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A B S T R A C T

The disaggregation of conventional soil maps is an alternative for producing high-quality soil maps when point
observations are not available. Previous studies developed the DSMART algorithm (“Disaggregation and
Harmonisation of Soil Map Units Through Resampled Classification Trees”) for this purpose. In this study, we
tested the sensitivity of DSMART towards the input data by using two different conventional soil maps covering
Denmark at scales of 1:1,000,000 and 1:2,000,000. As a potential way to improve the algorithm, we tested an
implementation of soil-landscape relationships, using maps of wetlands and soil texture. We also tested two
different sampling schemes, generating either a set number of virtual samples per polygon in the input map or a
number of virtual samples in proportion to the areas of the polygons. Thirdly, we tested the replacement of the
resampling procedure and decision tree model with Random Forest. The original procedure repeated the gen-
eration of the virtual samples 50 times, fitting a decision tree in each repetition. We modified it by sampling only
once and fitting a Random Forest model. The area-proportional sampling scheme and soil-landscape relation-
ships both improved the accuracy. Random Forest yielded a lower accuracy than the original resampling and
decision tree procedure, but was far more computationally efficient. The accuracy also depended strongly on the
input maps. In the best case, the algorithm predicted soil types with 18% accuracy and soil groups with 47%
accuracy. The results demonstrated that there are several ways to improve the disaggregation of conventional
soil maps, and that a suitable approach can provide reliable soil maps at a national extent.

1. Introduction

Several innovative agricultural practices and measures to protect
the environment take place at local levels, which has reinforced the
demand for high-quality, high-resolution maps of soil properties
(Kovacic et al., 2000; Auernhammer, 2001). Researchers have devel-
oped several approaches to produce accurate soil maps from point
observations (McBratney et al., 2003; Scull et al., 2003). Unfortunately,
the fieldwork to acquire soil observations is expensive and time con-
suming, and it may not be a practical option across large areas.

However, in many areas, conventional soil maps exist, and these
may serve as an alternative source of input data (Arrouays et al., 2017).
Soil surveyors usually produce these maps using soil observations in
combination with expert knowledge, following a tacit mental model
(Hudson, 1992; Bui, 2004). Several studies have sampled conventional
soil maps with the aim to produce new maps with a higher level of
detail (Cialella et al., 1997; Scull et al., 2005; Giasson et al., 2011).

Situations when the polygons of the map contain more than one soil

type require a more complex approach. When soil observations are
available, they can be used to disaggregate the polygons (Schmidt et al.,
2008), and if the survey report includes soil-landscape relationships or
soil toposequences, they can also be used for this purpose (Bui and
Moran, 2001; Nauman and Thompson, 2014).

Odgers et al. (2014) proposed a different approach in the form of
the DSMART algorithm (“Disaggregation and Harmonisation of Soil
Map Units Through Resampled Classification Trees”). The algorithm
works by generating a set number of virtual samples within each of the
polygons in the input map and assigns soil types to the samples ac-
cording to the proportions of the soil types in the polygons, which can
be gathered from the associated soil reports. The algorithm then trains a
single decision tree model from the virtual samples and geographic data
layers of environmental variables and uses it to produce a map of soil
types. The algorithm repeats the process for a specified number of
times, generating new virtual samples in every repetition. Afterwards,
the algorithm summarizes the results, and produces maps of the most
probable soil types, second-most probable soil-types etc. and their
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associated probabilities.
The study which presented DSMART covered a 68,000 km2 area of

in Queensland, Australia (Odgers et al., 2014). Holmes et al. (2015)
tested the method in Western Australia, combining input maps from
several surveys. The study showed that the results were most accurate
for the most common soil types and in areas where the soil distribution
was comparatively homogenous. Furthermore, the results were poor in
areas with detailed original surveys, as the smaller surveys differed in
purposes and methods.

Chaney et al. (2016) used DSMART to disaggregate the SSURGO
map (Soil Survey Staff, 2016) into a soil series map of the conterminous
United States at a 30m resolution, by dividing the area into 12,474 sub-
areas. Chaney et al. (2016) replaced the default C5.0 decision trees
(Quinlan, 1993) with Random Forest models (Breiman, 2001), but did
not quantify the effect of this alteration. Furthermore, Chaney et al.
(2016) only sampled SSURGO once for each area and used the boot-
strap procedure of the Random Forest algorithm to generate resampled
decision trees for predictions.

Vincent et al. (2016) successfully implemented soil-landscape re-
lationships from expert knowledge into the algorithm by specifying
rules for the assignment of soil types to the virtual samples. The authors
mapped the soil types of Brittany, France with soil-landscape relation-
ships implemented, but did not state if the change improved the ac-
curacy. Furthermore, Vincent et al. (2016) suggested that area-pro-
portional sampling would improve the results, as the sampling scheme
of the original algorithm results in an uneven sampling density. They
also stated that single decision trees are prone to overfitting and hy-
pothesized that a more robust predictive model would improve the
results.

In this study, we implement an area-proportional sampling scheme
and Random Forest models into the algorithm. We test how both factors
affect the accuracy of the output maps, with and without soil-landscape
relationships. Furthermore, we test the algorithm's sensitivity towards
the input maps by using two different conventional soil maps.

2. Methods

2.1. Study area

Denmark, located in northern Europe at 54–58° latitude and 8–15°
longitude, has an area of approximately 43,000 km2 (Fig. 1). The ter-
rain is generally flat with a maximum elevation 171m above sea level.
The climate is temperate coastal with temperatures ranging from 1 °C in
January to 17 °C in July. Precipitation varies from 700mm per year in
the eastern part of the country to 875mm in the western part of the
country (Wang, 2013). The geology varies from loamy Weichselian
moraines in the eastern part of the country to sandy Saalian moraines
and glacial outwash plains in the western part of the country. Raised
seabeds are present in the northern part of country. Agriculture is the
dominant land use (61%) followed by forests and natural vegetation
(21%) and urban areas (13%) (Statistics Denmark, 2017).

