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A B S T R A C T

The soil ripening process can be defined as change in the soil/sediment matrix from exposure to air in previously
inundated areas. Early pedogenesis crystalline iron oxide is one of the most important diagnostic criteria to
monitor the aforementioned process. In this study, the east shore of the shrinking Urmia Lake located in the
north west of Iran was selected for investigation. This article aims to express the importance of advanced digital
soil mapping to link between a difficult-to-measure soil attribute (i.e. crystalline iron oxides) and remotely
sensed data as easy-to-measure variables. Additionally, the spatial distribution of clay and soil total iron density
was also assessed. In this article, both Landsat 8 and Landsat 7 imagery were acquired for July 2017 and 1999
respectively. Eighteen remotely sensed data (environmental covariates) were employed for analysis, and a
bootstrapping method was used to analyze the associated uncertainty of the created maps. Three data mining
techniques namely; multiple linear regression, decision tree modeling and Cubist modeling were candidate
models for mapping the target variables across the study area. Regarding optimality, a multiple linear regression
model was fitted to predict clay content, while a Cubist model was fitted to predict both soil total iron density
(SFeD) and crystalline iron oxide (Fecrys). From the summary output, spectral bands in the visible region did not
predict SFeD as strongly as that found for Fecrys. As we expected, Fecrys content increases with increasing the
distance from the shore. This means that the ripened soils have been established far from the water body.

1. Introduction

During the 1990s, Urmia Lake in northwestern Iran was once the
largest salt-water lake in the Middle East. But now its water level is
dropping, especially in the eastern regions. The highest and lowest
water levels were recorded in 1995 and 2015 respectively. The decline
in water level has been measured as eight meters (ULRP, 2015). Nasiri
et al. (2015) reported that Urmia Lake has shrunk by up to 56% during
the last 15 years. Similar massive decline of water resources has oc-
curred in other salt lakes around the world such as the Aral Sea (Wish-
Wilson, 2002), and Great Salt Lake (Mohammed and Tarboton, 2012).

The receding of water from Urmia Lake is greater on the eastern and
southern shores where there is relatively flat or gently sloping terrain
(Heydari, 2013). Dam construction, excessive use of groundwater,
construction of causeways, and unsustainable agricultural development
have been the most important agents for the water decline (Ghalibaf
and Mousavi, 2014). Moreover, the occurrence and frequency of floods

and droughts have also had a substantial impact on the amount of
runoff entering Urmia Lake (Razmara et al., 2013). Ultimately, the lake
salinity has sharply increased from 160 g/L in high water years, to>
340 g/L (supersaturated salt water) in recent years, resulting in the
appearance of salt crystals upon some surfaces (Hesami and Amini,
2016).

Soil shrinkage in wetlands is accompanied by some modifications in
its physical and chemical characteristics via redox processes (Pezeshki
and Delaune, 2012). The receding of water on the east shore of Urmia
Lake naturally exposes to the atmosphere sediments that were once
inundated with water. This process initiates the early diagenesis of iron
oxides (Haese et al., 1997). Soil iron oxides differ in solubility, re-
ducibility and extractability (Kabata-Pendias, 1993) which tre-
mendously influence the release of precipitated trace metals (Sipos
et al., 2014). This research provides a pathway to study the effect of
pedogenic processes and type of parent material on iron oxide phases as
well as soil chronosequence on the east shore of Urmia Lake in the
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future.
To recognize and monitor soil properties a lot of soil survey needs to

be carried out (Ma et al., 2017). Digital soil mapping (DSM) is a key for
quantifying and assessing the variation of soil properties in un-sampled
and scarcely sampled areas (McBratney et al., 2003). Minasny and
McBratney (2016) have reported that soil attributes can be predicted by
soil forming factors (s), climate (c), organism (o), relief (r), parent
materials (p), age (a) and spatial position (n), with spatially correlated
errors (e). The knowledge on the spatial prediction of soil attributes can
make a major contribution to the digital soil assessment which was
introduced by Carré et al. (2007). Such assessments may focus on dif-
ferent issues such as land contamination and soil biological activity
(Khamseh et al., 2017; Shao et al., 2016; Shahbazi et al., 2013).

The incorporation of remote sensing (RS) data (Kim et al., 2012), as
well as digital elevation model (DEM) data and derivatives thereof,
(Mulder et al., 2011; Boettinger, 2010) have been used with success in
DSM studies. Notwithstanding the importance of DEM and derivative
data in soil spatial modeling, it was not employed in our research be-
cause there were no sharp differences in relief, and climate for that
matter, across the study area. Derivatives of RS spectral data have been
widely used as environmental covariates in modeling soil-landscape
relationships (McBratney et al., 2003). The use of Landsat spectral data
has been particularly useful in arid and semi-arid areas (Boettinger
et al., 2008). In addition of individual spectral bands, principal com-
ponent analysis of bands may be important to predict some soil prop-
erties (Taghizadeh-Mehrjardi et al., 2016; Malone et al., 2009).

Numerous prediction methods have been developed and introduced
to correlate ancillary variables and soil properties through the DSM
framework proposed by McBratney et al. (2003). For example, linear
regression (LR) modeling has previously been used to predict the dis-
tribution of soil organic carbon and compared with Random Forests in
Africa (Hengl et al., 2015). In Finland, decision tree modeling (DT) was
used for mapping geomorphic surfaces (Luoto and Hjort, 2005). DT
models and other non-linear model types such as Cubist models (Ma
et al., 2017; Quinlan, 1992) are generally preferred in DSM studies
because they generally attain higher accuracies when evaluated against
actual observations, in comparison to the linear model counterparts.

