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A B S T R A C T

We introduce a software tool for optimal sampling design in the context of farm-scale soil carbon auditing, where
the amount of sequestered soil carbon will be estimated from a random sample. Existing tools do not use
available ancillary information, or do not have the functionality needed for farm-scale soil carbon auditing.

Using a grid of predicted carbon content with associated uncertainty, the software optimises a stratified
random sampling design, such that the profit is maximised on the basis of sequestered carbon price, sampling
costs, and a trading parameter that balances farmer's and buyer's risks due to uncertainty of the estimated
amount of sequestered carbon.

As the algorithm is computationally intensive, the package is written in Julia for speed. From a case study we
conclude that our software is an effective tool for farm-scale soil carbon auditing, and that it outperforms the
existing tools in terms of efficiency and functionality.

1. Introduction

This paper introduces software package ospats+ to support farm-
scale soil carbon auditing. The statistical methodology has been dis-
cussed in detail by de Gruijter et al. (2016); here we focus on software
implementation. Using a grid of predicted carbon content with asso-
ciated uncertainty, ospats+ optimises a stratified random sampling
design, i.e. number of strata, stratification of the grid, total sample size
and sample sizes within strata.

Stratification of the grid is done by the method introduced by de
Gruijter et al. (2015). This method starts with a random partition of the
grid points into a given number of subsets (strata), and proceeds by
iterative re-allocation of the grid points on the basis of pairwise gen-
eralised distances between the grid points.

The optimisation criterion in ospats+ is the expected financial
profit for the farmer, who is assumed to have a contract for soil carbon
sequestration. The expected profit is maximised on the basis of the
sequestered carbon price, the sampling costs, and a trading parameter γ
that balances farmer's and buyer's risks due to uncertainty of the esti-
mated amount of sequestered carbon.

This Value Of Information (VOI) approach is feasible in the context
of soil carbon auditing, because the sampling costs can be modelled as a
function of the sample size, and the value of the sample data can be

modelled as a function of the precision of the estimate to be inferred
from these data. This thus renders a software tool that is specialised in
the sense that it serves only to support soil carbon auditing. However, it
is also more rationalised than the commonly used statistical tools, in the
sense that it directly optimises for the final goal of maximising profits
from soil carbon sequestration efforts.

Another package that uses the same iterative re-allocation method
for stratification is package ospats (github.com//jjdegruijter/ospats).
The main difference between ospats+ and ospats is the optimisation
criterion. While ospats+maximises the expected profit to the farmer
from carbon sequestration, ospats minimises the expected sampling
error of the estimated mean or total of any target variable for which a
grid of predictions with associated error is available. Ospats is therefore
intended for more general use than ospats+, but it optimises only the
stratification for a given number of strata, not the number of strata itself
nor the total sample size.

For the case study we used data from previous sampling campaigns.
However, prior data collection on-site is becoming less necessary for
optimising sampling designs as carbon mapping with associated un-
certainty, at sufficient resolution, is becoming increasingly available.
Part of the drive of this increased availability/suitability of carbon
prediction maps is based on increasing availability of both covariates
(e.g. remote sensing based) and field measurements based on proximal
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sensing. Lokers et al. (2016) discuss developments, issues and oppor-
tunities of Big Data technologies in agro-environmental research.

2. Other software tools for stratification

With few exceptions, the existing stratification methods are general
in the sense that they were not devised for spatial applications. They do
not take into account that the population elements have geographical
coordinates and that sampling frames are typically maps.

Stratification depends much on what prior knowledge is available
about the area. For clarity we consider first two extreme situations: (I) a
prediction of target variable z is available at each grid point, and (II)
there is no prior information on z at all.

