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A B S T R A C T

Infrared spectroscopy has been widely adopted by various agricultural research. The typical spectra variables
contain thousands of wavelengths. These large number of spectra variables often contribute to collinearity, and
redundancies rather than relevant information. Variable selection of the predictors is an important step to create
a robust calibration model from these spectra data. This paper presents an algorithm for spectra variable se-
lection based on a combination of informative vectors and an ordered predictor selection (OPS) approach with
an exponentially decreasing function (EDF) selection. Informative vectors are features derived from statistical
principles that can be used to describe the relationship between the dependent variables and the predictors
(spectra). The informative vectors analysed include regression coefficient vector (b), variable influence on
projection (V), residual vector (S), net analyte signal vector (Na), linear correlation vector (COR), biweight mid-
correlation vector (BIC), mutual information based on adjacency matrix (AMI), covariance procedures matrix
(COV). These eight informative vectors can be joined in pairs and become 22 combination vectors. This approach
was tested with near-infrared soil spectra for predicting the properties of pH, clay and sand content, cation
exchange capacity (CEC), and total carbon content. This example used the Cubist regression tree and partial least
squares regression (PLSR) models for calibration. By utilizing the subset of the spectra (retaining those that are
significant based on the absolute values of the informative vectors), the regression models were still able to
enhance the prediction capability. Overall, the PLSR model performed better than the Cubist model. The in-
formative vector b (and its combinations) and S (and its combinations) were found to be the ones that provide
the most accurate predictions for this dataset. Although the performance of the subset model does not perform
better than the full spectra model, the number of wavelengths variable used in the model is significantly reduced
to, on average, 25%.

1. Introduction

Infrared spectroscopy has been widely adopted for characterizing
materials in various fields. Near Infrared (NIR) has been utilized to
detect salt concentration in wastewater (Inagaki et al., 2010) and heavy
metals contaminations in soil (Kemper and Sommer, 2002). In the food
industries, NIR spectroscopy has been used to detect the quality of fruit
(Kurz et al., 2010), and milk (Wu et al., 2008) products. NIR spectro-
scopy was demonstrated to be able to identify seedling quality
(Shrestha et al., 2017), origins of coffee beans (Marquetti et al., 2016),
and tea polyphenol concentration (Li et al., 2015).

In soil science, several soil properties such as soil organic matter
content, total nitrogen content, pH, cation exchange capacity (CEC) and

soil texture can be effectively estimated using infrared spectroscopy
(Chang et al., 2001; Shepherd and Walsh, 2002; Islam et al., 2003;
Viscarra Rossel et al., 2005; Stenberg et al., 2010). By measuring the
infrared reflectance of grapevine leaves, Pascoa et al. (2016) were able
to discriminate between soil types in vineyards.

In general, infrared spectroscopy provides an alternative to con-
ventional analytical methods because it is rapid, less-expensive and
non-destructive. Furthermore, with proper calibration, several proper-
ties of a material may be characterized from the single spectrum
(Viscarra Rossel et al., 2005; Stenberg et al., 2010; Horta et al., 2015).
When a sample is illuminated with electromagnetic radiation, it inter-
acts and induces vibrations of chemical bonds in different molecules
present in that sample (Viscarra Rossel et al., 2010). Absorptions of
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such electromagnetic energy in different wavelength regions create a
basic stretching and bending of various bonds providing a unique
spectral response in the form of reflectance or absorption features
across potentially thousands of individual wavelengths. Extraction of
these spectral features from measured infrared spectra is difficult be-
cause of the complex mixtures and the scattering effects (Horta et al.,
2015). Typically, a chemometric approach is employed to retrieve these
features to create a spectral algorithm for inferring a specific property
of the material. Unfortunately, the presence of high dimensional or
ultra-spectral data poses many challenges, mainly because the number
of spectral variables is relatively larger than the number of samples;
also known as “large p and small n” problems (Mehmood et al., 2012).
Moreover, the spectra variables are often highly correlated; highly
collinear variables could deplete the model predictions (Li et al., 2009;
Vohland et al., 2014). Due to such high dimensional information, sta-
tistical models created with these irrelevant variables often cause over-
fitting - not all variables are equally crucial for the predictive models.
Thus, the analysis of spectral data requires efficient feature extraction
and multivariate calibration approaches.

