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Knowledge of the spatial variation of soil is important inmodern agricultural management. To attain this knowl-
edge, ground-based samples are required in combination with many ground-based, air-borne and space-borne
sensors from the Internet of Things. Compared to traditional grid and simple random sampling that are designed
forfixed sensors, adaptive sampling is notwell studied. In this study,wepropose a prior-based adaptive sampling
scheme to collect soil samples for estimation of ground-based Gamma-ray potassium across an 80-ha field in a
semi-arid landscape, in New South Wales, Australia. We compare the performance of the sampling algorithm
via a linear mixed model between various adaptive sampling schemes with prior information of varying quality
(e.g. ground apparent electrical conductivity, air-borne Gamma-raypotassium, and a legacymap of clay content).
We also compare themodel performance of the adaptive sampling schemewithmore conventional grid and sim-
ple random sampling schemes. Results show that the adaptive sampling scheme was superior to the grid and
simple random sampling schemes in terms of the accuracy of the linear mixed model when the sampling size
was small (b15 additional samples) due to the use of prior information. The accuracy of the linear mixed models
associated with the adaptive sampling schemes deteriorated when the quality (correlation with the target soil
variable) of the prior information decreases.We conclude that the algorithm has the potential to be applied gen-
erally for automated adaptive sampling design (e.g., on an autonomous vehicle) when sampling cost is large and
travelling time of the sensor is relatively small.

Crown Copyright © 2020 Published by Elsevier B.V. All rights reserved.
1. Introduction

Knowledge of the spatial variation of soil is important inmodern ag-
ricultural management (McBratney et al., 2005). To quantify the spatial
variation of soil and evaluate the performance of existing soil maps,
ground-based soil samples are crucial. However, collection of soil sam-
ples in the field can be time-consuming, labour-intensive and expen-
sive. To overcome the limitation of soil sample collection in the field,
various ground (Cosh et al., 2004), air-borne (Kramer, 2002; Berni
et al., 2009), and space-borne (Hart and Martinez, 2006; Pettorelli
et al., 2014) sensors have been used. This is now recognised as part of
the Internet of Things (IOT) (Gubbi et al., 2013; Wang et al., 2013;
Fang et al., 2014).

Sensors used in soil and environmental studies can be classified into
two categories: fixed and adaptive. Fixed sensors refer to sensors that
are located on the ground at different stations and measure physical,
chemical and biological properties of variables at different time
nce, University of Wisconsin-
A.

r B.V. All rights reserved.
intervals or on the satellites whose orbits are fixed and survey the
globe at a specified spatial resolution and revisit time intervals. Once
these fixed sensors are installed, the measuring frequencies and spatial
resolutions cannot be modified.

Unlike the fixed sensors, adaptive sensors are placed on ground-
basedmobile sensor systems, vehicles, or aircrafts. Compared to passive
sensors, these sensors can be designed to collect observations, proac-
tively, and adjust their survey routes in real-time based on collected
data. Successful applications of adaptive sensors include automated
driving systems (Kato et al., 2002), cleaning robots (Bartsch et al.,
2002; Jones et al., 2005), active learning for text classification (Tong
and Koller, 2001) and image retrieval (Tong and Chang, 2001).

Brus and Heuvelink (2007) provided a summary of sampling
methods that can be directly used to select the locations of the fixed
sensors. In general, these sampling algorithms can be classified as
design-based or model-based methods (Brus and De Gruijter, 1997).
In the design-based approach, stochasticity is introduced at the stage
of sampling and sample locations are selected by a pre-determined ran-
dom selection procedure. By contrast, model-based methods build
models to estimate the probabilities of the sampled target variables as
a stochastic process (e.g. presence of variations of soil properties due
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to soil-forming processes), which is a mathematical abstraction used to
describe reality. Biswas and Zhang (2018) provided a summary of the
popular methods used in soil mapping, including simple random sam-
pling, grid sampling, cluster sampling, transect sampling, nested sam-
pling, spatial coverage sampling, stratified random sampling, Latin
hypercube sampling (LHS) and fuzzy k-means sampling. Most of these
classical sampling algorithms select sampling locations before the soil
survey starts, and is not affected by the locations and values of the sam-
ples. Here, we consider these sampling algorithms as non-adaptive
sampling.