In the first situation (I) there would be no reason to sample if the
predictions were errorless, as the population mean would be equal to
the mean of the predictions. In practice, however, the predictions have
errors that cannot be neglected, hence the need for sampling and
stratification. In that case it is usual in a non-spatial context to apply the
well-known cum-root-f method (Dalenius and Hodges, 1959) for stra-
tification or any of the recently developed varieties thereof, see e.g.
Baillargeon and Rivest (2009), Ballin and Barcaroli (2013), or Kozak
(2004), and Horgan (2010) for a recent review. Baillargeon and Rivest
(2011) provided the R-package stratification. Such methods can also be
applied in a spatial context. A potential problem is that these methods
assume implicitly that the predictions have only negligible errors, or at
least do not have a relevant effect on the optimality of the resulting
stratification. However, this assumption is generally not realistic in
natural resource applications.

In situation II (no prior information at all) it may still be wise to
stratify the area, considering that spatial phenomena are often posi-
tively auto-correlated: z-values at points that are near to each other
tend to differ less than at points farther apart. Based on this idea Brus
et al. (2003) proposed dividing of the area into geographically compact
strata of equal area. To this end they applied the clustering algorithm k-
means (conditioned to equal size clustering) to the spatial coordinates
of the grid points on a fine grid. Walvoort et al. (2010) provided the R-
package spcosa.

In order to deal with situations between the two extremes I and II,
ospats+ allows for a compromise, i.e. stratification based on predic-
tions as well as on geographical locations, while accounting for pre-
diction error. Ospats+ therefore combines location data, model pre-
dictions and error variances of the predictions into a single measure of
(generalised) distance between grid points. This is done by writing the
spatial variance of C stock within strata as the mean of the squared
differences between the C stocks at pairs of grid points. This is essential,
because then the generalised distance between two grid points can be
defined as the model-expectation of the squared difference between the
two predictions. This implies the introduction of covariances between
prediction errors, which will be a function of the geographical distance
between the grid points.

The following types of strata patterns resulting from ospats+ are to
be expected: geographically non-contiguous in situation I, typically
with many patches, contiguous and even geographically compact in
situation II, and non-contiguous in intermediate situations, but with
fewer and more compact patches than in situation I.

3. Method of ospats+

A broad view on data acquisition and analysis for soil carbon au-
diting is schematically presented in Table 1. Package ospats+ covers
step 2 of the scheme: design optimisation for the first sampling round,
also referred to as the ‘baseline’.

The actual optimisation takes place in step 2c and 2d, which com-
bines stratification by the iterative re-allocation method (see below),
the VOI approach, and Neyman allocation of optimal sample sizes to the
strata.

The process of optimisation is further detailed in Table 2. In short,
the optimal design is found by subsequently optimising the stratifica-
tion, total sample size and Neyman allocation (explained below) for
each of the number of strata (H) in a pre-chosen range, [Hmin, Hmax].
The optimal H is then the largest one, subject to the condition that the
sample sizes allocated across its strata are each at least equal to a pre-
chosen minimum nhmin. Note that whereas de Gruijter et al. (2016)
calculated the Neyman allocations for each H in the entire range [Hmin,
Hmax], ospats+ needs only to start with Hmax and then to lower H step-
by-step with 1, until the Neyman allocation fullfils the chosen condi-
tion.

The method works from an input file with four values for each of N
grid points: X-coordinate x, Y-coordinate y, predicted SOC content ∼C
and error variance of the predicted mean s2.

The stratification for a given H, assuming Neyman allocation, is
optimised by the iterative re-allocation method described by de Gruijter
et al. (2015). This method starts with a random stratification and im-
proves it by re-allocating the grid points to different strata on the basis
of their pair-wise generalised distances (see below). This process is
continued as long as it diminishes the objective function O, defined as:
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with generalised distance (see Eq. (15) in [7]):

Table 1
Schematic overview of the auditing procedure.