In general, both linear and non-linear multivariate techniques such
as partial least squares (PLS) regression, principal component regres-
sion (PCR) (Chang et al., 2001), stepwise multiple linear regression
(Dalal and Henry, 1986), regression trees (Brown et al., 2006), support
vector machines (Devos et al., 2009), multivariate adaptive regression
splines (Shepherd and Walsh, 2002) and artificial neural networks
(ANN) (Daniel et al., 2003) have been used for analysing spectral data.
Among these, the PLS regression approach is the most common method
of estimating soil properties from a set of soil spectra (Viscarra Rossel
and Behrens, 2010).

Recently, several studies show that the variable selection (wave-
length selection) may further improve the performance of the regres-
sion models (Li et al., 2009; Teofilo et al., 2009; Zou et al., 2010;
Vohland et al., 2014; Sarathjith et al., 2016). Variable selection is an
iterative process to create subset variables which give the lowest pre-
diction errors. The benefits of variable selection include: (i) improving
the predictive ability of the model by removing uninformative vari-
ables, (ii) improving the interpretability of the models, (iii) decreasing
the computational time needed to analyse the data (Guyon and
Elisseeff, 2003; Teofilo et al., 2009; Zou et al., 2010). By identifying the
subset variables, variable selection should yield the smallest errors
when used to predict samples outside the training dataset.

Variable selection may be done manually (based on expert knowl-
edge) (Zou et al., 2010). Expert users might be able to identify specific
regions of the spectra that have poor information quality. However, this
manual selection approach might also remove portions of spectra that
could be useful in creating a robust model, and there is no guarantee the
same section of the data will be removed between datasets (Zou et al.,
2010). Variable selection techniques that are based on statistical prin-
ciples can provide robust models for non-expert users with a limited
expert intervention (Zou et al., 2010). A number of variable selection
approaches have been examined, such as simulated annealing
(Kirkpatrick et al., 1983), genetic algorithm (GA) (Li et al., 1992;
Xuemei et al., 2010), uninformative variable elimination (UVE)
(Centner et al., 1996), interval PLS (Nørgaard et al., 2000; Zou et al.,
2007; Xuemei et al., 2010), backward interval PLS (Zou et al., 2007),
forward interval PLS (Zou et al., 2007), successive projections algo-
rithm (SPA) (Araujo et al., 2001), wavelet transform (Viscarra Rossel
and Lark, 2009), and competitive adaptive reweighted sampling (CARS)
(Li et al., 2009) among the few. Li et al. (2009) successfully employed
CARS algorithm in conjunction with regression coefficients in a variable
selection process. Vohland et al. (2014) used the CARS approach to
create a PLS regression model that only integrates the relevant wave-
lengths. However, the CARS approach that used the Monte Carlo
strategy does not provide a unique solution. Another approach is the
use of informative vectors in conjunction with ordered predictor se-
lection (OPS) approach and exponentially decreasing function (EDF)

from the CARS algorithm as suggested by Sarathjith et al. (2016).
The purpose of this work is to (i) implement variable selection based

on the combination use of informative vectors with OPS and EDF ap-
proaches which can be used in various regression models (Partial Least
Square regression (PLSR) and Cubist regression tree model), (ii) provide
the algorithms as codes in R statistical language, and (iii) to identify the
important wavelength variables and relate them to the fundamental
bands of the relevant.

2. Materials and methods

2.1. Theory

The overall variable selection process can be summarized as follows:

Calculate the informative vectors from the spectra (X) and the cor-
responding response variable (y).
Sort the informative vectors in a descending order using the ordered
predictor selection (OPS) approach. The higher the absolute value of
the informative vector, the more informative it is.
Create a regression model and evaluate its performance.
Apply the exponentially decreasing function (EDF) to estimate the
ratio of the wavelengths to be kept for regression, and only retain
informative wavelengths.
Go back to step (iii) to create a model with the selected wavelengths.
This process is repeated until N-th number of iterations is achieved,
generating N subset models. However, to prevent the loss of spectra
information, in this study, a minimum of 80 retained spectra vari-
ables was set.