Uncertainty analysis is also necessary for establishing how reliable a
digital soil map might be (Brown and Heuvelink, 2005). Sun et al.
(2012) used available Fe as a soil quality index and estimated the un-
certainty of their maps according to the standard deviation of the soil
quality index and the derived soil quality information with a confidence
level above 0.9. Ma et al. (2017) performed the efficiency of empirical
uncertainty quantification through fuzzy clustering and cross validation
method. Liddicoat et al. (2015) performed bootstrapping for quantifi-
cation of uncertainties across very large mapping extents.

The hypothesis of this study is that the mineralogical and chemical
changes in iron forms will be a consequence of air penetration into the
previously waterlogged materials. Early pedogenesis crystalline iron is
an important assessment property to identify the ripened soils. For this
purpose, the map of Fecrys was created not only for the present time (i.e.
2017) but also for the past which in this case was 1999. The spatial
distribution of clay and soil total iron density (SFeD) was also evaluated
using advanced data mining techniques across the study area based on
co-migration and/or co-association of iron and clay (Stonehouse and
Arnaud, 1971). This study can be considered as a starting point for
future investigations in the east shore of Urmia Lake.

2. Materials and methods

2.1. Study area

This study was performed on the east shore of Urmia Lake located in
the east Azerbaijan province, Iran (Fig. 1). The average annual pre-
cipitation is 341mm. The minimum and maximum temperature of the
region ranges between 0 and −23 °C in winter and up to 39 °C in

summer (IRIMO, 2012). The mean annual water level in Urmia Lake is
currently more than four meters below the critical level (1274m above
sea level) needed to sustain its own ecosystem. In October 2015, the
water level reached the lowest level which caused the southern parts of
the lake becoming totally dried (ULRP, 2015).

The study area represents three separate sites which cover ap-
proximately 223 km2, 275 km2 and 119 km2 for sites 1–3, respectively.
They are delimited by longitude 45°22′18″–46°01′17″ E and latitude
37°14′58″–38°07′12″ N and consist predominantly of swamp and
marsh. Three strata were determined at each site by the bathymetry of
Urmia Lake: i) 1271–1273m; ii) 1273–1275m; and iii) 1275–1278m
above sea level (Fig. 1-D). Iron oxides have accumulated in the surface
of the study area particularly in the second stratum of each site (Fig. 1-
C). To study changes in soils not affected by inundation, control sites
were selected from the external part of stratum 3 at each site where
they were not inundated in either 1999 or 2017 (Fig. 1-A and B). For
simplicity, the flowchart of the employed procedures is illustrated in
Fig. 2.

2.2. Soil sampling and analysis

2.2.1. Routine analysis
A total of 157 topsoil samples (0–10 cm) were collected from the

study area according to the stratified random sampling method
(McKenzie et al., 2008) during June 2017. Samples (both disturbed and
undisturbed) were collected with a grid of 400 ha from the entire of the
study area. This method allowed us to shift sampling points where the
land surfaces had been covered by salt crusts. With this method, 60, 71
and 26 samples were collected from sites 1–3, respectively. The samples
were then transported to the laboratory for preparation and analysis. In
the laboratory, disturbed samples were air-dried, then sieved through a
2mm sieve. The undisturbed samples (clods for clay soils, cylinders for
sandy soils) were used for measuring bulk density (BD) in the labora-
tory (Blake and Hartge, 1986).

Some soil physical and chemical properties were also determined.
Particle size analysis (soil texture) was determined using the hydro-
meter method (Gee and Or, 2002) with clay defined as particles<
0.002mm, silt (0.002–0.05mm), and sand (0.05–2mm). Soil electrical
conductivity (EC) was measured using a 1:5 (soil/water ratio) water
extract (Rhoades, 1996). Organic carbon (OC) was measured by wet
oxidation with chromic acid and back titration with ferrous ammonium
sulphate according to the Nelson and Sommers (1996). Carbonate cal-
cium equivalent (CCE) was measured by neutralization-titration
method (Allison and Moodie, 1965).

2.2.2. Soil total iron density calculation
Due to the high variability of soils, analysing spatial patterns of soil

properties were recently conducted as a stock condition (Ma et al.,
2017; Tang et al., 2016). Soil total iron was measured using digestion of
samples with aqua regia (McGrath and Cunliffe, 1985). Soil total iron
density (SFeD) for a given soil depth (0–10 cm) was calculated by (Eq.
(1)).

SFeD Fe BD h/100t= (1)

where SFeD is expressed in kg/m2, Fet is the soil total Fe (g/kg), BD is
the soil bulk density (g/cm3) and h is the thickness of soil horizon (cm).

2.2.3. Determination of soil crystalline iron
Iron was determined in both acid ammonium oxalate extracts (Feo)

and in dithionate-citrate-bicarbonate extracts (Fed) of all samples taken
from the study area (Loeppert and Inskeep, 1996). Iron concentration in
the extracts was measured by atomic absorption spectrometry (Shi-
matzu, AA-6300). Oxalate extraction dissolves much of the iron from
the amorphous materials but very little from the crystalline iron oxides,
whereas dithionate extraction dissolves a large proportion of the crys-
talline iron oxides as well as much of the amorphous materials
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(McKeague and Day, 1966). The Fecrys was therefore calculated by a
subtraction of Feo from Fed.