Step Action

1 PREPARATION:
1a Delineate the area.
1b Superimpose a grid with predictions and error variances.
1c Determine cost per grid point and carbon offset price.
2 OPTIMIZE DESIGN FOR THE FIRST SAMPLING ROUND:
2a Choose allowed minimum sample size within strata, nhmin (e.g. 3).
2b Choose a proper range of strata numbers, [Hmin,Hmax].
2c For each number of strata in the range, calculate the stratification, total

sample size (Eq. (3)) and sample sizes within strata (Eq. (4)).
2d Select the design with the largest strata number that still fulfils the

condition of step 2a.
2e Draw a stratified random sample according to the design from step 2d.
3 EXECUTE THE FIRST SAMPLING ROUND:
3a Collect samples at the locations from step 2e, and take laboratory

measurements to determine the carbon stock for each location.
3b Estimate the total carbon stock and its variance.
4 OPTIMIZE DESIGN FOR THE SECOND SAMPLING ROUND:
4a Update the predictions and error variances using the sample data from the

first round.
4b Repeat step 2.
5 EXECUTE THE SECOND SAMPLING ROUND: repeat step 3.
6 FINISH: calculate the confidence interval for the total amount of

sequestered carbon.

Table 2
Schematic overview of the optimisation algorithm.

Step Action

2c Design optimisation for maximum number of strata Hmax:
2c-1 Calculate the optimal stratification with H=Hmax, using the iterative re-

allocation method.
2c-2 Calculate the optimal sample size, using Eq. (3).
2c-3 Calculate the optimal (Neyman) allocation of sample sizes to the strata,

using Eq. (4).
2c-4 Determine the smallest sample size within a stratum: nhl.
2c-5 If nhl < nhmin, then lower H by 1.
2d Select the optimal number of strata:
2d-1 Repeat steps 2c-1 through 2c-5 until nhl≥ nhmin.
2d-2 Keep the last design resulting from step 2d-1 as the optimal design.
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where R2 denotes the squared correlation coefficient resulting from a
regression analysis underlying the SOC prediction, and the range is the
parameter of an exponential co-variance function fitted to the predic-
tion residuals.

To save computer time, package ospats+ calculates the N×N ma-
trix of pairwise generalised distances beforehand, prior to the iterative
re-allocation. In case of large grids this would be impractical, so the
optimisation process is then split into two phases. In the first phase, a
stratification is calculated only for a sample of the grid points, then the
remaining grid points are allocated to the sample strata whilst mini-
mising O.

As shown by de Gruijter et al. (2016), a stratification that results
from this process is optimal for any total sample size. Therefore the
total sample size which maximises the expected profit for the farmer
can be derived as (see Eq. (21) in de Gruijter et al. (2016)):
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where.

CP: carbon offset price, in currency unit (e.g. Aus $) per Mg.
A: surface area of the farm (ha).
Zγ: quantile of the standard normal distribution (1.645 for the 95%
quantile).

=O O N/ : value of the optimisation criterion for the calculated
stratification.
f: predicted average cost of obtaining data per grid point, in cur-
rency unit.

As discussed in de Gruijter et al. (2016) the data value of the sample
data that is going to be collected depends on the precision of the esti-
mated amount of sequestration. The precision of an estimate is usually
calculated from the sample data. In our case, however, we can predict
the precision of the estimate and indeed the data value beforehand,
when we use the SOC predictions and their error variances. To that end
we define the tradeable amount of sequestration tp such that there is a
sufficiently large probability γ (say 95%) that the future sequestration
will be equal to or much greater than tp, thus minimising chances of a
false positive sequestration. This is formalised by taking for tp the lower
boundary of the one-sided prediction interval around the predicted
amount of sequestration. This boundary depends linearly on Zγ. If the
average sequestration were selected as tp, there would be no value in
increasing the certainty of the sequestration estimate.

Given the stratification and the total sample size n′, optimal allo-
cation of sample sizes to the strata, in the sense of minimal sampling
variance of the mean or total, can be realised by so-called Neyman al-
location (Dalenius and Hodges, 1959; Cochran, 1977). The optimal
sample size for stratum h is then given by:
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where.