Compared to non-adaptive sampling that estimates the probabilistic
distribution of sampled variables in space and time (design-based) or
reducing prediction errors (model-based) (Webster and Lark, 2012),
adaptive sensors can be used with adaptive sampling algorithms to es-
timate soil properties in a proactive way. Adaptive algorithms, some-
times known as active learning (Cohn et al., 1996; Salganicoff et al.,
1996), often comprise objective functions that simultaneously optimise
prediction errors and other variables such as survey time (Martinez-
Cantin et al., 2007; Kroemer et al., 2010; Kulick et al., 2013). Unlike
the non-adaptive sampling, the locations of the samples are determined
during the sampling process, where the selection of subsequent sam-
ples is based on information obtained from the previous samples so
that both the prediction error and survey time can be minimized as
the soil survey continues.

With the development of sensing technology and robotics, adaptive
sampling has been increasingly used in many fields, such as in agricul-
ture (McBratney et al., 2005; Tokekar et al., 2016), geology (Potts
et al., 2015), hydrology (Singh et al., 2014), and environmental sciences
(Rahimi et al., 2004). Although different adaptive algorithms have been
previously proposed formapping environmental variables in spacewith
the use of newly collected data as input information for selecting subse-
quent sampling locations (Flajolet, 1990; Cox, 1999;Marchant and Lark,
2006; Musafer and Thompson, 2016), few algorithms have been de-
signed for minimizing prediction error and sampling costs (e.g. travel
and sampling time) at the same time. In addition, previous adaptive
sampling algorithms are not able to incorporate prior information
such as previous surveys or auxiliary covariates that have different
levels of data-quality or correlation to target variables.

The objectives of this study are: 1) to establish an adaptive sampling
algorithm that uses prior information for estimation of a target soil var-
iable during the soil survey, and 2) to evaluate the model performance
between adaptive sampling with prior information of different quality,
grid and simple random sampling algorithms. The hypotheses here
are: 1) the adaptive sampling with prior information is superior in effi-
ciency or cost to traditional grid and simple random sampling, and
2) the performance of the adaptive sampling varies with decreasing
quality of prior information.

2. Materials and methods

2.1. Study site

The study site is situated at Nowley Farm, on the Liverool Plains re-
gion in north-northwest New South Wales, Australia. The study area
consists of two agricultural fields totalling 84 ha (Fig. 1a) divided by a
road traversing from southeast to northwest. The soils are mostly
Black Vertosols (Australian Soil Classification) or Udic Haplusterts
(United States Department of Agriculture Soil Taxonomy) (Stockmann
et al., 2016). The field has an annual maximum temperature of 24.6 °C
and annual minimum of 12.2 °C with 637 mm precipitation. The main
land use is pasture.

2.2. Collection of the target soil variable

The target soil variable used in this study was gamma‑potassium
(Gamma-K), namely, the natural emissions of soil gamma-rays from
40K. Studies have shown that gamma-ray data (e.g. Gamma-K) are re-
lated to various soil properties such as soil mineralogy (Wilford et al.,
1997), clay content (Wong and Harper, 1999; Pracilio et al., 2006),
and soil types (Schuler et al., 2011). Because most gamma-rays were
emittedwithin the top 0.3mof the soil (Minty, 1997), gamma-raymea-
surements have been mainly used to infer the spatial variation of the
topsoil properties.

Gamma-K data was collected on 27 February 2018 with a Sodium–
Iodine crystal (Radiation Solutions Inc., Mississauga, Ontario, Canada).
The sensor was mounted on a four-wheel drive vehicle with a Real-
Time Kinetic Global Positioning System for geo-reference. Gamma-K
measurements were interpolated from 20-m spacing transects onto a
25m× 25m grid (Fig. 1b) using ordinary krigingwith local exponential
variograms and a neighbourhood of 90–100 points. In this study, a grid
was made of regularly spaced points and the mapping/interpolation
process was performed on these points. This discretisation was used
in this study to simplify the demonstration of the different sampling ap-
proach. There were 1350 points in the grid across the field. The kriging
was carried out in Vesper Software (Minasny et al., 2006). To differenti-
ate this dataset from the airborne Gamma-K data used in the next sec-
tion, we refer to it as Gamma-K-ground.

It should be noted that we did not select any soil physical, chemical
or mineralogical properties as the target soil variables although soil
properties varied across the study field. This was because a larger num-
ber (N1000) of soil samples and subsequent laboratory analyses of the
soil properties was not available. As such, the sensor-based measure-
ment (i.e. Gamma-K-ground) was used to test the proposed sampling
algorithm at the field scale.