2.2.4. Statistical analysis
For fitting most statistical models, it is presumed that the data set

are normally distributed (Shapiro and Wilk, 1965). Summary statistics
were computed prior to modeling to check for normality of the data. A
formal way for normality testing includes the Anderson-Darling test
statistic. For the data to be normally distributed, the p-value calculated
by Anderson-Darling should be> 0.05. If not, a way to make the data
to be more normal is to transform it (e.g. via log- or square root
transformation).

2.3. Environmental covariates

The next task was to gather a suite of environmental covariates
thought to be useful (and available) for predicting soil properties within
a DSM framework for our study region. Due to harmony in climate and
topography, terrain derivatives and climatic data were not used for our
research. Instead, from our own prior investigations, we envisaged that
soil variation could be captured by investigation of the soil spectral
properties. Therefore, we collected a number of remotely sensed ima-
gery scenes from the Landsat 8 ETM+ as well as Landsat 7 satellite
platform acquired in July 2017 and 1999, respectively. We used both
the reflectance of the individual bands, together with indices derived
from combinations of the individual bands (Table 1). All covariates
were transformed to a spatial resolution of 30m using ArcGIS 10.2
(ESRI, 2011).

For some background, various methods have been studied for re-
presenting and mapping soil variability using multispectral remote
sensing data. Common approaches include using the individual bands,
band ratios, principal components of each of the individual bands, and
multiband classification of the bands (Chavez and Kwarteng, 1989). In

this study, Landsat imagery derived data were categorized as three
orders of different indices: i) vegetation, soil and water; ii) landscape;
and iii) geology. Bartholomeus et al. (2007) revealed that vegetation
effects on Fe prediction. The presence of vegetation with Normalized
Difference Vegetation Index (NDVI) shows a strong sensitivity on the
spatial distribution of iron. Soil-Adjusted Vegetation Index (SAVI) also
represents better information concerning vegetation and soil char-
acteristics according to Gilabert et al. (2002). Additional to these,
Visible Atmospherically Resistant Index (VARI) is the only vegetation
index that is significant when mapping with RGB as well as it measures
the reflectance of vegetation versus soil (Gitelson et al., 2002). Nor-
malized Difference Moisture Index (NDMI) is sensitive to moisture le-
vels, has been used to monitor droughts (Skakun et al., 2003). Based on
this NDMI could potentially be useful for identifying soil formation
processes such as those associated with iron redox processes.

With respect to landscape indices, we calculated Normalized Burn
Ratio (NBR2) as a new metric for quantifying burn severity (Parks et al.,
2014). The low value indicates bare ground and recently burned areas.
This index was used in this article because there is no or little vegeta-
tion in the salty areas.

In terms of soil indices, Ducart et al. (2016) used Clay index (CI) in
Brazil and reported that it discriminates clays in areas related to mafic
regolith. Clay index (Boettinger et al., 2008), salinity ratio (SR)
(Metternicht and Zinck, 2003), ferrous mineral (FMI) and iron oxide
(IOI) indices (Drury, 2016) were four calculated derivative Landsat
imagery indices that were used in our research to represent the soil
geochemical variability across the study area. Four examples of ancil-
lary data derived from Landsat spectral data across the study area are
shown in Fig. 3.

Fig. 1. Location of the study area.
A: Represents the study area in 1999; B: the study area at present scenario (2017); C: a photograph of accumulated iron for the present scenario; D: three strata within
three sites on the east shore of Urmia Lake as well as represents the sampling points; and E: location of the study area in country of Iran.
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2.4. Soil attribute modeling

2.4.1. Multiple linear regression
Multiple linear regression (MLR) is a common model for soil spatial

predictions. Demattê et al. (2007) used this model for evaluating the
relationship between analytical and spectral parameters of six im-
portant classes of tropical Brazilian soils. They reported the importance
of spectral data obtained by Interface Region Imaging Spectrograph
(IRIS) for the prediction of clay content at both local and global scales.
Forkuor et al. (2017) recently used MLR for mapping of soil properties
in south-western Burkina Faso. Jones (1973) had previously reported

the efficiency of MLR to predict the soil clay content in West Africa. In
this study, we first put all covariates (18 ancillary data) in the model
and then performed a stepwise regression to determine statistically
significant variables.

2.4.2. Decision trees
Decision Trees (DT) has been widely used for DSM (Taghizadeh-

Mehrjardi et al., 2014). In this model, several independent variables
correlated with direct or indirect relationships to a target variable are
defined with a tree structure, which is generated by partitioning the
data recursively into a number of groups (Breiman et al., 1984). Nodes,

Fig. 2. Simplified flowchart of the research across in this study.
Fet: Total iron (g/kg); SFeD: soil total iron density (kg/m2); Fed: dithionate-extractable iron (g/kg); Feo: oxalate-extractable iron (g/kg); Fecrys: crystalline iron (g/kg);
MLR: multiple linear regression; DT: decision trees; Cu: Cubist model.

Table 1
Ancillary data variables considered in this study.

