this review and experiences from different countries, some
emerging research questions that can be addressed using DSM:

• What is the global extent of current peatland and its C stock?
• How do current global peatlands respond to climate change?
• Can we map areas with the most rapid peat changes stemming from

land use change?

• How can DSM further understanding of how peatlands are dis-
tributed across the globe and hydrological units?

Immediate technical challenges and opportunities for mapping
peatlands include:

1. Methodological challenges

- Open digital mapping

The proliferation of satellite data available in an open-access
format, availability of machine learning algorithms in open source
computing environment and (not so free) high-performance computing
facility such as Google Earth Engine (Hird et al., 2017; Padarian et al.,
2015) have enhanced the way soil can be mapped. There are ad-
vantages to using this information to generate efficient and accountable
digital soil maps. Rudiyanto et al. (2018) proposed an open digital
mapping methodology which used open-access data in an open source
computing environment for mapping peatlands. This approach is
transparent, and therefore repeatable and accountable. A similar pro-
cedure has been demonstrated in Scotland and mapping wetlands in
Canada (Hird et al., 2017). Open-access methods can be scaled to a
national extent for countries such as Brazil and Indonesia by performing
fieldwork and computer modelling in parallel.

- Covariates

Gamma radiometrics appear to be the most efficient covariate for
delineating peat extent. However, not all countries have such data. In
the absence of gamma radiometrics, there are other, powerful covari-
ates for peatland mapping. Rather than relying on a single covariate
such as LiDAR data, multi-source remotely-sensed data derived from
geographical information, optical, and radar images produce better
predictions. Adding multi-temporal dimensions to optical and radar
information has been shown to be effective in mapping peat and pos-
sibly providing information on peat thickness.

- A better sampling methodology

Many ecological studies sample based on transects and use this data
to calibrate spatial models. While transect sampling is efficient for field
observation, it usually gives a biased prediction when the data is used
for model calibration (Hengl et al., 2003). Sampling based on the
covariates or sampling the feature space is more effective for model
calibration in DSM (Brungard and Boettinger, 2010). For example, a
conditioned Latin hypercube sampling (cLHS) approach that samples
along the distribution of the covariates has been found to be effective
for developing DSM models. Sampling should also consider limited
access, as natural peat is commonly not easily accessible (Dargie et al.,
2017). The cLHS approach incorporating operational constraints such
as access (Roudier et al., 2012) has been developed, and it would be an
advantage to apply it to mapping peat areas.

- Mapping the thickness of the organic horizon

Mapping peat thickness and C stock in an area usually involves a
two-step approach because peat occurs together with mineral soils. Peat
thickness data is called ‘zero-inflated’. The first step models peat extent,
the second step maps peat thickness. Mapping peat thickness is more
accurate than assuming a constant peat thickness throughout a peat
type.

The mixture model, which models peat thickness or C content dis-
tributions as a mixture of mineral and organic soils could be a useful
technique. The model defines peat and mineral components where each
could have a different distributional type, can potentially be used to
describe these types of data. The Bayesian method can be used to
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estimate the parameters of the distribution directly from the data
(Leisch, 2004). This mixture model is promising and yet to be explored
for peat mapping.

- Uncertainty of peat extent, thickness, and C stock.

All mapping procedures and products need to be accompanied by
the uncertainty of estimates. As there are many definitions and quan-
tification methods, the uncertainty also needs to be clearly defined
(Heuvelink, 2014). One statistical approach is to represent the un-
certainty of the map as probability distributions. The uncertainty used
in the GlobalSoilMap specification is defined as the 90% Prediction
Interval (PI) which reports the range of values within which the true
value is expected to occur 9 times out of 10 (Arrouays et al., 2014). The
lower (5 percentile), median, and upper (95 percentile) estimate can be
presented for maps of peat C stock (e.g., Rudiyanto et al., 2018).

2. Global Challenge—to come up with a consistent peat map and C
stock estimates with uncertainty.

There is currently no high resolution and reliable peatland map of
the world. Maps of wetlands and vegetation are frequently used as a
proxy for peatlands, however coarse-scale peatland maps such as Xu
et al. (2018) cannot capture local peatlands. Combining peat maps from
various countries as a bottom-up approach following the GlobalSoilMap
(Arrouays et al., 2014) approach would be ideal. Key challenges include
defining a consistent set of peat classes and definitions across all
countries and recognising legacy maps from different countries. The
GlobalSoilMap needs to differentiate the properties of peat from mi-
neral soils. Adding the thickness of organic horizon to the Glo-
balSoilMap data is one option. Technical challenges remain in distin-
guishing peatlands from wetlands and peat-containing permafrost soils.

While mapping peat on a global and national scale is important,
DSM is also useful for detailed soil surveys in priority areas. This re-
quires fine resolution images or remote sensing covariates.

3. Can digital mapping be used to monitor peat degradation or
changes?

Earth observation satellites are now able to provide coverage of
earth's condition, detecting changes in vegetation (Hansen et al., 2013).
Satellite data such as from Sentinel 1 and 2 can provide temporal in-
formation (e.g. monthly), and using DSM modelling there is a possibi-
lity to map changes in peatland coverage over time. We still do not have
a good estimate of contemporary potential C sequestration of peatlands
in various ecosystems. Current global studies on peatland degradation
are based on rough inventory estimates and a broad LULCF emission
factor which is full of uncertainty (Leifeld and Menichetti, 2018).

4. Knowledge discovery from peatland mapping

Machine learning models provide non-linear relationships between
covariates and peat occurrence and can reveal spatial correlations of
the covariates. While correlation does not mean causation, DSM can
provide new insights and formulate further questions regarding peat
distribution, formation and management in different parts of the world.
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