The whole algorithm is coded in R statistical language and open-
source software (R Core Team, 2016), available from the authors. This
algorithm is also available in Matlab. The schematic of the process is
included in Fig. 1.

In the next section, various informative vectors of the spectra will be
described. This is followed by the description of the ordered predictor
selection (OPS) approach and the exponentially decreasing function
(EDF) procedure to remove uninformative variables.

2.2. Informative vectors

Informative vectors are descriptors of the relationship between the
predictors (X, spectra variables) and the response variables (y). There
are various ways to calculate the informative vectors, here we describe
eight informative vectors:

2.2.1. Regression coefficient vector (b)
This vector is defined as the change in the response per unit change

in the predictor variables. The vector can be estimated using Eq. (1.1)

Fig. 1. Schematic of the variable selection process.
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(Teofilo et al., 2009):

= → = → = −b by X y U R V b V R U y.j j j
t

j j j
t1

(1.1)

where y is the response variable, X is a matrix of spectra data (size
I× J), b is the regression coefficient vector. U (I× J), and V (I× J) are
matrices with orthonormal columns, which satisfy UtU=VtV= I, and
R (J× J) is a bi-diagonal matrix.

2.2.2. Variable influence on projection (V)
This vector was first proposed by Wold et al. (1993). It estimates the

importance of X variables to explain the variation in y. It was calculated
as the weighted sum of squares of the PLS weights using Eq. (1.2):

=
× ∑ ×

=V
J (W SSY )

SSYj
k 1
K

jk
2

comp,k

cum (1.2)

where J is the total number of wavelengths, Wjk is the loading of the j-th
wavelength in k-th factor, SSYcomp,k is the explained sum of squares of y
explained by the PLS regression model with k factor, and SSYcum is the
total sum of squares of y.

2.2.3. Residual vector (S)
S is a vector comprising residuals from the eliminated information

when the original matrix (X) is truncated into a reconstructed matrix
with h components Xh (Teofilo et al., 2009). S can be defined as:

Fig. 2. Boxplots, histograms and descriptive statistics of the soil attributes used in this study. Min.: minimum, Max.: maximum, Std Dev.: standard deviation.
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t j


(1.3)

where X is the original matrix, Xh is the truncated matrix, ej is the j-th
column of Eh, Sj is the informative vector that calculates the inverse of
the sum of square residuals.

2.2.4. Net analyte signal vector (Na)
Net analyte signal is a measure of part of the spectra that is ortho-

gonal to the spectra of the other components (Faber, 1998). Faber
suggested the calculation of Na vector with the regression vector as:

=Na y b b b( )j j
T

(1.4)

where b is the regression vector.

2.2.5. Linear correlation coefficient (COR) vector
COR is a vector measuring the linear association between two

variables x and y. It was first developed by Pearson in 1895 (Rodgers
and Nicewander, 1988). It is calculated as:

=
∑ − ∑ −

∑ − ∑ −
COR

(x x̄) (y ȳ)

(x x̄) (y ȳ)
i i

i
2

i
2 (1.5)

This coefficient ranges from the values of −1 to +1 with zero value
indicating the absence of correlation, positive values indicating directly
related and negative if inversely related.

2.2.6. Bi-weight mid-correlation (BIC)
This vector was first proposed by Wilcox (2012) to find similarity

between two genes. This vector was shown to be more robust to outliers
than the Pearson correlation (Song et al., 2012; Wilcox, 2012). BIC can
be defined as:

=
∑ − −

∑ − ∑ −

=

= =

BIC
(x med(x))w (y med(y))w

((x med(x))w ) ((y med(y))w )
i 1
n

i i
(x)

i i
(y)

j 1
n

j j
(x) 2

k 1
n

k k
(x) 2

(1.6)

where wi is the weight factor, defined as:

= − − =
−w u I u u x med x
mad x

(1 ) (1 | |) ( )
9 ( )i

x
i i i

i( ) 2 2

= − − =
−

w v I v v
y med y

mad y
(1 ) (1 | |)

( )
9 ( )i

y
i i i

i( ) 2 2

Here, med is median, and mad is the median absolute deviation.