Ancillary data Description Definitionb

Individual bands Blue, Green, Red, NIR, SWIR1, SWIR2 B2–B7
PCA of bands Principal component analysis of six individual bands PCA (B2–B7)
False colour composite Combination of B4, B5 and B6 B456

Combination of B4, B6 and B7 B467
Vegetation, soil and water indices Normalized Difference Vegetation Index (NDVI) (NIR−Red) / (NIR+Red)

Soil-Adjusted Vegetation Index (SAVI) ((NIR−Red) / (NIR+Red+La))× (1+ L)
Visible Atmospherically Resistant Index (VARI) (Green−Red) / (Green+Red−Blue)
Normalized Difference Moisture Index (NDMI) (NIR− SWIR1) / (NIR+SWIR1)

Landscape index Normalized Burn Ratio 2 (NBR2) (SWIR1− SWIR2) / (SWIR1+ SWIR2)
Geology indices Clay Index (CI) (SWIR1 / SWIR2)

Salinity Ratio (SR) (Red−NIR) / (Red+NIR)
Ferrous Minerals Index (FMI) SWIR1 / NIR

Iron Oxide Index (IOI) Red / Blue

NIR: near infrared; SWIR1: shortwave infrared 1; SWIR2: shortwave infrared 2.
a The L value varies depending on the amount of green vegetative cover as well as in areas with moderate green vegetative cover, L= 0.5.
b Assign between Landsat 8 and 7 different band numbers.

F. Shahbazi et al. Geoderma 337 (2019) 1196–1207

1199



branches and leaves are the components of the constructed decision
tree. Each branch of the tree ends in a terminal node which it is un-
iquely defined by a set of rules. A criticism often raised about DTs
though is that the terminal node itself is a single value, which could
culminate in the creation of a class-like map of numerical data in si-
tuations where there are few terminal nodes. To facilitate DT model
fitting in R we used “rpart” package (Therneau et al., 2017).

2.4.3. Cubist model
An advanced form of the DT model is the Cubist model (Quinlan,

1992). The efficiency of this model in DSM has been reported earlier

(e.g. Malone et al., 2017; Kidd et al., 2015). Cubist models are pre-
sented as a series of rules, each starting with a conditional ‘if’ statement
that subsets the data based on criteria of the variables used in the
model. It provides information about the conditions for each rule, the
regression model for each rule, and information about the diagnostics of
the model fit, plus the frequency of which the covariates were used as
conditions and/or within a model. In this study, we arbitrarily set ca-
libration parameters of the Cubist model to: 5 rules, 10% of data ex-
trapolations and 5 committees, which suggested that 5 boosting itera-
tions were supplied to predict and calculate the contribution of the
covariates. To facilitate Cubist model fitting in R we used the “cubist”
package (Kuhn et al., 2016) to characterize the relationship between
target variables and covariates.

2.4.4. Model validation
Each fitted model was assessed using four criteria: i) the root mean

square error (RMSE); ii) coefficient of determination (R2); iii) bias; and
iv) Lin's concordance correlation coefficient (Concordance) (Lin, 1989).
R2 measures the precision of the relationship between the observations
and their corresponding predictions. Bias, also called the mean error of
prediction, indicates if the model under or over predicts. Concordance
evaluates both the accuracy and precision of the relationship, often
referred to as the goodness of fit along a 1:1 line (Eqs. (2)–(5)).
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where, μpred and μobs are the means of the predicted and observed va-
lues, respectively. σpred2 and σobs2 are the corresponding variances. ρc is
the correlation coefficient between the predictions and observations.
These criteria were used to select the optimal fitted model to be used for
mapping clay, SFeD and Fecrys across the extent of the study area.

2.5. Maps and their associated uncertainties

Minasny and McBratney (2002) reported that uncertainty analysis is
essential for pedotransfer functions. There are some approaches for
quantifying the empirical prediction uncertainties: i) universal kriging
prediction variance; ii) Bootstrapping; iii) Empirical uncertainty quan-
tification through data partitioning and cross validation; and iv) Em-
pirical uncertainty quantification through fuzzy clustering and cross
validation (Malone et al., 2017). In this study, we used a bootstrapping
approach to calculate the mean of the prediction realisations from each
bootstrap sample. For running the bootstrap, we selected arbitrarily
200 iterations. For each iteration, 100% of the sample data size was
selected at random with replacement. This procedure always leaves a
small proportion of the data out of the model fitting procedure which is
akin to an out-of-bag sample set. For each iteration, out-of-bag good-
ness of fit diagnostics measures (as described above) was evaluated. The
variances of the predictions were then estimated after stacking all
created maps in the modeling process. Prediction intervals (PI) which

C D

High: 1.24

Low: 0.23

High: 1.45

Low: 0.89

High: 0.65 High: 0.34

A B

Fig. 3. Four examples of applied Landsat spectral data derived to model across
the study area.
A: Ferrous minerals index (FMI); B: iron oxide index (IOI); C: normalized dif-
ference moisture index (NDMI); D: normalized difference vegetation index
(NDVI).
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refer to the interval between the 90% upper and lower prediction limits,
were calculated. Through this, we generated variance information at
every node of our prediction grid of 30-m resolution, which was used to
calculate PI. This range was used as criteria to assess the magnitude of
uncertainty across the study area.