Nh is the size (number of grid points) of stratum h,
Sh is the standard deviation of the SOC predictions in stratum h,
which is predicted by
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The total sample size and the sample sizes per stratum are rounded
off to the nearest integer. To avoid possible inconsistency between both,

the total sample size is adjusted to equal the sum of the sample sizes per
stratum.

4. Architecture of package ospats+

The package consists of four script files: “main”, “readdata”, “os-
pats” and “ospall”. Script “main” first serves to fill in all process para-
meters by the user (see below), it then invokes the functions of the other
three scripts. Script “readdata” reads the datafile mentioned in “main”.
Scripts “ospats” and “ospall” produce both an optimal design using the
datafile and the process parameters. The difference is that “ospats”
optimises by iterative re-allocation of all N grid points, while “ospall”
re-allocates only a sample of the grid points, to avoid working with an
N×Nmatrix of generalised distances in case of very large grids. After a
sample of grid points has been stratified, “ospall” continues by (once
and definitively) allocating the remaining grid points to the sample
strata, using the same optimisation criterion described above.

The process parameters to be set by the user in “main” are:

Hmin: smallest acceptable number of strata.
Hmax: largest number of strata still assumed to be possibly optimal.
nhminim: smallest sample size allowed within the strata.
CP: carbon offset price, in currency unit (e.g. Aus $) per Mg.
f: predicted average cost of obtaining data per grid point, in cur-
rency unit.
Area: surface area of the farm (ha).
Zγ: quantile of the standard normal distribution (1.645 for the 95%
quantile).
R2: squared multiple correlation coefficient from the regression
model used to generate the predictions.
range: estimated parameter of the exponential auto-covariance of
the prediction errors.
maxcycle: maximum number of iteration cycles allowed for iterative
re-allocation. This is intended as a safe-guard against unforeseen
endless looping. In our experiments the number of iteration cycles
needed to fully complete the re-allocation process has not yet ex-
ceeded 100. The setting maxcycle=0 forces the system to skip the
iterative re-allocation, and to proceed with calculating statistics of
the random initial stratification.
in: interval used to draw a systematic sample from the grid. if in=1
then function “ospats” will be called, which optimises a stratifica-
tion for the entire grid. If in > 1 then function “ospall” will be
called, which optimises a stratification for a sample from the grid,
i.e. after coarse-gridding. The size of the sample is determined by in.
For instance, if in=10 then every 10th point is included in the
sample, starting with a randomly chosen first point. In principle, the
sample size should be taken as large as computer capacity allows for
calculating the N×N matrix of generalised distances. Without re-
course to super-computing, that will be in the order of some thou-
sands for a computing size of one 2.5 GHz IntelCore i5 processor and
4 RAM.
seed: seed for the random number generator.

See Fig. 1 for a broad overview of the optimisation process as im-
plemented in ospats+ .

The following general comments on alternative solutions in the al-
gorithm are to be made.

1) The random starting solution: The process of iterative re-allocations
starts from a random initial stratification, i.e. one where the strata
consist of a random collection of grid points. Initial solutions that
are closer to the eventual optimum than a random draw are possible,
e.g. by the cum-root-f rule (Dalenius and Hodges, 1959). We decided
not to implement a closer starting solution, because preliminary
experiments (not reported here) showed that the computation time
needed to generate a closer start can easily outweigh any saving
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from fewer iteration cycles. This is primarily due to the first few
iteration cycles covering the majority of the distance between a
random draw and convergence to the optimal solution.

2) The option of skipping unchanged pairs of strata: If any two strata
are not changed during a cycle, then it is known beforehand that in
the next cycle there can be no improving transfers of points between
these two strata, hence it is an unnecessary computation step. This
could in principle be skipped to save computation time. However,
preliminary experiments (not reported here) show that the search
functions required to enable such a skipping device is more com-
putationally expensive than the possible savings. Thus the ‘in-
efficiency’ remains conceptional when employing conditional func-
tions (e.g. if-else constructions) within loops.