2.2. Input maps

This study used two different conventional soil maps of Denmark as
input data. Both maps used the FAO-Unesco, 1974 classification system
(FAO-Unesco, 1974). The system consists of 26 soil groups divided into
106 soil types. In the system, each soil type has a two-part name: The
last part indicates the soil group, and the first part specifies the soil
type. For example, the soil types Gleyic Acrisols and Orthic Acrisols both
belong to the soil group Acrisols.

Jacobsen (1984) made the first map at a 1:2,000,000 scale. The map
contains 869 polygons, representing 14 map units and 23 soil types
(Fig. 2A). The number of soil types in each map unit varied from 2 to 7,
with a mean value of 4.4.

The Commission of European Communities (CEC, 1985) made the

second map at a 1:1,000,000 scale. The map covered the member
countries of the European Communities at the time by combining
contributions from the member countries. In this study, we use the
contribution for Denmark made by Professor K. Rasmussen. Despite its
finer scale, the map contains only 323 polygons representing 11 map
units with 18 soil types in total (Fig. 2B). The map units contained 3–5
soil types each, with a mean value of 4.1.

The maps stated the proportions of the soil types in the map units
with the labels ‘dominant soils’ (50%–100%) ‘associations’ (20%–50%)
and ‘inclusions’ (0%–20%). As the DSMART algorithm requires explicit
percentages, we converted these classes into percentages by assigning
weights to the soil types according to their labels. We assigned the
weights 0.75 to dominant soils, 0.35 to associations and 0.10 to in-
clusions. Subsequently, we scaled the sum of weights for each map unit
to 100% (Table 1, Table 2). Some map units listed entries that referred
to entire soil groups rather than specific soil types. In these cases, we
replaced the listed soil group with the most common soil type within
the soil group, if the map unit listed other soil types in the same soil
group. Therefore, the same soil type can appear more than once in a
map unit. If the map unit did not list other soil types within the group,
we split the share evenly amongst the soil types of the group.

2.3. Covariate layers

We included 42 covariate layers in the study: nine variables related
to the soil or the parent material, 20 variables from a digital elevation
model, and 11 satellite-derived images and layers of land use and
precipitation (Table 3). The layers were the same as in Møller et al.
(2018), who described their derivation. The original study resampled
the layers to a common spatial resolution of 30.4m×30.4m.

McBratney et al. (2003) developed the scorpan approach for de-
scribing the relationship between the soil and other spatially distributed
variables. The approach treats soil classes or properties as a function of
other soil information (S), the climatic properties of the environment
(C), organisms, especially vegetation, but also human influences, (O),
relief and topographic variables (R), the parent material or lithology
(P), the age of the soil, i.e. the time factor, (A) and spatial position (N).
The authors emphasized that the scorpan function was devised for
quantitative description of soil-landscape relationships rather than in-
ference about pedogenesis, unlike the clortp approach of Jenny (1941).

We elucidated the relationship between the covariates and the
scorpan approach by listing the relevant scorpan factors for the covari-
ates (Table 3). Most of the covariates were associated with the factors R,
O and S, while a few related to the factors C, P and A. The horizontal
distance to waterbodies was the only covariate that related to the
spatial position, N.

2.4. Experiments

2.4.1. Soil-landscape relationships
We used the two input maps in original and modified forms. In the

modified maps, we split and reshaped the original map units into new
units to take into account soil-landscape relationships. We then as-
signed the relevant soil types to the new map units. Specifically, we
split the map units according to the extent of wetlands and soil texture
classes.

Firstly, specific soil types are present in wetlands, so we used a map
of wetland areas (Kheir et al., 2010) (Fig. 3A). Secondly, both input
maps assign the soil types of each map unit to a number of textural
classes for the depth interval 0–30 cm. Jacobsen (1984) used the texture
classes ‘fine’, ‘medium’ and ‘coarse’ as defined by FAO-Unesco (1974).
The CEC (1985) subdivided the ‘fine’ and ‘medium’ texture classes,
which increased the number of classes to five. We produced maps of
these texture classes from soil texture maps of Denmark made by
Adhikari et al. (2013). In the resulting map, fine-textured soils were
rare, and a single subclass dominated the medium-textured soils. We
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therefore grouped fine and medium-textured soils into one class.
Therefore, the map only contained two texture classes (Fig. 3B). We
maintained areas with peat, mapped by Kheir et al. (2010), as a sepa-
rate class in both maps.

Vincent et al. (2016) assigned soil types to the training samples
generated by the algorithm using explicit rules. However, in this study
we aimed at maintaining the overall shares of the soil types from the
original maps. Therefore, we used a different approach compared to
Vincent et al. (2016).

If a map unit contained both wetland and non-wetland soils, or if
the soil types in the map unit belonged to more than one textural class,
we split the map unit into two or more new map units. If the soil types
in a map unit were exclusively wetland or non-wetland soil types, or if
the soil types belonged to only one textural class, we reshaped the map
unit by constraining its extent to the corresponding areas.

We allocated soil types to the new map units by preference while
maintaining the assigned shares. If the share of soil types of a specific
wetland and texture class within a map unit was larger than the area
matching the classes, we allocated the excess shares of the soil types to
the other parts of the map unit. For example, if the shares of wetland
soil types were too large to be accommodated in the areas with wet-
lands, the excess wetland soil types would be allocated to the non-
wetland parts of the map unit. Peat areas were the only exception to
this procedure, as we assumed that they were identical to the locations

of Histosols. Therefore, we did not maintain the relative shares between
Histosols and other soil groups. Instead, we assigned Histosols to areas
with peat independently from their shares.

These modifications increased the number of polygons to 2278 and
number of map units to 44 for the map by Jacobsen (1984). For the map
by the CEC (1985), they increased the number of polygons to 585 and
the number of map units to 27. At the same time, the number of soil
types in the map units decreased to 1–6 (mean 2.3) for the map by
Jacobsen (1984) and to 1–5 (mean 2.2) for the map by the CEC (1985).
The modifications did not change the total numbers of soil types in the
input maps.