2.6. Digital soil assessment

Very simply, digital soil assessment (DSA) can be likened to the
quantitative modeling of difficult-to-measure soil attributes. McBratney
et al. (2012) defined that DSA is the translation of DSM outputs into
decision making aids that are framed by the particular, contextual
human-value system which addresses the question/s at hand. In this
study, for the present scenario, we first created the spatial maps of clay
and SFeD using the best fitted models across the study area according to
our speculation that there is co-migration or co-association of clay and
iron (Stonehouse and Arnaud, 1971). The digital map of Fecrys was also
created. Based on these inputs we then assessed the impact of water
level decline on the soils on the eastern shore of Urmia Lake.

The next issue concerning to DSA involved assessing the changes in
soil not impacted by water inundation with the study area after two
decades. Such areas are located at the external part of the third strata in
each site i.e. areas furthest from the lake shoreline, where waterlogging
was not evident in either 1999 or 2017 (see Fig. 1-A and B together). In
total, 77.4 km2 was selected from sites 1–3 (areas about 33, 27.6 and
16.8 km2, respectively). For mapping the spatial distribution of Fecrys
across the selected control sites for 1999, parameters from the fitted
2017 model were applied to the associated RS covariates that were
acquired for 1999. For this, we assigned between Landsat 8 and Landsat
7 different bund numbers. While there may be assumptions required
around the stationarity of the model parameters through time with this
approach, it provides an efficient means to utilise time series RS data to
assess likely changes in soil through time in situations where sampling
could not be achieved during both time periods. Such an approach has
been applied by Waring et al. (2014) for assessing changes in soil
carbon over time with a region of Australia. The changes of Fecrys as
well as the occurrence of the soil ripening process for both time sce-
narios were monitored using the created digital maps of control sites.
Moreover, comparing the mean values of predicted Fecrys maps will lead
to understanding the link between soil chemistry, pedogenesis and soil
surveying.

3. Results and discussions

3.1. Observed soil data

Descriptive statistics of measured routine analysis and iron de-
pendant properties are summarized in Table 2. Routine soil analysis

revealed that the collected soils were high in electrical conductivity (30
dS/m, on average), varied from coarse to fine texture, were high in
organic carbon content (2.37 g/100 g, on average), and medium in total
iron content (1.62%, on average). According to the results, the highest
variation between maximum and minimum values was recorded for
Fecrys (114-fold) followed by Fet (90-fold) and SFeD (85-fold), respec-
tively. This variation was also high for sand, silt and clay. Notwith-
standing sand followed by Fecrys had the highest coefficient of variation
(CV) between soil properties which indicated their strong variation in
the study area, but all variables could be categorized as moderate
variability (CV < 10%= low variability, 10% < CV<90%
=moderate variability, and CV>90%=extreme variability) (Fang
et al., 2012). There was a positive skewness with coefficients varying
between 0.03 and 1.97 for all properties. The observations of Anderson-
Darling p-value revealed that all variables except clay data deviated
from normal. Subsequently, the data of SFeD and Fecrys were normal-
ized by square-root transformation.

3.2. Selection of parsimonious model

Table 3 shows the performances of MLR, DT and Cubist models on
calibration and validation data set to predict clay, SFeD and Fecrys
across the study area. SFeD and Fecrys are the sqrt-transformed results of
the original data set. The results revealed that the DT model was not
suitable for our data and environmental covariates in our study area for
all target variables.

In terms of clay, all predictions were generally quite good with
calibration using DT (R2=0.48) followed by MLR (R2 =0.31) and
Cubist model (R2= 0.26). The performance of R2 in validation dataset
decreased in MLR (R2=0.12) followed by Cubist (R2 = 0.11) and DT
(R2= 0.08). On the other hand, the highest concordance value in va-
lidation data set for clay prediction was observed in implementation of
MLR. Generally, MLR was selected as the best fitted model to predict
the spatial distribution of clay across that study area.

Also, the obtained results showed that the performance of R2 with
calibration in terms of SFeD in DT (0.54), followed by Cubist (0.29) and
MLR (0.26), while those values decreased in validation. We obtained
the highest difference of R2 between calibration and validation data set
in DT (72%), followed by MLR (49%) and Cubist model (35%). The
Cubist model represents the highest value of concordance in validation
data set too. A similar trend was also observed in terms of Fecrys. Based
on these results, the Cubist model was selected in this research for di-
gitally mapping of both SFeD and Fecrys across the study area.

3.3. The importance of covariates in models

3.3.1. Multiple linear regression model
A stepwise MLR was used to model the relationships between clay

Table 2
Summary of descriptive statistics of measured soil properties in this study (n=157).

Min Max Mean SD CV Skewness Kurtosis AD p-Value

EC (dS/m) 0.61 122 30.06 15.86 52.77 1.97 8.23 3.21 4× 10−8

OC (g/100 g) 0.83 5.22 2.37 1.41 59.21 0.63 −1.03 8.36 2× 10−16

CCE (g/100 g) 11.21 49.81 32.81 12.17 37.08 0.12 −1.36 5.71 4× 10−14

Sand (%) 0.05 89.78 35.36 26.34 74.49 0.38 −1.15 3.51 8× 10−9

Silt (%) 0.01 61.94 26.76 17.36 65.38 0.03 −1.18 2.09 2× 10−5

Clay (%) 0.01 79.54 38.09 14.41 37.82 0.23 −0.19 0.36 0.45
Fet (g/kg) 0.61 54.94 16.17 8.97 55.49 0.62 1.51 0.77 0.04
SFeD (kg/m2) 0.11 9.39 2.33 1.32 56.69 1.09 4.34 0.89 0.03
Fed (g/kg) 0.19 12.09 2.98 2.04 68.43 1.18 2.38 2.63 2× 10−3