3) The option of swapping: If the iteration process get trapped in a
local minimum, then it could be possible to escape from it via a
swap, i.e. a simultaneous transfer of two grid points to and from
their current strata. An inbuilt swapping device would therefore
reduce the risk of a local minimum. However, preliminary experi-
ments (not reported here) show that only very few improving swaps
are found after a complete run using sequential transfers. These
swaps had a negligible effect on O. In addition, the swapping device
proved to be relatively time consuming. Therefore our provisional
conclusion is that multiple runs are more efficient than swapping.

5. Use of package ospats+

We selected Julia as programming language primarily due its speed.
R was not a suitable candidate as it tends to be slower when used for
large scale optimisation problems. Initially Matlab was used by de
Gruijter et al. (2015) and de Gruijter et al. (2016). However, speed
comparisons in the literature suggest that Julia is usually faster than
Matlab, and Julia is a free and open-source language.

The supplied data file is assumed to have N rows, i.e. one for each
grid point and no headers. The values are comma-separated and pre-
sented in the order X-coordinate, Y-coordinate, SOC prediction and
error variance of the predicted mean. The file may also include a
column with grid point identifications. In that case the user must spe-
cify the order of the columns in script “readdata”. If the data file is
incomplete, i.e. not all columns have the same length, Julia issues a
LoadError.

The output from ospats+ consists of two files:
“Stratification”: a file with x-coordinate, y-coordinate and stratum

number for the N grid points. The present version of ospats+ does not
provide a map of the stratification.

“Sample”: the stratified random sample is written in this file with
five columns, for sample number, stratum number, grid point number,
x-coordinate and y-coordinate.

ospats+ has been developed with Julia Version 0.6.2. Julia can be
downloaded from https://julialang.org/downloads/. ospats+ can be
downloaded from https://github.com/jjdegruijter/ospats-plus, together
with a user's manual and replication material. It is ready to be used,
assuming that Julia has been installed. No other package dependencies
are needed, except for the Julia packages CSV and DataFrames (simply
do Julia> Pkg.add(“CSV”) and Julia> Pkg.add(“DataFrames”).

The use of ospats+ need not be limited to a farm as a whole. It can
also be applied to different parts of a farm, such as management units.
Another option is to use it for a group of farms, e.g. a co-operation of
carbon farmers. In a research setting ospats+ can be employed as a tool
for what-if studies, to investigate the effects of, for instance, changes in
carbon offset price, costs of data collection and accuracy of SOC pre-
diction.

It should be noted that ospats+ has several limitations. Firstly, the
present version supports only the first sampling round in SOC mon-
itoring, i.e. step 2 in Table 1. A future extension may well include

Input datafile
N x 4 table Ns x Ns generalised

distance matrix

Random initial 
stratification

Sum of 
generalised

distances in strata

Iterative 
reallocation

Stratification Ns

Optimal total 
sample size

Sample size 
test: nl < 2

Final optimised
design

Optimal 
stratification

Stratified simple 
random sample

H loop Hmax to Hmin

YN

Optimal sample 
sizes in strata

Coarse 
gridding?

N x N generalised
distance matrix

Stratification N

Remaining 
allocation  
(N – Ns)

Stratification N

N

Reduce H by 1

Y

Fig. 1. Overview of the optimisation process in ospats+ .
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optimal design for the second round. The methodology has been
worked out by [7], and coding can largely follow the same lines as in
the present version.

Secondly, ospats+ optimises a sampling design for a single target
variable only: soil organic carbon. The resulting design, especially the
stratification, may not be optimal for other soil variables in general.
However, the design could be reasonably efficient for other variables as
well, dependant on the degree in which they are correlated with SOC.
Regardless of efficiency, the unbiasedness of the statistics estimated
from the sample data like means, totals and fractions, as well as stan-
dard errors and confidence intervals, remains valid for any variables
measured using these designs.