2.4.2. Sampling scheme
The default sampling scheme generates the same number of virtual

samples for all polygons. We tested a sampling scheme, in which the
number of virtual samples was proportional to the area of the polygon
in question. We refer to the default sampling scheme as per-polygon
sampling and the new scheme as area-proportional sampling. We ad-
justed the number of virtual samples per polygon or unit area in each
experiment, depending on the sampling scheme, so the number of vir-
tual samples was slightly above 10,000 for each repetition. Afterwards,
we reduced the sample size to 10,000, dropping cases for the most
frequent soil types first. Therefore, all models used the same total
number of virtual samples.

Fig. 1. Soil profile observations of the FAO-Unesco, 1974 soil types (FAO-Unesco, 1974) used for evaluating the maps produced by the disaggregation of conventional
soil maps. Numbers in parentheses indicate the number of soil profiles for each soil type. The insert in the upper right corner shows the location of Denmark in Europe
(red box). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

A.B. Møller et al. Geoderma 341 (2019) 148–160

150



2.4.3. Resampling procedure and decision tree models
In its original design, DSMART generates new virtual samples in

every repetition and trains a C5.0 decision tree (Quinlan, 1993) from
the samples. To test the effect of changing the resampling procedure
and decision tree algorithm, we replaced it with the Random Forest
algorithm (Breiman, 2001), as implemented in the R package ranger
(Wright and Ziegler, 2015). The Random Forest algorithm trains several
decision trees by drawing bootstrap samples from the training dataset.
The algorithm also implements randomness in the splitting process, as
only a number of randomly selected covariates are available for each
split. The parameter mtry sets the number of available covariates.

In this study, the individual Random Forest models contained 100
trees. For each forest, we tested ten values of mtry and two different
splitting rules and selected the values that yielded the highest accuracy.
We tested the accuracy by random 90/10% splits on the data repeated
ten times for each Random Forest model. In the experiments using
Random Forest, we sampled the input maps only once and used the soil
type probabilities predicted by a single Random Forest in an approach
similar to Chaney et al. (2016). In the experiments using C5.0, we used
50 sampling and prediction repetitions per experiment.

We tested all four input maps (original and modified) in combina-
tion with both sampling schemes and both predictive models. As a re-
sult, we carried out 16 experiments (Fig. 4).

2.5. Evaluation

Earlier studies using the DSMART algorithm used the term ‘valida-
tion’ when assessing the reliability of the output maps (Odgers et al.,
2014; Chaney et al., 2016; Vincent et al., 2016). However, a model of a
complex natural system such as the soil cannot truly be considered as
validated (Oreskes, 1998). We therefore use the term ‘evaluation’.

We evaluated the generated maps using 777 soil profiles located in a
7 km grid (Fig. 1). These profiles were described in the years
1987–1990 using the FAO-Unesco, 1974 classification system (Madsen
et al., 1992). Therefore, they are entirely independent of the input
maps. The surveyors originally classified 179 profiles as soil types
within the soil group Phaeozems. However, Phaeozems do not appear
in the input maps. This is most likely because they do not form under
natural conditions in Denmark. Instead, they form as a consequence of
agricultural practices including tillage and additions of manure and
lime (Madsen and Jensen, 1996). We therefore reclassified them as soil
types within the soil groups Luvisols or Cambisols, depending on the
presence of an argic B-horizon.

In each experiment, we calculated the predictive accuracy as the
proportion of profiles correctly predicted in three ways. First, we cal-
culated the accuracy of the output map with the most probable soil
types, the ‘first soil type’. Second, we calculated the sum of the accuracy
of the output maps using the three most probable soil types, named the
‘first three soil types’, summing the accuracy of the three output maps,
following Odgers et al. (2014) and Vincent et al. (2016). Third, we
calculated the accuracy of the soil groups in the output map of the most
probable soil types, referred to as the ‘first soil group’. We also calcu-
lated the three accuracy measures on the unmodified input maps to
serve as a baseline, using the same 777 soil profiles. In this operation,
we used the shares of the soil types within the map units in place of
probabilities. For example, we regarded the dominant soil type in each
map unit as the most probable soil type. In cases where a map unit
contained equal shares of several soil types, we calculated the attribu-
tion to each of the soil types and divided the results by the number of
soil types that had equal shares.

To aid the interpretation of the results, we calculated the im-
portance of the covariates in the models and averaged the results for

Fig. 2. The two input maps used in the study, produced by (A) Jacobsen (1984) and (B) the Commission of European Communities (CEC, 1985). Soil types for the
map units of the two maps are listed in Table 1 and Table 2 respectively.
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each experiment. The C5.0 algorithm calculates covariate importance
as the number of cases included in splits using the covariate. On the
other hand, the Random Forest algorithm calculates the change in the
proportion of cases correctly predicted, when the covariate is per-
turbed. In both cases, the algorithm scales the importance to 100 for the
most important covariate.

3. Results

3.1. Predictive accuracy

The map produced by Jacobsen (1984) (Fig. 2) had the highest
baseline accuracy for the first soil type, while the map by the CEC
(1985) (Fig. 2B) had the highest baseline accuracy for the first three soil
types and the first soil group (Fig. 5). In the experiments which used the
map by the CEC (1985), the accuracy of the output maps was often
lower than the accuracy of the input map. On the other hand, this was
only the case in two of the experiments, which used the map by
Jacobsen (1984). The experiments that used the map by the CEC (1985)
generally achieved a slightly higher accuracy for the first three soil
types. On the other hand, the experiments that used the map by
Jacobsen (1984) achieved a higher accuracy for the first soil type. They
also achieved a higher general accuracy for the first soil group, al-
though the input map had a lower baseline accuracy. In the experiments
that used both soil-landscape relationships and area-proportional
sampling, the accuracies were invariably higher than the baseline.

The accuracy of the first soil type and the first soil group were
significantly positively correlated (R=0.75, n=16, p < 0.05), while
the accuracy of the first three soil types was uncorrelated to the two

Table 1
Number of polygons, total area and soil types with associated percentages for
the map units in the map by Jacobsen (1984).