Feo (g/kg) 0.02 1.91 0.41 0.24 59.23 1.62 8.53 1.11 0.01
Fecrys (g/kg) 0.09 10.24 2.58 1.93 74.93 1.24 1.92 3.96 7× 10−9

EC: Electrical conductivity; OC: organic carbon; CCE: carbonate calcium equivalent; Fet: total iron; SFeD: soil total iron density; Fed: dithionate-extractable iron; Feo:
oxalate-extractable iron; Fecrys: crystalline iron; SD: standard deviation; CV: coefficient of variation; AD: Anderson-Darling amount; p-value: calculated by Anderson-
Darling for normality testing.
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and remotely sensed data (see Table 1) as quantitative predictors. The
results revealed that only nine covariates including B2, B5, B6, B7, CI,
FMI, NDMI, PCA and SAVI were significantly predictors of clay across
the study area. Band 2 and NDMI (P < 0.00) were the most important
covariates, followed by B6, B7, CI and PCA (P < 0.001) while B5, FMI
and SAVI (P < 0.01) were the last ones.

3.3.2. Cubist model
The output generated from fitting the Cubist model revealed the

existence of five conditional rulesets, each with an associated model, to
predict SFeD and Fecrys (Tables 4 and 5). The results showed that the
first ruleset has the least amount of standard error in predictions.

Table 6 summarizes the contribution of all environmental covariates
in the Cubist model as the best selected one for predicting SFeD and
Fecrys across the study area. In terms of SFeD, nine covariates played an
important role. IOI and VARI appeared the most frequently used vari-
ables, where they were included in 60% of ruleset models. CI on the
other hand was less frequently used with inclusion in 12% of ruleset
models. Usage of the other variables were between these two extremes
i.e. 12% and 60%. The results indicated that visible bands (B2, B3, B4),
composite (B456, B467) and also NIR band (B5) were not identified as
predictors in terms of SFeD in this research. While B2 (corresponding to
the visible blue band) was identified as the common model predictor
(included in 60% of ruleset models) in terms of Fecrys across the study
area. This outcome could be interpreted as meaning that Fecrys is more
sensitive to the visible bands compared to the SFeD.

3.4. Digital maps and soil assessment

The spatial distribution of clay, SFeD and Fecrys and also their as-
sociated PI as an indicator of quantitative uncertainty analysis were

then assessed for the three sites using selected models in this research.
The maps of SFeD and Fecrys were back-transformed to their original
scale for mapping and interpretation. The impact of water level decline
on target variables was expressed by dividing each site into existent

Table 3
The statistical criteria for evaluating the performance of predictions in calibration and validation dataset across the study area.

R2 Concordance RMSEa Bias

MLR DT Cu MLR DT Cu MLR DT Cu MLR DT Cu

Calibration dataset (in the bag)
Clay 0.31 0.48 0.26 0.48 0.65 0.39 0.09 0.09 0.09 −0.001 0.001 −0.76
SFeD 0.51 0.54 0.45 0.67 0.71 0.59 0.001 0.003 0.002 0.001 0.001 0.012
Fecrys 0.44 0.57 0.39 0.61 0.72 0.54 0.003 0.01 0.003 0.001 0.001 −0.05

Validation dataset (out of bag)
Clay 0.12 0.08 0.11 0.27 0.25 0.23 0.09 0.09 0.09 −0.22 −0.02 −0.65
SFeD 0.26 0.15 0.29 0.46 0.36 0.47 0.001 0.003 0.002 0.01 −0.01 0.012
Fecrys 0.27 0.21 0.29 0.47 0.42 0.45 0.003 0.01 0.003 0.01 0.006 −0.05

a Normalized RMSE (root mean square error); SFeD: soil iron density (sqrt (kg/m2)); Fecrys: crystalline iron (sqrt (g/kg)); MLR: multiple linear regression; DT:
decision trees; Cu: Cubist model.

Table 4
Constructed rulesets of the fitted Cubist model to predict SFeD (sqrt (kg/m2))
across the study area.

Ruleset Model Se

1 1/1: if CI > 1.12 then: SFeD=17.22–22.83 CI+ 47.3
NBR2−0.01 B7+7.52 IOI+9.8e−5 B6+5.3 VARI

0.29

1/2: If CI < 1.12 then: SFeD=−6.07–0.01 B7+9.79
IOI+ 0.01 B6–14.4 NBR2+9.4 VARI

0.28

2 SFeD=0.87+ 3.5e−5 B7 0.35
3 SFeD=−11.46−19.23 NDMI+31.44 IOI− 12.63 FMI+ 33

VARI− 0.01 PCA
0.36

4 SFeD=0.71+ 3.9e−5 B6 0.36
5 SFeD=−10.46−20.33 NBR+31.39 IOI−13.39 FMI+ 33

VARI− 0.01 PCA
0.38

Se: Standard error; B6: shortwave infrared 1; B7: shortwave infrared 2; CI: clay
index; NBR2: normalized burn ratio 2; IOI: iron oxide index; VARI: visible at-
mospherically resistant index; NDMI: normalized difference moisture index;
FMI: ferrous minerals index; PCA: principal component analysis of bands.