2.3. Collection of prior information

In this study, three types of ancillary data were selected as prior in-
formation for an adaptive sampling algorithmandmappingof the target
soil variable (i.e. Gamma-K-ground). The first onewas collected using a
DUALEM-21S (DUALEM Inc., Ontario, Canada) using the same on-the-
go soil sensing system as the gamma-ray survey. The DUALEM-21S
measures the ability of the bulk soil to conduct electrical currents,
namely, apparent electrical conductivity (ECa, mS m−1), at different
coil arrays via non-invasive electromagnetic induction. The ECa values
from the 1-m perpendicular receiver coil (PRP-1 m) has an effective
measurement depth of 0.5 m based on the spacing of the transmitter
and receiver coils (DUALEM User Manual, 2010). Because ECa is a func-
tion of soil clay content, moisture, and salinity (Corwin et al., 2003;
Corwin and Scudiero, 2019), it can be used as prior information to po-
tentially infer the spatial variation of the top 0.5 m of soil and predict
the spatial distribution of Gamma-K-ground data. The PRP-1 m ECa

were similarly interpolated onto the same 25m × 25m grid using ordi-
nary kriging with a local exponential variograms with a neighbour of
90–100 points.

The second ancillary data set was Gamma-ray K collected from the
airborne surveys by the Australian Department of Mineral Resources,
termed Gamma-K-air. Similar to ground-based Gamma-rays, the air-
borne data also represent the variations in soil properties within the
top 0.3 m. The Gamma-K-air dataset used in the study was extracted
onto the previous 25 m × 25 m grid with the nearest-neighbour algo-
rithm from a harmonised 100m× 100mgrid across the Australian con-
tinent (Minty et al., 2009).

The third ancillary data set was the average soil clay content at the
depth of 0–0.3m (from Soil and Landscape Grid of Australia). It was cal-
culated using clay content at three depth intervals (i.e. 0–0.05,
0.05–0.15 and 0.15–0.3 m) from a 90 m × 90 m grid (Grundy et al.,
2015) and was extracted onto the same 25 m × 25 m grid using the
nearest-neighbour algorithm. The clay content data was estimated
using the Australian soil site collation database (Searle, 2014) and vari-
ous environmental covariateswith amachine learning algorithmor dis-
aggregating existing soil maps (Grundy et al., 2015). We chose this



Fig. 1. a) Google Earth imagery, b) locations of the sampling grid and initial samples, and c) contour plot of Gamma-ray potassium measured using the on-the-go soil sensing platform
(Gamma-K-ground, %) across the study area the University of Sydney farm, Nowley, New South Wales, Australia. Note: the coordinate system is in Universal Transverse Mercator
(UTM), Zone 56S.
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depth because it was consistent with the effective measuring depth of
Gamma-ray data (Minty, 1997).

2.4. An adaptive sampling algorithm

We used different sampling approaches to sample the Gamma-K
data from the grid of Gamma-K-ground (assuming no measurement
error) and estimate the target soil variable (i.e. Gamma-K-ground)
across the grid based on spatial models established using the samples
independently or in combination with prior information. The flowchart
of the algorithm is provided in Fig. 2.

First, we started with 10 initial soil samples observed across the
study area. These 10 samples were chosen using the k-means clustering
of the X- and Y- coordinates of data points from the 25 m × 25 m grid



Fig. 2. Flowchart of the adaptive prior-based sampling scheme.
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and the centres of the 10 clusters were used as the first 10 initial sam-
pling locations. The k-means clustering of the X- and Y- coordinates en-
abled the determination of the initial sampling locations using a regular
grid sampling approach to cover the field as evenly as possible. The
Gamma-K-ground measurements at these 10 sampling locations were
stored for the next step.

Second, the algorithm attempted to calculate the spatial distribution
of the mean and variance of the target soil variable (i.e. Gamma-K-
ground) using 10 initial soil samples and prior information from each
of the ancillary data (i.e. PRP-1 m ECa, Gamma-K-air, or clay content)
as a covariate in turn. A linear mixed model (LMM) was used to predict
the spatial distribution of the soil variable and can be described using
the following equation:

y ¼ βXþ ηþ ε ð1Þ

where y is the target soil variable, X are the covariates (i.e. PRP-1 m
ECa, Gamma-K-air, or clay content) at sampling locations. β represents
the coefficients to be fitted and η and ε represent spatially correlated er-
rors (Lark et al., 2006). The parameter fitting was carried out using the
residual maximum likelihood with the geoR package (Ribeiro and
Diggle, 2001). Once the parameters of the LMMs were determined, the
mean and variance of prediction of Gamma-K-ground were calculated
across the 25 m × 25 m grid using gstat package in the R software
(Pebesma 2004; Lark and Cullis 2004).