2.2.7. Mutual information based on adjacency matrix (AMI)
AMI measures the non-linear dependency between variables, which

provides a better and more general criterion compared to Pearson
correlation. The symmetric uncertainty based mutual information ad-
jacency matrix is estimated as (Song et al., 2012):

= =

= + −

=
+

dx discretize no bins nrow
MI dx dy Entropy dx Entropy dy Entropy dx dy

A

X X( ); . ( )
( , ) ( ) ( ) ( , )

ij
MI Symmetric Uncertainty MI dx dx

Entropy dx Entropy dx
, 2 ( , )

( ) ( )
i j

i j (1.7)

In this case, X (spectra data) is partitioned into equal-width bins
with the default number of bins, given by no. of bin = nrow X( ) . The
mutual Information adjacency matrix can then be calculated based on
the discretised vectors and entropy estimation with Miller-Madow
method (Miller, 1955). In this study, the universal version mutual in-
formation based adjacency matrix was used, which can be calculated as:

=
−

A
A

A2ij
MI Universal Ver ij

MI Symmetric Uncertainty

ij
MI Symmetric Uncertainty

,
,

,
(1.8)

2.2.8. Covariance procedures (COV) vector
It is a vector obtained by the combination of the PLS and standard

linear regression methods. This approach concentrates on balancing the
fit and prediction. COV can be defined as (Reinikainen and
Hoskuldsson, 2003; Teofilo et al., 2009):

=COV X yy Xdiag( )T T (2.11)

where y is the response variable and X is a matrix of spectra data.
In general, all the informative vectors mentioned above can be

broadly categorized as PLS-dependent (b, V, S, Na) and PLS-in-
dependent categories (COR, BIC, AMI, COV) (Sarathjith et al., 2016).
New informative vectors can be created by combining two independent
vectors, as well as combining PLS-independent and PLS-dependent
vectors. These combination vectors are obtained by multiplying one
vector to the other vector after normalization as described by Teofilo
et al. (2009). This pairing results in a total of 22 combination vectors,
which include b-V, b-S, b-Na, V-S, V-Na, S-Na, b-COR, b-BIC, b-AMI, b-
COV, V-COR, V-BIC, V-AMI, V-COV, S-COR, S-BIC, S-AMI, S-COV, Na-
COR, Na-BIC, Na-AMI, Na-COV. In total, these 30 informative vectors
(the singular informative vectors and the combination informative
vectors) will be compared.

After we obtain the informative vectors, we need to select the im-
portant predictors (wavelengths). This is achieved through the Ordered
Predictor Selection (OPS) and Exponentially Decreasing Function (EDF)
as described below.

2.3. Ordered predictor selection (OPS)

In essence, this approach sorts the informative vectors based on
their corresponding absolute values for each predictor (Teofilo et al.,
2009). The higher the absolute values, the more relevant those vari-
ables are for the regression models.

2.4. Exponentially decreasing function (EDF)

EDF is a function to remove wavelengths with low absolute values
of informative vectors. The ratio of the wavelengths (r) to be kept for
regression modelling is defined as an exponentially decreasing function:

=

=

=

−

−

−( )
r ae

a

k

i
ki

p
N

( )

p
2

ln( 2)
1

1
N 1

(1.9)

where i=1,2,3,…, N represents the number of iteration or run, and p is
the total number of wavelengths. Both a and k are constants that satisfy
the following conditions: (i) in the first sampling run, r1= 1, (ii) in the

Fig. 3. Vis-NIR absorption spectra of soil samples after pre-processing.
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N-th run, rN= 2/p. This function allows the ‘fast selection’ followed by
‘refined selection’ in its successive iterations (Li et al., 2009).