Table 5
Constructed rulesets of the fitted Cubist model to predict Fecrys (sqrt (g/kg))
across the study area.

Ruleset Model Se

1 Fecrys= 3.51–0.01 B2+0.01 B3 0.37
2 Fecrys= 12.71–15.19 NDMI - 10.13 FMI 0.41
3 Fecrys= 3.64–0.01 B2+0.01 B4 0.39
4 4/1: if NDMI >0.004 then: Fecrys= 1.51–2.04 NDMI 0.46

4/2: if NDMI <0.004 then: Fecrys= 7.01–62.8 SAVI 0.61
5 Fecrys= 5.82+ 0.01 PCA−0.01 B7–0.01 B6–13.63

NDMI−0.01 B2
0.47

Se: Standard error; B2: blue; B3: green; B4: red; B6: shortwave infrared 1;
NDMI: normalized difference moisture index; FMI: ferrous minerals index;
SAVI: soil-adjusted vegetation index; PCA: principal component analysis of
bands.

Table 6
Contributions of the environmental covariates predictors in the Cubist model.

Covariates SFeD (sqrt (kg/m2)) Fecrys (sqrt (g/kg))

Conds Model Conds Model

B2 60%
B3 20%
B4 20%
B5
B6 40% 20%
B7 40% 20%
PCA 40% 20%
B456
B467
NDVI
SAVI 4%
VARI 60%
NDMI 40% 20% 56%
NBR2 20%
CI 20% 12%
SR
FMI 40% 20%
IOI 60%

Conds: conditions; B2: blue; B3: green; B4: red; B5: near infrared; B6: shortwave
infrared 1; B7: shortwave infrared 2; PCA: principal component analysis of six
individual bands; B456: combination of B4, B5 and B6; B467: combination of
B4, B6 and B7; NDVI: normalized difference vegetation index; SAVI: soil-ad-
justed vegetation index; VARI: visible atmospherically resistant index; NDMI:
normalized difference moisture index; NBR2: normalized burn ratio 2; CI: clay
index; SR: salinity ratio; FMI: ferrous minerals index; IOI: iron oxide index.
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stratum. Maps were created for all sites in this research, but we show
only those from site 1 in this manuscript. The maps created for sites 2
and 3 are given in the Supplementary material. Table 7 represents
overall findings partitioned by zoning of each stratum within each site.
Detailed explanations in terms of target variables are fully addressed in
the next sections.

3.4.1. Clay
Fig. 4 shows the spatial distribution of clay that resulted from using

the stepwise MLR model. Clay varies largely across the study area from

0% to 100%. Raizada et al. (2003) have reported that the soils of the
waterlogged area have higher concentrations of clay-loam. The results
showed that on average the second site has the highest clay content
(43.5%), followed by the third site (40.45%) and the first one (34.36%).
In terms of the first site, the highest clay on average was observed in the
stratum 3 (39.91%), followed by stratum 2 (32.41%) and then stratum
1 (30.76%) respectively. The prediction interval which was calculated
by the difference between upper and lower 90% limit of prediction
bounds to define the level of confidence (Xiong et al., 2015) showed
that in the direction from the first-to-third strata PI on average

Table 7
Calculated mean values of target variables and interval ranges across the study area using the best fitted models.

Site 1 Site 2 Site 3

Stratum 1 Stratum 2 Stratum 3 Stratum 1 Stratum 2 Stratum 3 Stratum 1 Stratum 2 Stratum 3

Area (km2) 88.1 76.9 58.3 94 90 91.2 7.3 44.2 67.8
Clay (%) 30.76 32.41 39.91 38.37 48.21 48.92 39.56 40.28 41.52
PI (clay) 17.82 9.56 9.03 12.92 9.82 9.61 14.19 13.24 12.01
SFeD 1.16 1.83 2.39 2.21 2.58 2.83 2.55 2.83 2.91
PI (SFeD) 0.44 0.22 0.19 0.31 0.24 0.23 0.28 0.31 0.33
Fecrys 0.93 1.72 2.21 2.12 2.88 3.13 2.21 2.73 2.77
PI (Fecrys) 0.44 0.33 0.25 0.37 0.36 0.33 0.32 0.32 0.32

PI (clay): mean prediction interval range for prediction of clay in percent; SFeD: mean prediction of soil total iron density (kg/m2); PI (SFeD): mean prediction
interval range for prediction of soil total iron density (kg/m2); Fecrys: mean prediction of crystalline iron (g/kg); and PI (Fecrys): mean prediction interval range for
prediction of crystalline iron (g/kg).

Fig. 4. The spatial distribution of clay content (%) across the first site within the study area using stepwise MLR model.
A: Mean prediction (%); B: prediction of interval range (%).
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decreases. The similar trend was also found for the other two sites in
terms of both mean clay content and mean PI (see Table 7). It means
that the accuracy and precision of prediction of clay content was
boosted with increments in distance from the shore. It is speculated that
the variation observed may be related to soil formation processes such
as soil ripening. Also, the nature of clay particles, which may differ over
the strata, determines soil properties and their behaviours and functions
largely governs some geomorphic processes such as weathering, erosion
and deposition (Viscarra Rossel, 2011).