Third, the adaptive sampling algorithmaims at determining the next
sampling location (i.e. the 11th sample). This was based on the predic-
tion variance (Var) of the universal (LMM) kriging, which was the sum
of the regression variance and the kriging variance. If the covariate is
strongly/moderately correlatedwith themodel response, the prediction
is mainly based on the regression and the kriging variance will be small.
Otherwise, the prediction will be mainly based on kriging, and the
kriging variance will be large. The algorithm selects the location with
the largest Var as the next sampling location (i.e. the 11th sample). Sim-
ilarly, the Gamma-K-ground measurements at the sampling locations
was used as the measured model response. Along with the previous
10 samples, a new LMM was fitted using all the 11 samples and the
mean and variance of prediction were updated across the grid using
universal kriging.

Next, the algorithm aimed at selecting the subsequent sampling lo-
cation (i.e. 12th sample). This time, an additional criterion was added,
which was the total time taken for the soil sampling (T(sampling))
and travelling from the current sampling location to the next sampling
location (T(travelling)). The new objective function (i.e. time-weighted
prediction variance, O(Var)) would penalise locations with largest
travel time when comparing the updated variance across the field and
became:

O Varð Þ ¼ Var
T samplingð Þ þ T travellingð Þ �weight

ð2Þ

Similarly, Var was the updated prediction variance from the previ-
ous kriging variance; T(sampling) was 5 min, the time needed to take
a measurement from the on-the-go soil sensing system; T(travelling)
was calculated using a travelling speed of 5 m/s; the weight was 1.2,
which was empirically determined to scale and balance T(sampling)
and T(travelling). In this study, we assumed that the time required to
collect a soil sample and analyse the target variable was in the same
order of that needed for the “robot” surveyor to travel from one location
to another location.

Based on Eq. (2), the algorithm selected the next sampling location
with the largest ratio of the newly updated variance to the sum of sam-
pling and travelling time. This indicated that instead of travelling to the
location with the largest variance as before, the “smart autonomous”
surveyor from now on would travel to a location with relatively large
variance but within a shorter distance to minimise the mapping vari-
ance within a given amount of sampling and travelling time. Similarly,
the Gamma-K-ground measurements at the sampling locations was
used as the measured model response. Then a new LMM was fitted
using all the samples and the mean and variance of prediction were up-
dated again. This process continued until the total time limit ran out. In
this process, we selected 100 additional samples using the adaptive
sampling algorithm and compared the different results by using each
of the covariates (i.e. PRP-1 m ECa, Gamma-K-air, or clay content) indi-
vidually in turn.

2.5. Regular grid and simple random sampling designs

To compare the performance of the adaptive soil sampling, regular
grid sampling and simple random sampling schemes were also used.
The grid sampling was carried out with the same approach used to
choose the 10 initial sampling locations by clustering the X- and Y- co-
ordinates. First, the total number of additional samples would be cal-
culated that could be collected within the time limit. For example, if a
total of 20 additional samples could be collected, the algorithm would
re-cluster the X- and Y- coordinates of the whole field into 20 classes.
The centroids of the 20 classes would be used as the locations of the
new 20 samples. Given that two sets of samples were used, the overall
sampling scheme was a mixture of two grid samples. Along with the
previously collected 10 samples (see Section 2.4), all the samples col-
lected were used to fit an LMM. Unlike the adaptive sampling that
used ancillary data as covariates, only the X- and Y- coordinates
were included in the LMM. This was done to remove the trend of
the model response. To compare with the adaptive sampling algo-
rithm, we calculated the mean and variance of prediction of
Gamma-K-ground across the grid using a series of additional samples
(from 1 to 100).