Thirdly, but less importantly, iterative re-allocation may get trapped
in a local minimum. In other words it does not warrant a global op-
timum. This is why package ospats has the option of multiple runs,
retaining the best result. However, in our experience so far, differences
between the results from multiple runs appeared to be practically ir-
relevant, if at all existent. We assume that this is a general phenomenon
due to the fact that the large number of grid points usually available
implies that there are very many possible transfers of grid points be-
tween the strata during the iteration. The option of multiple runs was
therefore not included in ospats+ .

6. Case study

For the present case study we applied ospats+ to soil carbon data
from’Nowley farm’, the same farm as in the case study by [7]. It covers
approximately 2300 ha and is situated in the highly agriculturally
productive Liverpool Plains region in north west NSW, Australia. It is
run as a mixed farming enterprise centred around cropping of wheat,
barley and canola in winter, sorghum and sunflower in summer, and a
cattle herd of breeders, replacement heifers and bulls. Nowley has a
combination of fertile basaltic soils together with more challenging soil
types that are poorly drained, with considerably high amounts of sub-
soil sodium.

Soil point observations of total soil carbon concentration were col-
lected over two separate soil sampling campaigns during 2014 and
2015 from across Nowley farm. The sampling for each campaign was
based on stratified random sampling, where at each site a 7.5 cm depth
core of soil (0–7.5 cm and with known volume) was collected. A total of
130 samples was collected from these two sampling campaigns.

Soil carbon stocks (CS, t ha−1) to 7.5 cm were calculated from
measured carbon concentrations, bulk densities and gravel contents.
The mean carbon stock of these samples was 16.06 t ha−1, while the
minimum and maximum was 6.03 and 43.20 t ha−1 respectively.

Digital soil mapping was used to create a carbon stock map for
Nowley using the point observations of carbon stocks and a number of
environmental variables derived principally from a digital elevation
model, air-borne gamma radiometric data and associated derivatives
from each. The map was made using stepwise multiple linear regression
which lead to a model containing parameters for 4 variables: Elevation
(E), Topographic wetness index (TW), gamma radiometric potassium
(GK), and Wilford's weathering index (WI). The model took the form:

= + × − × − × − ×CC E TW GK WI5.02 0.07 0.83 1.05 0.81 (6)

Model residuals showed a weak spatial autocorrelation. Fitting an
exponential variogram with zero nugget (the default in ospats+), gave
an estimated range of 582m. We used Leave-one-out cross validation to
evaluate the goodness of fit of the model. Here we estimated the
RMSE=5.5 and R2 = 0.36. The prediction variance of the model was
also estimated in order to quantify the uncertainty about the map
predictions of soil carbon stocks, see Fig. 2. Together, these maps were
created using a 10m×10m grid cell resolution, as this was the re-
solution of the environmental covariates used. However, subsequent to
this modelling we coarse-gridded the maps to 30m×30m grids to
avoid undue computational load for this example. This resulted in

26,079 grid points.
We ran ospats+ on the data described above, with process para-

meters given in Table 3.

7. Results

It turned out that in the circumstances of the case study the optimal
number of strata is 5, the optimal total sample size is 58, and the op-
timal sample sizes within the strata are 8, 12, 21, 4 and 13. A map of the
optimised stratification and the sample locations is presented in Fig. 3.
The spatial pattern of the strata on this map resembles closely the
pattern of the predictions in Fig. 2, while it is hardly influenced by the
pattern of the prediction errors. This may be due to the fact that the
prediction errors do not vary much, except for a few hotspots in the
west corner of the area.