Map unit Number of polygons Area (km2) Soil type Area (%)

1 41 1091 Dystric Regosol 46.9
Eutric Regosol 46.9
Dystric Histosol 6.3

2 100 1634 Eutric Fluvisol 68.2
Eutric Histosol 31.8

3 83 1987 Eutric Gleysol 45.5
Dystric Histosol 21.2
Dystric Fluvisol 21.2
Eutric Fluvisol 6.1
Mollic Gleysol 6.1

4 3 39 Dystric Histosol 50.0
Eutric Histosol 50.0

5 65 3923 Dystric Histosol 25.9
Eutric Histosol 25.9
Dystric Fluvisol 12.1
Eutric Fluvisol 12.1
Eutric Gleysol 12.1
Mollic Gleysol 12.1

6 55 523 Orthic Podzol 48.4
Gleyic Podzol 22.6
Humic Podzol 22.6
Dystric Histosol 6.5

7 47 3734 Orthic Podzol 71.4
Dystric Histosol 9.5
Gleyic Podzol 9.5
Placic Podzol 9.5

8 60 3656 Orthic Podzol 42.9
Orthic Acrisol 20.0
Humic Podzol 20.0
Gleyic Luvisol 5.7
Gleyic Podzol 5.7
Dystric Histosol 5.7

9 52 3657 Orthic Podzol 31.3
Luvic Arenosol 31.3
Orthic Luvisol 14.6
Albic Arenosol 14.6
Gleyic Luvisol 4.2
Dystric Histosol 4.2

10 101 3863 Cambic Arenosol 35.7
Dystric Cambisol 16.7
Orthic Luvisol 16.7
Orthic Podzol 16.7
Gleyic Cambisol 4.8
Gleyic Luvisol 4.8
Dystric Histosol 4.8

11 94 2280 Orthic Acrisol 45.5
Dystric Cambisol 21.2
Humic Cambisol 21.2
Gleyic Acrisol 6.1
Dystric Histosol 6.1

12 145 14,158 Orthic Luvisol 53.6
Eutric Cambisol 25.0
Orthic Podzol 7.1
Gleyic Luvisol 7.1
Eutric Histosol 7.1

13 14 336 Dystric Cambisol 51.7
Gleyic Cambisol 24.1
Eutric Histosol 24.1

14 5 950 Dystric Cambisol 51.7
Eutric Gleysol 24.1
Gleyic Cambisol 24.1

Table 2
Number of polygons, total area and soil types with associated percentages for
the map units in the map by the CEC (1985).

Map unit Number of polygons Area (km2) Soil type Area (%)

1 8 321 Dystric Histosol 62.5
Eutric Histosol 29.2
Humic Gleysol 8.3

2 2 7363 Humic Podzol 48.4
Orthic Podzol 22.6
Dystric Histosol 22.6
Gleyic Podzol 6.5

3 31 7423 Orthic Podzol 45.5
Humic Podzol 21.2
Dystric Cambisol 21.2
Gleyic Podzol 6.1
Dystric Histosol 6.1

4 1 251 Orthic Podzol 53.6
Humic Gleysol 25.0
Eutric Cambisol 7.1
Gleyic Podzol 7.1
Humic Podzol 7.1

5 104 8873 Eutric Cambisol 62.5
Orthic Luvisol 29.2
Orthic Podzol 8.3

6 38 6916 Eutric Cambisol 62.5
Orthic Podzol 29.2
Eutric Histosol 8.3

7 1 428 Eutric Cambisol 45.5
Calcic Cambisol 21.2
Calcaric Gleysol 21.2
Dystric Regosol 6.1
Eutric Regosol 6.1

8 51 2593 Humic Gleysol 45.5
Eutric Fluvisol 21.2
Eutric Gleysol 21.2
Dystric Histosol 6.1
Humic Podzol 6.1

9 47 5626 Orthic Luvisol 45.5
Eutric Cambisol 21.2
Gleyic Luvisol 21.2
Rendzina 6.1
Eutric Regosol 6.1

10 21 537 Eutric Fluvisol 57.7
Dystric Fluvisol 26.9
Dystric Histosol 7.7
Eutric Histosol 7.7

11 15 1221 Dystric Regosol 62.5
Eutric Regosol 29.2
Orthic Podzol 8.3
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other accuracy measures (p > 0.05).
The implementation of soil-landscape relationships increased the

accuracy in nearly all cases. Likewise, area-proportional sampling
generally increased the accuracy, especially for the first soil group. On
the other hand, the use of Random Forest models generally decreased
the accuracy, especially for the first soil type. For the first three soil
types, there was no general difference in the accuracy achieved with the
two decision tree algorithms.

The experiment with the highest accuracy for the first soil type
(18%) used the map by Jacobsen (1984), soil-landscape relationships,
per-polygon sampling and C5.0 decision trees (Fig. 6). On the other
hand, the experiment with the highest accuracy for the first three soil
types (36%) used the map by the CEC (1985), soil-landscape relation-
ships, area-proportional sampling and a Random Forest model. Lastly,
the experiment with the highest accuracy for the first soil group (47%)
used the map by Jacobsen (1984), soil-landscape relationships, area-
proportional sampling and C5.0 decision trees.

If we rank each measure of accuracy, the experiment that achieved
the highest accuracy for the first soil type also had the highest mean

rank. This experiment achieved the sixth highest accuracy for the first
three soil types (33%) and the third highest accuracy for the first soil
group (43%).

The supplementary materials present maps of the three most prob-
able soil types produced in each experiment.

3.2. Covariate importance

The most important covariate was the map of geographical regions
(georeg), followed by the map of landscape elements. The clay contents
in all four depth intervals also had a high importance. Precipitation,
elevation, geology, mrvbf and wetland were generally important as well
(Table 4).

Most variables derived from the digital elevation model had an in-
termediate importance, and the land use map (lu) had an intermediate
importance as well. The satellite-derived images all had a low im-
portance. Some topographic variables also had a low importance,
namely the sine and cosine of the aspect (asp_sin, asp_cos), the flow
accumulation (flowaccu), the topographic wetness index (twi) and the

Table 3
Covariate layers used in the study, including their name, an explanation of the layer, the mean value and the range of values for numeric variables and the number of
classes for categorical variables. The table also lists the scorpan factors related to the variables.