2.5. Simulation datasets

A soil spectra library with a total number of 379 samples from 68
different profiles were used for evaluating the performance of the
variable selection algorithm. The samples were collected from each of
the horizons taken up to 1m depth from the study by Geeves et al.
(1995), representing soils in the wheat-belt of southern New South
Wales (NSW) and northern Victoria (VIC). The soil groups found in this
area are Chromosols, Dermosols, Sodosols and Kandosols (Australian
Soil Classification) or Alfisols and Inceptisols (USDA Soil Taxonomy) or
Luvisols, Cambisols, Solonetz, and Lixisols (WRB). Samples were col-
lected from different soil horizons up to 1m depth. Samples were se-
lected non-randomly to represent full management system within the
areas while keeping away from area such as stock tracks, dams, drai-
nage, heavy traffic zones, isolated trees and other features that were
considered as unrepresentative of the areas (Geeves et al., 1995).

All the samples were air-dried, ground, and sieved to< 2-mm
particle size diameter. The samples were subjected to laboratory ana-
lyses of the physical and chemical properties including clay and sand
content, pH, cation exchange capacity (CEC) and total carbon (TC). The
sand content was determined through wet sieving of chemically dis-
persed sample while the clay content was determined using hydrometer
method. CEC was determined using silver thiourea method. Soil pH was
measured in 0.1M CaCl2 in 1:5 soil to solution ratio after 1 h of

rotational shaking and 0.5 h of settling. While the TC was determined in
sediments dried using LECO CR-12 combustion furnace with an infrared
detector.

The total carbon values were subjected to natural log-transformed
before modelling to correct for its skewness. The summary statistics of
the parameters used for this study are shown in Fig. 2.

2.5.1. Spectra collection
The infrared spectra were recorded using an AgriSpec (Analytical

Spectral Devices, Boulder, CO, USA) with a spectra range of
350–2500 nm at 1 nm interval. The samples were illuminated with a
4.5W halogen lamp, and the reflected light was transmitted to the
spectrometer through a fibre optic bundle. A Spectralon (Labsphere
Inc., North Sutton, NH, USA) was used as the white base reflectance
standard and scanned after every five samples. Each spectrum was
obtained as the mean of three replicates.

2.5.2. Spectra Pre-processing
The reflectance spectra collected were pre-processed to reduce ir-

relevant information which may decrease the performance of the fitted
prediction models. Spectra between 350 and 499 and 2451–2500 nm
were removed due to their low signal to noise ratio resulting in 1951
spectra values. The remaining spectra were converted to absorbance
(log 1/reflectance) followed by Savitzky-Golay transformation
(Savitzky and Golay, 1964) with a window size of 11 and polynomial
order 2 and followed with the Standard Normal Variate (SNV) trans-
formation. The spectra data after the pre-processing are presented in

Fig. 4. Illustration for the model perfor-
mance with ordered predictor selection and
exponential decreasing function approach to
predict sand content using PLS model with
b-BIC vector. As the iteration number in-
creases, the ratio of the number of wave-
lengths variable to be kept decreases
(smaller NSV). The red asterisks represent
the model performance for each subset
models based on the RMSEcv. The dotted
line represents the model performance when
the full spectra is used to create the regres-
sion model. (For interpretation of the refer-
ences to colour in this figure legend, the
reader is referred to the web version of this
article.)

Table 2
Important wavelengths utilized by the Cubist and PLSR model in determining various soil properties.

Properties Important wavelengths for Cubist model (nm) Important wavelengths for PLSR model (nm) Common wavelengths between the two models
(nm)

CEC 512, 538, 551, 577, 590, 668, 694, 707, 1654, 1927,
1966, 2078, 2117, 2156, 2195, 2234, 2390, 2450

512, 538, 551, 577, 590, 629, 668, 694, 1654, 1927,
1966, 2000, 2039, 2117, 2156, 2195, 2234, 2390,
2424

512, 538, 551, 577, 590, 668, 694, 1654, 1927,
1966, 2117, 2156, 2195, 2234, 2390

CLAY 590, 616, 629, 655, 746, 772, 785, 811, 824, 850, 863,
1732, 1810, 1849, 1888, 1966, 2039, 2078, 2234, 2390

590, 616, 629, 655, 746, 772, 785, 811, 824, 850,
1732, 1849, 1966, 2039, 2078, 2234, 2390, 2411