Fig. 3 shows that several selected sampling locations occur near the
boundary between two strata. One may ask what implications this has
for sampling in these transition zones. Because each selected sampling
location is allocated to only one stratum, there could only be a problem
of mis-allocation if location errors in the field are not negligible com-
pared with the size of the grid cells. A sample could then be taken er-
roneously from a different grid cell than the intended one. If this hap-
pens in transition zones, then an actually sampled cell and an intended
cell may belong to different strata. If so, the sample data assigned to a
given stratum are not all collected from that stratum. This will generally
increase its spatial variance as estimated from the data, which makes
the sampling design less efficient than predicted. We expect that this
will only have a small negative effect on the efficiency, as long as the
location errors are small, and the spatial gradients of SOC in the tran-
sition zones are not steep.

The optimised number of strata (5) may seem low, but it is in ac-
cordance with the general observation in statistics that the additional
gain in efficiency by increasing H, soon levels of beyond H≈ 7. Also,
requiring a minimum sample size within the strata will generally lead to
less strata, given the optimised total sample size and Neyman allocation
of samples sizes to the strata.

In Section 2 we compared the functionality of ospats+with the
methods k-means and cum-root-f. In addition we also computed the
sample sizes that would be needed if these methods were applied to
data from Nowley farm. In this case we used data from a similar but
coarser grid (4382 grid points). The same parameter settings as in the
main application were used in Eq. (3) to calculate the financially op-
timised sample sizes for the methods: 62 for ospats+, 63 for cum-root-f,
96 for k-means, and 133 in case of no stratification, i.e. Simple Random
Sampling.

8. Conclusions

When using ospats+ one should realise that the following assump-
tions underly the methodology as implemented.

1) The second round sampling is independent from the first round

Revisiting the sampling sites from the first round again in the
second round would usually lead to a higher precision of the estimated
change. However, to avoid possible fraudulent practices we adopted
full independence between both rounds. Additionally, differing sample
points each time allows a more complete picture of the spatial variation
of SOC to emerge.

2) The variable cost of collecting the data is linearly related to the
number of sample points

The present version of ospats+ uses a linear cost function. If that
does not predict the real costs well enough, then a non-linear function
could replace the linear one. In that case Eq. (3) should be adapted, or
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replaced by a discrete optimisation algorithm to determine the optimal
sample size..

3) The variances of the prediction errors are correctly quantified

Over-estimated and under-estimated variances of the prediction
errors will expectedly lead to a less efficient sampling design. The same
applies to over- and under-estimation of the auto-covariance range and
R2. However, regardless of efficiency, unbiasedness remains warranted
for statistics estimated from the sample data like means, totals and
fractions, as well as standard errors and confidence intervals.

4) Measurement errors in determining SOC stocks of samples are
negligible compared to prediction errors

If measurement errors are not negligible, such as with proximal
sensing of SOC stocks, then the sample size should be increased to
achieve the same data value. This is not accounted for in the present
version of ospats+ .

In the case of Nowley farm the difference in performance between
ospats+ and cum-root-f was negligible, however that may not be true in
cases with a larger variability in prediction errors. The stratification by
ospats+was much more efficient than that by k-means, requiring 30%
less samples, albeit that the latter had still an efficiency of 139% re-
lative to Simple Random Sampling.

Even when the advantage of ospats+ over cum-root-f is not in better
stratification, the extra functionality from the VOI approach, i.e. fi-
nancial optimisation of the entire design (including the sample size and
the number of strata), makes it preferable.

We conclude that our software is an effective tool for farm-scale soil
carbon auditing, and that it outperforms the existing tools in terms of
efficiency and functionality.

Fig. 2. Nowley farm: soil carbon prediction and prediction variance.

Table 3
Process parameters used to run ospats+ on the Nowley data set.

Parameter Value Parameter Value

Hmin 3 Hmax 7
nhminim 3 CP 10 Aus$
f 120 Aus$ Area 2336 ha
Zγ 1.645 R2 0.36
range 582 m maxcycle 150
in 2 seed 1234

Fig. 3. Ospats+ stratification and stratified sample based on data in Fig. 2.
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