Covariate Explanation Mean (range)/number of classes Scorpan factor

Soil and parent material
clay_a Clay content, 0–30 cm (%) 8.2 (0.0–51.2) S
clay_b Clay content, 30–60 cm (%) 10.1 (0.0–62.7) S
clay_c Clay content, 60–100 cm (%) 11.2 (0.0–59.1) S
clay_d Clay content, 100–200 cm (%) 10.9 (0.0–57.1) S
dc Soil drainage class from 1 (Very well-drained soils) to 5 (Very poorly drained soils) 2.9 (1–5) S
geology Scanned and registered geological map (Scale 1:25,000) 10 classes P
georeg Scanned geographical regions map (Scale 1:100,000) 7 classes C, P, A
landscape Landscape types (Scale 1:100,000) 12 classes P, R, A
wetlands Shows the presence of non-wetlands (0), wetlands (1), central wetlands (2) and peat (3) (Scale 1:20,000) 0.3 (0–3) S, R

Topographic variables
asp_cos Cosine of the surface aspect 0.01 (−1.00–1.00) R
asp_sin Sine of the surface aspect −0.03 (−1.00–1.00) R
bluespot Depth of sinks (m) 0.1 (0.0–92.5) R
curv_plan Plan curvature 0.0 (−5.1–6.0) R
curv_prof Profile curvature 0.0 (−7.3–6.1) R
demdetrend Elevation minus the mean elevation in a 4 km radius (m) 1.0 (−57.9–105.4) R
dirinsola Direct insolation (kWh/year) 1269 (122–1707) C
elevation Elevation above sea level (m) 30.9 (−39.5–170.5) R
flowaccu Number of upslope cells 60 (1–110,908) R
gwd_intp Depth to groundwater table interpolated from well observations and surface water 6.8 (0.0–144.3) R
gwd_model Depth to groundwater table from hydrological model 5.8 (0.0–126.0) R
hdtochn Horizontal distance to the nearest waterbody 231 (0–3238) R
msp Mid-slope position 0.27 (0.00–1.00) C, R
mrvbf Multi-resolution index of valley bottom flatness 4.3 (0.0–10.9) R
sagawi SAGA wetness index 14.5 (6.9–19.1) R
slpdeg Surface slope gradient (degrees) 1.6 (0.0–90.0) R
slptochn Downhill gradient to the nearest waterbody (degrees) 1.1 (0.0–52.6) R
twi Topographic wetness index; Calculated as TWI= ln(a/tan b): where a is flow accumulation, and b is local

slope gradient
5.9 (−15.8–63.3) R

valldepth Valley depth (m) 7.5 (0.0–89.9) R
vdtochn Vertical distance to the nearest waterbody (m) 4.1 (0.0–115.4) R

Satellite imagery
LS8_band1 Landsat 8 Band 1 surface reflectance, March 2014 (Ultra blue) 356 (−676–15,471) O
LS8_band2 Landsat 8 Band 2 surface reflectance, March 2014 (Blue) 421 (−407–15,769) O
LS8_band3 Landsat 8 Band 3 surface reflectance, March 2014 (Green) 623 (−406–15,843) O
LS8_band4 Landsat 8 Band 4 surface reflectance, March 2014 (Red) 665 (−673–16,000) O
LS8_band5 Landsat 8 Band 5 surface reflectance, March 2014 (Near infrared) 2191 (−114–15,955) O
LS8_band6 Landsat 8 Band 6 surface reflectance, March 2014 (Shortwave infrared 1) 1879 (−74–16,051) S, O
LS8_band7 Landsat 8 Band 7 surface reflectance, March 2014 (Shortwave infrared 2) 1252 (−29–17,082) S, O
ndmi Normalized difference moisture index; (Band 5− Band 6) / (Band 5+Band 6) 0.08 (−1.00–1.00) S, O
ndvi Normalized difference vegetation index; (Band 5− Band 4) / (Band 5+Band 4) 0.52 (−1.00–1.00) S, O
ndwi Normalized difference water index (Band 5− Band 3) / (Band 5+Band 3) −0.54 (−0.99–1.00) O
savi Soil-adjusted vegetation index; (Band 5− Band 4) ∗ (1+ 0.5) / (Band 5+Band 4+0.5) 0.29 (−0.29–0.72) O

Other layers
lu CORINE land cover data adopted in Denmark (Scale 1:100,000) 4 classes O
precipitation Mean annual precipitation in the period 1961–1990 interpolated from point data (mm) 708 (452–964) C
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Fig. 3. The maps of (A) wetlands and (B) soil texture used for modifying the map units of the input maps.

Fig. 4. Overview of the experiments carried out, including input map, implementation of soil-landscape relationships, sampling scheme and tree algorithm. The
figure uses ‘landscape rules’ for the implementation of soil-landscape relationships, although we implemented them by modifying the map units.
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plan and profile curvature (curv_plan, curv_prof).
Covariate importance was very similar for the maps by Jacobsen

(1984) and the CEC (1985). The mean ranked covariate importance was
highly correlated between the experiments using the two input maps
(R=0.96, n=42, p < 0.05). There were no outliers to the correlation
(Fig. 7A). Covariate importance was also similar with and without soil-
landscape relationships, as the mean ranked covariate importance was
highly correlated between the experiments (R=0.96, n=42,
p < 0.05). The map of wetland areas was an outlier, as it was very
important with soil-landscape relationships implemented but of inter-
mediate importance without them (Fig. 7B). Covariate importance was
also similar for per-polygon sampling and area-proportional sampling.
The correlation in the mean ranked covariate importance was also high
between the experiments using the two sampling schemes (R=0.94,
n=42, p < 0.05). The mid-slope position (msp) was an outlier from
the distribution, as its importance ranked 10 places higher on average
with per-polygon sampling than with area-proportional sampling
(Fig. 7C). Lastly, there was a lesser degree of similarity in the covariate
importance of the C5.0 and the Random Forest models. Correlation
between the mean ranked covariate importance in the two model types
was moderate (R=0.65, n=42, p < 0.05). There were no outliers to
the correlation (Fig. 7D).