590, 616, 629, 655, 746, 772, 785, 811, 824, 850,
1732, 1849, 1966, 2039, 2078, 2234, 2390

pH 1927 1927 1927

Sand 551, 668, 707, 733, 746, 1693, 1732, 1810, 2044,
2078, 2156

551, 668, 707, 733, 746, 1654, 1693, 1732, 1810,
2078, 2156

551, 668, 707, 733, 746, 1693, 1732, 1810, 2078,
2156

Total C* 1006, 1097, 1123, 1654, 2005, 2117, 2122, 2156,
2161, 2229, 2234, 2239, 2307, 2346, 2351, 2424, 2429

1097, 1123, 1654, 1927, 2117, 2156, 2161, 2234,
2239, 2312, 2424, 2429

1097, 1123, 1654, 2117, 2156, 2161, 2234,
2239, 2424, 2429

* For total Carbon, the wavelengths selections were done based on those that showed up at least in the 40 repetitions.
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Fig. 3.

2.6. Chemometrics

The spectra were modelled for prediction of clay and sand content,
pH, CEC, and TC. The variable selection procedure and regression
analyses were repeated fifty times, each time the data were randomly
partitioned into calibration (70%) and validation (30%) sets. The par-
tial least squares regression (PLSR; Mevik et al., 2016) and Cubist re-
gression tree model (Kuhn et al., 2016) were used for modelling. The
optimal number of latent variables utilized in the PLSR was determined
by doing cross-validation and selecting those that give the lowest value
of RMSECV calibration. The RMSECV is calculated as follows:

=
∑ −∼

=RMSE
y y
n

( )
CV

i
n

i i1
2

(2.10)

where n is the number of samples, yi is the reference measurement of
sample i, and ∼yi is the estimated result for the sample i when the sample
i is removed.

Cubist is a rule-based regression tree model which was found to be
useful for building NIR calibration models. Cubist creates rules by

splitting the data based on its independent variables minimising within-
class variation. After that, it builds a linear model of the absorbance
spectra for each rule. The detail of the algorithm is presented in Quinlan
(1993).

The performance of the model was then compared using the coef-
ficient of determination (R2) and root-mean-square error (RMSEv) va-
lues of the validation dataset.

3. Results and discussion

The model performance in predicting five soil properties from the
full spectra (Number of Spectra Variables, NSV=1951) in comparison
to the variable selection subset models are summarized in Table 1.

By utilizing the full spectra, both the Cubist and PLS regression
models gave relatively accurate predictions for all the properties. An
illustrative figure of the model performance for the prediction of sand
content using OPS and the b-BIC vector is shown in Fig. 4. The plot
shows the NSV retained by the algorithm for each iteration, which
follows an exponential function. Typical variations in the RMSE value
of the validation dataset for the subset models using different NSV are
shown in the plot. The performance of the first few iterations is similar

Fig. 5. Plot of the effect of various informative vectors on model performance in predicting cation exchange capacity (CEC) as a function of number of spectra
variables (NSV). Each shape in the plot represents a particular informative vector. The black triangular shape (△) indicates the best subset model with the lowest
root mean squared error (RMSE), while the black round shape (○) indicates the best subset model that is also better than the full-spectra model.
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to those from the full spectra models, even after ten iterations
(NSV=551). After that, the RMSE values seem to be increasing for
each subsequent iteration (reduced number of spectra variables). This is
most likely due to the loss of information. In this example, an optimum
number of spectra variables kept based on the lowest RMSE would be
1695 (at the second iteration). However, since the RMSE for the sub-
sequent iterations with a lower number of spectra variables (NSV) are
within 5% proximity of the lowest RMSE, it would also be considered.
In this case, the number of spectra variables kept for this model is 551
(achieved after ten iterations).

Using the full spectra, the regression statistics from both PLS re-
gression and Cubist model were compared (Table 2). In general, the PLS
model performed slightly better than the Cubist model based on the R2

and RMSE values for all soil properties even though the Cubist model
seemed to perform better based on the model calibration dataset.