3.4.2. Soil total iron density
According to the summary outputs (see Table 7) using Cubist model,

the highest content of SFeD belongs to the third site (2.76 kg/m2, on
average), followed by the second site (2.54 kg/m2, on average) and
then the first one (1.79 kg/m2, on average). Detailed observation via
separation of each stratum within the sites also revealed that the in-
crement in distance from the shore to the external part of the study area
in terms of sites 1 and 2 has positive correlation with SFeD and negative
correlation with PI. In terms of site 3, we could not find the same trend.
A possible reason is that there is very little geographic separation be-
tween the strata within site 3, especially on the northern part. Al-
though, the highest and lowest PI were calculated for the first (0.35 kg/
m2, on average) and the third strata (0.25 kg/m2, on average). Gen-
erally, the distribution pattern of SFeD is approximately similar to the
distribution of clay across that study area. It means that spatial varia-
bility of clay corresponds to the distribution of SFeD, as we expected.

Moskovchenko et al. (2017) reported that metal concentrations are
positively correlated with the contents of clay fractions. Fig. 5 shows
the digital map of predicted SFeD and its associated quantified un-
certainty analysis in the first site.

3.4.3. Crystalline iron
Fig. 6 illustrates the spatial distribution of Fecrys for the first site of

the study area using Cubist model. As reported by Table 7, the highest
value of Fecrys relevant to the site 2 (2.71 g/kg), followed by site 3
(2.57 g/kg) and then site 1 (1.62 g/kg). Generally, it shows that the
soils on the second site are the most ripened ones due to high in Fecrys.
The results also revealed that stratum 3, within all sites, has the highest
Fecrys as we expected to observe because these soils have been exposed
to the atmosphere the longest and consequently, there has been suffi-
cient time to form crystalline iron. Iron oxide formation can also be
established from the youngest to the oldest soils (Moody and Graham,
1995).

Quantification of prediction uncertainties for the created digital
maps using bootstrapping method showed that the extracted outputs
from stratum 3 and 1 has high and low in accuracy and precision, re-
spectively. This may be due to the presence of salt crystals in scattered
and sometimes mounded deposits on the land surfaces at the first
stratum or due to the occurrences of sediments close to the lake which
are difficult to capture within the modeling process with sufficient data
in terms of sampling and the quality of predictive variables used.

Fig. 5. The spatial distribution of SFeD (kg/m2) across the first site within the study area using Cubist model.
A: Mean prediction (kg/m2); B: prediction of interval range (kg/m2).
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3.5. Monitoring the changes of crystalline iron

Fig. 7 represents the changes of Fecrys for a control site which was
extracted from the first site via created maps and also their associated
PI to compare two scenarios. The results showed that mean value of
Fecrys decreased over the two decades contrary to our expectation, if we
consider only soil formation without paying attention to soil leaching.
This value was recorded to be 2.75 g/kg for 2017, while it was recorded
to be 3.81 g/kg for 1999. It means that despite the soil formation pro-
cess of ripening that act upon the control sites, Fecrys has decreased. The
possible reason for this is could be that the area is located on the basin
of Urmia Lake as well as has been established on the direction of Aji-
chay River, which iron may be leached. Iron depletion was mostly
observed in the northern part of the first site. Coating of iron oxides by
other constituents such as carbonates can also justify the event (Tack
and Verloo, 1997). Moreover, crystallization of amorphous iron oxides
over the time reduces their surface area for light reflection. Meanwhile,
the results of the prediction mean interval range was shown that cre-
ated maps of 1999 have lower confidences than created ones for 2017
as we expected. It occurred because a vast selected control sites in 1999
was nearby to the Urmia Lake at that date. This observation confirms
our findings from 2017 as well.

3.6. Future works

This research provided a pathway to start further works in the fu-
ture such as micromorphological observations and vis-NIR spectroscopy
to find more details on different forms of iron oxides. According to
Czech et al. (2012) who have reported that the highest iron content

were determined in the area with highest total content of zinc and lead
as well as because of the relationships between iron and trace metal
fraction in soil (Sipos et al., 2014), it was also advised to study the
condition of trace metal association with soil iron phases.

4. Conclusions

This study sorts to understand pedogenesis in the east shore of
Urmia Lake, Iran. The results presented above demonstrate that the
spatial distribution of Fecrys as a difficult-to-measure property either for
the current or the previous periods using environmental covariates
were successfully mapped.

The results revealed that the DT model was not suitable for all target
variables. MLR was identified as the best model to predict the spatial
distribution of clay. While, the Cubist model was selected as the best
one in terms of SFeD and Fecrys across the study area.

Remote sensing imagery, particularly those encompassing the
visible region played an important role in the prediction of Fecrys, while
they were not identified to model the distribution of SFeD very well.
The obtained results were also revealed that the Visible
Atmospherically Resistant Index (VARI) was important to predict SFeD,
while it was not used in terms of Fecrys across the study area.

The results showed that Fecrys increased with increment in distance
from the shore at both timestamps of 1999 and 2017 which corresponds
to the ripening process. Comparing both time scenarios showed that
Fecrys had decreased during the past two decades, to reveal the possi-
bility of leaching due to iron mobility.

Fig. 6. The spatial distribution of Fecrys (g/kg) across the first site within the study area using Cubist model.
A: Mean prediction (g/kg); B: prediction of interval range (g/kg).
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