4. Discussion

4.1. Predictive accuracy

The accuracy of the output maps depended heavily on the input
maps, as the map by Jacobsen (1984) yielded higher accuracies for the
first soil type and the first soil group, while the map by the CEC (1985)
yielded higher accuracies for the first three soil types. Soil-landscape
relationships increased accuracies in nearly all cases, and area-pro-
portional sampling also generally increased the accuracy of the pre-
dictions. On the other hand, the use of Random Forest models generally
decreased the accuracy.

In some experiments, the accuracy of the disaggregated outputs was

lower than the accuracy of the input maps. However, the experiments
that combined soil-landscape relationships and area-proportional sam-
pling all achieved accuracies that were higher than the accuracies of the
input maps.

It is difficult to compare the accuracies obtained in studies using
DSMART, due to the diversity of approaches, sizes of the areas covered
and the numbers of map units, polygons and soil types in the input
maps (Table 5). However, it is interesting to note that the accuracy for
the most probable soil types is in the range 17–23% in other studies,
while in this study it was in the range 12–18% depending on the input
map and the methods. This shows that the input map and the specific
implementation of DSMART has a large effect on the accuracy of the
outputs, even within the same area.

4.1.1. Input maps
The accuracy depended heavily on the input maps. This stresses the

necessity to evaluate the input maps before disaggregation. In some
cases, the disaggregated results had a lower accuracy than the input
maps, which suggests that some input maps are not suitable for dis-
aggregation or require careful consideration.

Both input maps had a coarse map scale, but the map by Jacobsen
(1984) had a higher level of detail than the map by the CEC (1985)
despite its coarser scale. The outputs from the map by Jacobsen (1984)
nearly all had a higher accuracy than the input map. However, many of
the outputs from the map by the CEC (1985) had a lower accuracy than
the input map. This suggests that maps with a high level of detail
(number of soil types, number of polygons, number of map units) are a
better input for disaggregation than maps with a lower level of detail.
Furthermore, the results suggest that the level of detail is more im-
portant than the nominal scale of the input maps. The most likely ad-
vantage of using input maps with a high level of detail is that it allows
DSMART to detect more detail in the relationships between soil types
and covariates.

These results contrast with the findings of Holmes et al. (2015) who
found the lowest accuracies in areas with detailed soil maps. However,
this was largely because Holmes et al. (2015) combined several soil

Fig. 5. Accuracy achieved in the experiments on disaggregating conventional soil maps. The boxes in the first row show the results obtained with the map by
Jacobsen (1984), while the boxes in the second row show the results obtained with the map by the CEC (1985). The three columns of boxes show the accuracy
measured on the first soil type, first three soil types and the first soil group. Triangles show the accuracy achieved with the original map units, while circles show the
accuracy achieved with the map units modified to accommodate soil-landscape relationships. Vertical lines indicate the baseline accuracy of the input maps. Labels
on the y-axes indicate experiments using per-polygon (PP) sampling, area-proportional (AP) sampling, C5.0 and Random Forest (RF) models, respectively.
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maps in these areas, as differences in survey method and intent pre-
vented DSMART from finding relationships between soil types and
covariates. The level of detail in itself was therefore not the cause of the
lower accuracy. We will add that the input maps in our study had a very
low degree of cartographic detail compared to other studies (Table 5).

The advantage of using detailed input maps may therefore be relative,
as an extremely high level of cartographic detail might lower the ac-
curacy of the outputs. For example, an extremely large number of soil
types would decrease the chance of predicting the correct soil type.
Moreover, a highly detailed conventional soil map is likely to be very

Fig. 6. Most probable soil types predicted in the experiment using the map produced by Jacobsen (1984), soil-landscape relationships, per-polygon sampling and
C5.0 decision trees. This experiment had the highest mean rank for the three measures of accuracy. The supplementary materials show the second and third most
probable soil types for the same experiment. The map has an accuracy of 18% for the first soil type, 33% for the first three soil types and 43% for the first soil group.

Table 4
Importance of the covariates across experiments. We sorted the covariates by importance in each experiment and calculated the mean rank across the experiments.

Covariate Mean rank Covariate Mean rank Covariate Mean rank Covariate Mean rank

georeg 1.8 lu 12.6 Bluespot 24.4 LS8_band3 32.7
Landscape 2.8 clay_d 13.1 Slptochn 24.4 asp_cos 33.1
clay_a 4.3 demdetrend 13.3 Dirinsola 26.5 LS8_band2 33.4
Precipitation 4.7 valldepth 14.8 LS8_band1 28.8 LS8_band7 34.1
Geology 5.0 sagawi 16.6 curv_prof 29.0 flowaccu 34.5
Wetland 5.9 gwd_intp 16.9 curv_plan 30.3 LS8_band4 35.4
Elevation 7.3 gwd_model 17.9 LS8_band5 30.9 ndvi 35.4
mrvbf 9.3 msp 21.6 asp_sin 31.3 ndwi 35.5
clay_b 10.2 hdtochn 22.9 LS8_band6 32.3 savi 35.8
clay_c 10.4 vdtochn 23.6 twi 32.4
dc 11.8 slpdeg 24.0 ndmi 32.5
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accurate, if it is the product of an intensive survey, and it will therefore
be difficult to improve the accuracy of the map through disaggregation.

It is also possible that the representation of soil types influenced the
accuracy achieved with the two input maps used in this study. In the
map by Jacobsen (1984), Luvisols were the dominant soil group in
eastern Denmark, while Cambisols were the dominant soil group in the
map by the CEC (1985). The difference is not immediately explicable,
but it may be due to a scarcity of observations, which forced the sur-
veyors to rely on theoretical judgements. Regardless of the cause, it
shows that the surveyors disagreed strongly on this issue.

In addition to the scale and the relative shares of soil types in the
input maps, the two input maps also show different spatial structures
(Fig. 2). The map by Jacobsen (1984) shows a much larger emphasis on
hydrological networks, while the map by the CEC (1985) has a larger
number of map units in the eastern part of the country. The differences

in the accuracies achieved with the two input maps may therefore be a
combination of several factors, including level of detail, shares of soil
types and spatial structures.