3.1. Performance of the subset models

To select the optimal subset models with reduced NSV, three dif-
ferent options will be compared.

3.1.1. Determining NSV based on the best calibration model
The best subset models were determined by those that had RMSEcv

values within 5% proximity to the lowest RMSE calibration and the
least number of spectra variables (NSV) of the calibration data-set as
suggested by Sarathjith et al. (2016).

Generally, the subset of the pre-processed spectra models generated
acceptable regression models. The R2 and RMSE values for the subset
models using Cubist regression were similar to those from the full
spectra models; however with much smaller NSV (362-730), or on
average 27% of the full spectra. The same trends can also be observed
by using PLS regression with NSV ranging from 156 to 416, or on
average 15% of the full spectra.

Comparing the Cubist and PLS regression model side by side, the
performance was pretty much similar; PLS gave a slightly better model
performance for the prediction of all other properties while using a
smaller number of spectra variables.

3.1.2. Determining NSV based on the best validation model
The best subset models were determined by those that had RMSEv

values within 5% proximity to the lowest RMSE validation and the least
NSV of the validation data-set. For Cubist models, the prediction of CEC
and total C were improved by using lower NSV (416 and 135, respec-
tively) in comparison to the best calibration model. Although the model
performance for the pH, sand and clay content did not improve, the
NSV used in the model were much lower (on average 11% of the full
spectra), which can be a positive outcome in some respects through the
reduction in computational time. Similar to the Cubist regression, the
best validation model for the prediction of CEC using PLS regression can
be further improved by using lower NSV (Table 1). For the total C
prediction, by utilizing different informative vector, the model perfor-
mance was improved. When the Cubist and PLS regression are com-
pared, the overall performance of all properties was similar. PLS gave a
slightly better prediction for clay content and pH with similar NSVs.
CEC and sand content was predicted slightly better with the Cubist
model. However, the NSVs used is almost double than those in the PLS
model for CEC prediction.

3.1.3. Determining NSV based on the best calibration model II
The selection for these subset models was based on those that have

RMSEcv values within 5% proximity as well as lower RMSEcv than those
of the full models. The overall subset model performance was similar to
those using the full spectra models with less NSV, on average 35% of
the full spectra. For Cubist subset models, prediction performance can
be further increased by retaining NSV ranging from 416 to 967. The
NSV retained for the PLS subset models to perform similarly if not

better than the full PLS model ranges from 416 to 1280 (see Table 1).
Overall, the performances of both regression approaches were similar.

3.1.4. Determining best informative vectors
The best informative vectors will be derived from the best subset

calibration model II. For the prediction of pH and CEC, b (and its
combinations) vectors were found to be the most appropriate by using
either PLS or Cubist regression. No common informative vectors were
found to predict the total carbon, sand and clay content. Within the PLS
regression models, it may be generalized that the b (and its combina-
tions). The best informative vectors utilized in the Cubist models varied
slightly, with some improvements being found when S (and its com-
binations) for the predictions of clay content, sand content, and total
carbon and b (and its combinations) for the prediction of pH and CEC
content.

As stated by Sarathjith et al. (2016), informative vectors that pro-
vided inferior predictions in one case may provide superior predictions
in another case. An example of the evaluation of model performance by
using the PLS model for the prediction of CEC using various informative
vectors is included in Fig. 5. As discussed above, the figure indicated
that the wavelengths can be reduced to about 500 or one-quarter of the
full spectra, and still achieve the same results using the full wavelength.

3.1.5. General discussion
We have demonstrated that the models that utilized the optimum

wavelengths (about 25% of the full spectra) can perform as well as the
model that utilized the full spectra model. Different wavelengths were
selected as important for different soil properties. The top 400 wave-
lengths that are common among the 50 repetitions based on the most
informative vectors for the best calibration II method are tabulated in
Table 2. If there are no common wavelengths that exist, the rule is
flexed so that the most important wavelengths can be identified. Some
of the wavelengths that were used in the Cubist model were not utilized
in the PLSR model. As an effort to determine the effectiveness of the
variable selection process, only the common wavelengths found be-
tween the two models will be discussed.