The input maps used in this study were coarse and largely based on
expert knowledge rather than observations, as no national-level in-
vestigations on soil types existed at the time (Greve and Madsen, 1999).
These circumstances probably explain the modest accuracies achieved
in this study. Adhikari et al. (2014) mapped the revised FAO-Unesco
soil groups (FAO-Unesco, 1988) in Denmark based on 936 soil profiles
and achieved an accuracy of 60%. In comparison, the disaggregated
results in this study predicted soil groups with an accuracy up to 47%.
This suggests that soil observations are a better input than coarse soil
maps for digital soil mapping, when a sufficient number are available.
However, it also shows that disaggregation is a viable alternative for
producing soil maps in areas with few or no observations. This will, of
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Fig. 7. Comparison of ranked covariate importance in different experiments. A: Mean covariate ranks in the experiments using the map by Jacobsen (1984) and the
CEC (1985), respectively. B: Mean covariate ranks in the experiments with and without soil-landscape relationships, referred to as ‘landscape rules’, implemented. C:
Mean covariate ranks in the experiments using per-polygon (PP) sampling and area-proportional (AP) sampling. D: Mean covariate ranks in the experiments using the
C5.0 or the Random Forest (RF) algorithms. Solid lines marks the 1:1 line. Dotted lines mark the limits for outlier detection, the 1:1 line±3*RMSE of the correlation.

Table 5
Comparison between the sizes of the areas covered, numbers of polygons, map units and soil types in the input maps and the achieved accuracy reported in this and
other studies using DSMART.

Study Area (km2) Map units Polygons Soil types Accuracy (%)

Odgers et al. (2014) 68,000 1,110 3,058 72 23
Holmes et al. (2015) 2,500,000 5,069 127,626 73 20–22
Chaney et al. (2016) – – – – ~17
Vincent et al. (2016) 27,040 341 ~2,000a 320 20–23
This study 43,000 11–14 323–869 18–23 12–18

a Calculated based on numbers reported by the authors.
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course, require particular attention to methods and input data. Some
predictions in this study had lower accuracies than the input maps, and
it is difficult to assess the accuracy of the predictions in areas with a low
number of observations. A thoroughly tested approach is therefore the
best option in these areas.

4.1.2. Soil-landscape relationships
Vincent et al. (2016) stated that the implementation of soil-land-

scape relationships would not necessarily increase the overall accuracy
of the generated map. However, in this study it lead to a clear increase
in accuracy in nearly all cases. Furthermore, while Vincent et al. (2016)
used three geographic datasets (parent material, Topographic Position
Index, and a waterlogging index) for landscape rules, the present study
used only two datasets (wetlands and soil texture). This shows that soil-
landscape relationships can improve the results even with relatively few
but relevant geographic datasets.

4.1.3. Sampling scheme
Area-proportional sampling increased both the accuracy of the

output maps and their agreement with the input maps. This confirms
the expectations of Vincent et al. (2016). The cause of the improvement
is clearly visible from areas and numbers of polygons for the map units.
For example, in the map by the CEC (1985), Map Unit 2 has an area of
7,391 km2 but consists of only two polygons, while Map Unit 5 has an
area of 9,056 km2 but consists of 106 polygons (Table 2). Therefore,
with per-polygon sampling, DSMART would generate a dis-
proportionately large number of virtual samples for Map Unit 5 relative
to its area and vice-versa for Map Unit 2. With per-polygon sampling,
the output maps contained very large areas of Eutric Cambisols, the

dominant soil type of Map Unit 5, and nearly no Humic Podzols, the
dominant soil type of Map Unit 2 (Fig. 8). With area-proportional
sampling, the extent of these soil types corresponded more closely with
the areas of the map units. In effect, the implementation of area-pro-
portional sampling ensured that the output maps accorded more closely
with the soil surveyors' intentions.

The experiment with the highest accuracy for the first soil type used
per-polygon sampling. However, this finding goes against a general
trend, as area-proportional sampling resulted in a higher accuracy than
per-polygon sampling in most other cases. Furthermore, the difference
between per-polygon sampling and area-proportional sampling was
only 0.3% in this particular case.

4.1.4. Resampling procedure and decision tree models
The outputs generated with Random Forest models generally had a

lower accuracy. The experiments using Random Forest had twice as
many decision trees as the experiments using C5.0 (100 versus 50).
However, in the experiments using C5.0, the algorithm generated
10,000 new virtual samples in each of the 50 repetitions. On the other
hand, in the experiments using Random Forest, the algorithm generated
100 decision trees from bootstrap samples of the same 10,000 virtual
samples. The experiments using C5.0 therefore sampled the input maps
and the covariate layers more thoroughly, which would explain the
higher accuracy achieved in the experiments using C5.0.

However, for the first three soil types, the difference in accuracy
between the two decision tree methods was only 0.1% on average.
Furthermore, an experiment using Random Forest achieved the highest
accuracy for the first three soil types. Random Forest may therefore
predict rare soil types more effectively, which may compensate for the

Fig. 8. Most probable soil types predicted by DSMART with per-polygon sampling and area-proportional sampling. In both cases the input was the map by the CEC
(1985) without landscape rules in use, and the predictive models were C5.0 decision trees.
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less intensive sampling. Per default, DSMART generates a map of soil
types in every repetition. The algorithm then calculates the prob-
abilities for each soil type by counting the number of times that it ap-
pears in a grid cell. On the other hand, in the experiments using
Random Forest, the algorithm calculated soil type probabilities for each
decision tree as the share of each soil type in the leaf nodes in the tree.
It then averaged the probabilities across the decision trees. This pro-
cedure, also known as “probabilistic bagging”, is therefore less likely to
outvote rare soil types. The approach has increased the accuracy of
decision tree predictions in other cases (Bauer and Kohavi, 1999).

The use of Random Forest with a single sampling was also more
computationally efficient than the original resampling procedure. On
average, the processing time for the experiments using Random Forest
was 16 times shorter than for the experiments using C5.0 (data not
shown). The shorter processing time makes it feasible to increase the
accuracy of the Random Forest approach by increasing the number of
virtual samples. It may be possible to achieve a higher accuracy with
Random Forest than with the default resampling procedure with a
sufficiently high number of virtual samples.