The most important wavelengths for the CEC content estimations
are 512, 538, 551, 577, 590, 668, 694, 1654, 1927, 1966, 2117, 2156,
2195, 2234 and 2390 nm. Because CEC is correlated to the clay content
and clay content affects the colour of the soil (Gomez et al., 2008), the
use of the absorption bands between 400 and 700 nm could potentially
contribute to the CEC prediction as this region corresponds to colour
information. Other wavelengths found were also reported by Xu et al.
(2018), particularly absorption at 680, 890, 1410, 1900, 2210 and
2400 nm. The absorption band at 1654 is related to the first overtone of
eCH2 and eCH3 bonds (Hourant et al., 2000).

The absorption between the regions of 590, 616, 629, 655, 746,
772, 785, 811, 824, 850, 1732, 1849, 1966, 2039, 2078, 2234 and
2390 nm are deemed to be important for the prediction of clay content.
Aside from the visible range (400–700 nm), Gomez et al. (2008) also
found that absorptions near 981, 1400, 1800, 1900 and 2350 nm were
important in predicting clay content. Some of these wavelengths were
also confirmed in our study. Nonetheless, our models also utilized
wavelengths between 750 and 850 nm and ∼2060 nm which is at-
tributed to iron oxides organics in the soils (overtones of amines and
alkyls) (Viscarra Rossel and Behrens, 2010).

For pH content, both models have an agreement that the absorp-
tions at 1927 nm is the most important. The absorption in this region is
associated with HeOeH bend and OeH stretching vibration (Viscarra
Rossel and Behrens, 2010). If we reduce the frequency limit to 48 in-
stead of 50, our findings is in agreement to the finding with the most
important wavelengths between the regions of 668, 785, 1693, 1927,
2117, 2195 and 2424 nm. This finding is in similar range to those found
by Xu et al. (2018) who found that the absorption bands of 480, 780,
1120, 1910, 2200 and 2390 nm were important.

Sand content can be determined using the absorption bands at 551,
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668, 707, 733, 746, 1693, 1732, 1810, 2078 and 2156 nm. Nonetheless,
these are slightly different to those wavelengths reported by Xu et al.
(2018) at 480, 920, 1910 and 2200 nm. Our predictions depended on
the absorbance at visible range (400–700 nm) and the organics absor-
bance (∼750 and 1650–1850 nm).

In this study, the most important wavelengths to determine the total
carbon concentration are 1097, 1123, 1654, 2117, 2156, 2161, 2234,
2239, 2424 and 2429 nm. Chang et al. (2001) reported that multiple
absorption bands for organic carbon in the similar region between 2100
and 2400 nm. Other studies reported bands around 1100, 1600,
1700–1800, 2000, and 2200 to 2400 nm to be important which in
agreement to the finding in our study (Dalal and Henry, 1986; Stenberg
et al., 2010).

4. Conclusions

Variable selection is an essential process in providing reliable
variables for model calibration. This process is important because
spectra contain collinear information. Here, an algorithm for variable
selection using the combination of informative vectors with OPS ap-
proach and EDF for various soil properties prediction was evaluated.
This algorithm was assessed with both PLS and Cubist regression
models. Before the variable selection process, all the spectra underwent
pre-treatment processes to remove unwanted noise. Overall, the vali-
dation results from both subset models were similar, with PLS per-
forming slightly better than Cubist models. However, the number of
spectra variables used in the subset model (ranging from 416 to 1280
variables) was much lower compared to the full models (1951 vari-
ables) which would reduce the computational time. The results show
that the variable selection is a beneficial procedure that can be used to
improve model performance in terms of computational time. From the
dataset used in this study, the best informative vector found to provide
optimum subset models are b (and its combinations) and S (and its
combinations). Although the findings might be valid only for this da-
taset, the availability of the algorithms allows experts from various
disciplines to test on different datasets.

For future study, the combination of three informative vectors could
also be investigated. Wavelength selection is an existing and still-
growing field in chemometrics. Various algorithms approaches have
been developed for various data, and thus difficult to obtain the best
algorithm that would fit all data. Users are suggested to use what is best
for their dataset.
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