4.1.5. Measures of accuracy
The results showed that the optimal approach depended on the

specific measure of accuracy. The map by Jacobsen (1984) provided the
most accurate results for the first soil type (18%) and the first soil group
(47%), while the map by the CEC (1985) provided more accurate re-
sults for the first three soil types (36%). In fact, three different ex-
periments achieved the highest accuracy for the first soil type, the first
three soil types and the first soil group, respectively. Therefore, there is
no universally optimal output map, as the choice depends entirely on
the measure of accuracy.

Researchers should therefore choose a measure of accuracy that
reflects the intended use of the outputs. Consequently, the choice of the
optimal map will rely on the end users' needs. For example, if the end
users request a map of the most probable soil type, accuracy should
only include the first soil type. However, for some purposes, the ac-
curacies of all soil types are relevant. For example, Odgers et al. (2015)
used a soil type probability map generated with DSMART to predict soil
properties by means of weighted averages. For similar uses, researchers
should calculate accuracy in a way that considers class probabilities.
For other uses, the accuracy could take into account taxonomic differ-
ences between soil types in an approach similar to Rossiter et al. (2017).

4.2. Covariate importance

The covariate importance was very similar for the two input maps.
This suggests that the surveyors worked within similar frameworks. It is
not surprising, as they produced the two maps only a year apart in the
same country. It is likely that the similarity reflects a consensus on the
factors that affect soil formation in Danish soil science at the time.

In both maps, the factors soil (S), relief (R) and parent material (P)
had a large importance. Climate (C) was also important, as precipitation
had a high importance for both maps, while direct insolation had in-
termediate importance. The explanatory text for the map by Jacobsen
(1984) also focuses on these four factors.

The high importance of soil properties (S) is logical, as they are the
basis for classifying soils. For example, Luvisols and Acrisols have argic
B horizons, while Arenosols have a sandy texture (FAO-Unesco, 1974).
In Denmark, the parent material (P) has a large impact on the soil
texture, which explains some of its high importance (Madsen et al.,
1992; Adhikari et al., 2013). Additionally, the parent material defines
some soil types, such as Histosols and Fluvisols.

The most important covariates related to the relief were variables
that describe differences in elevation (elevation, mrvbf, demdetrend,
valldepth). The surveyors apparently aimed to separate valleys from
uplands and hills. In fact, the explanatory text for the map by Jacobsen
(1984) describes Map Unit 5 as “valley soils” and Map Unit 9 as “hilly,

sandy soils”.
Climate (C) influences the distribution of some soil types in

Denmark, as the western parts receive larger amounts of precipitation
(Wang, 2013). The larger amounts of precipitation increases the rates of
leaching, but it is difficult to isolate their effect, as the geology of
western Denmark also differs from the eastern parts. Sandy glacial
outwash plains and Saalian moraines dominate the western parts, while
loamy Weichselian moraines are common in the eastern parts of the
country (Jacobsen, 1984; Madsen et al., 1992).

Unlike the factors S, C, R and P, covariates relating to organisms (O)
generally had a low importance. Land use, the most important covariate
relating to organisms, had an intermediate importance. The reason for
their low importance may be that the scale of the input maps cannot
contain the detailed patterns in the vegetation. This circumstance may
also explain the low importance of some of the topographic covariates,
such as aspect, curvature, flow accumulation and the topographic
wetness index. Some of these covariates have large variations within a
short range, which the surveyors could not include due to the coarse
scale of the maps. This is a clear disadvantage of using coarse scale soil
maps for disaggregation.

It is also possible that the surveyors omitted vegetation as a con-
scious decision. Denmark is mostly agricultural, and the land use may
have little correlation with soil types. Furthermore, the surveyors may
have aimed to describe the soil in its “natural state”. The two maps did
not include Phaeozems, despite their high frequency in the observa-
tions. As stated earlier, the most likely reason for this is that they do not
form under natural conditions in Denmark (Madsen and Jensen, 1996).

The horizontal distance to waterbodies, the only covariate relating
to spatial position (N) had an intermediate importance. Other spatial
trends may have played a role in the making of the maps, but we could
not assess them, as we did not include any other spatial covariates. In
fact, Holmes et al. (2015) was the only study using DSMART to include
a purely spatial coordinate in the form of the distance to coastline.
Alternatively, the x- and y-coordinates could be used as covariates to
include spatial relationships.

The use of soil-landscape relationships increased the importance of
the map of wetland areas, which we expected because we used it to
modify the map units of the input maps. However, soil-landscape re-
lationships did not increase the importance of the maps of the clay
content to the same degree. This is possibly because the clay content
was also important without soil-landscape relationships implemented.

5. Conclusions

In this study, we aimed to test the sensitivity of DSMART towards
the conventional soil maps used as input data. We tested if soil-land-
scape relationships and area-proportional sampling improved the ac-
curacy of the generated maps. Lastly, we tested the effect of replacing
the default resampling procedure and C5.0 models with Random Forest
models.

The accuracy of the outputs obtained with DSMART depend very
strongly on the input maps. In this study, most of the dependence was
due to differences in the shares of the soil types in the maps and the
different levels of detail. The results suggest that detailed maps are most
useful, even when they have a nominally coarser scale.

The inclusion of soil-landscape relationships and area-proportional
sampling generally increased the accuracy of the results. These changes
to DSMART are therefore a clear recommendation for future studies.
This is highly relevant, as in some experiments, the accuracy of the
disaggregated maps was lower than the accuracy of the input maps.
However, the combination of soil-landscape relationships and area-
proportional sampling resulted in output maps with higher accuracies
than the input maps.

Changing the resampling procedure and decision tree models also
affected the predictive accuracy of the outputs. Random Forest gen-
erally decreased the accuracy of the output maps. However, it was far
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more computationally efficient than the original procedure, so it may
be possible to compensate for the lower accuracy by increasing the
number of virtual samples. Potentially, other model types than decision
trees may be useful, and testing the effects of model types should be an
object of further study.

Software

The latest version of DSMART is available as an R package at
https://bitbucket.org/brendo1001/dsmart/overview. This version im-
plements area-proportional sampling and allows the user to specify the
model type.
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