In terms of the simple random sampling, the algorithm first de-
termined how many samples could be collected within the time
limit. After that, a simple random sampling scheme generated by
the “sample” function of the R package was used to select the



Fig. 3.Contour plots of various ancillary data used as prior information and including; a) apparent electrical conductivitymeasured byDUALEM1-mperpendicular coil array (PRP-1mECa,
mS m−1), b) gamma-ray potassium obtained from the national airborne radiometric map (Gamma-K-air) (%), and c) average clay content at 0–0.3 m (%) calculated using the Soil and
Landscape Grid of Australia.
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given number of samples. Along with previously selected 10 sam-
ples on the grid, all the samples were used to fit an LMM. Similarly
to grid sampling, X- and Y- coordinates were included in the LMM
as covariates. To compare with the adaptive sampling algorithm,
mean and variance of prediction of Gamma-K-ground across the
grid were also calculated using a series of additional samples
(from 1 to 100).
2.6. Evaluating the impacts of sampling size

The impacts of sampling sizes on various algorithms were evaluated
using several metrics between the Gamma-K-ground interpolated
across the grid and predicted Gamma-K-ground by the LMMs. These in-
clude R2, concordance correlation coefficient (Lin 1989), mean error
(ME) and root mean square error (RMSE).



Table 1
Statistics of covariates collected across the field and the correlation coefficients.

N Min Mean Median Max SD Skewness CV%

Gamma-K-ground (%) 1350 0.16 0.23 0.23 0.29 0.02 0.18 9.5
PRP-1 m ECa (mS m−1) 1350 16.2 54.0 50.7 104.7 16.5 0.38 30.5
Gamma-K-air (%) 1350 0.28 0.53 0.54 0.74 0.08 −0.40 15.4
Clay content (%) 1350 35.7 39.3 39.3 45.8 1.6 0.56 4.0

Pearson's r Gamma-K-ground PRP-1 m ECa Gamma-K-air Clay content
Gamma-K-ground –
PRP-1 m ECa −0.50 –
Gamma-K-air 0.39 −0.43 –
Clay content 0.27 −0.23 0.30 –
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3. Results and discussion

3.1. Spatial distribution of the target soil variable

Fig. 1c shows the pattern of Gamma-K-ground. Note that small
Gamma-K-ground values (b0.21%) were identified in the centre of the
field, as well as along the southern margin of the field. The variations
of Gamma-K values indicate variations of soil properties at the field
scale,whichmay be caused by spatial variations of parentmaterials dur-
ing the alluvium deposition process and their different weathering sta-
tus (Wilford, 1995; Triantafilis et al., 2013).

3.2. Spatial distribution of different covariates

Fig. 3 shows the spatial distributions of ECa, Gamma-K-air, and clay
content. The patterns of these environmental covariates were similar
to that of the Gamma-K-ground. As shown in Table 1, ECa was most
strongly correlated with Gamma-K-ground (r = −0.50), followed by
Gamma-K-air (0.39), and clay content (0.27). The differences in correla-
tion between different covariates with Gamma-K-ground are due to the
different measuring depths of the instruments/soil maps as well as the
different responses of electrical magnetic fields and gamma-ray emis-
sions to soil properties. Similar correlations were identified in other
studies between Gamma-K-ground data with soil clay content (e.g.
Petersen et al., 2012; Spadoni and Voltaggio, 2013) and ECa (e.g. Piikki
et al., 2013) although the correlation coefficients varied from site to
site. Because of the different correlation coefficients between covariates
andGamma-K-ground, it is expected that LMMs built using different co-
variates will have different performance in predicting Gamma-K-
ground.

3.3. Model performance: adaptive sampling vs. grid sampling and simple
random sampling

Fig. 4 shows the model performance for adaptive sampling and the
grid sampling. As indicated by coefficient of determination (R2) and
Lin's concordance (Fig. 4a), adaptive sampling schemes with a moder-
ately correlated covariate (ECa) outperformed grid sampling scheme
when the size of additional samples was small (b15). However, when
the additional sample size was greater than 15, the grid sampling
scheme was better than the adaptive sampling scheme. When the sam-
ple size was large (N80), both sampling schemes performed well (R2 =
0.8, concordance= 0.85). Similar patterns were observed for RMSE be-
tween the adaptive sampling scheme and grid sampling scheme. This
suggested that in terms of model accuracy, adaptive sampling with a
moderately correlated covariate (i.e. ECa) was superior to grid sampling
schemewhen the additional sampling sizewas small (b 15), worse than
the grid sampling when the sampling size was intermediate (15–80),
and equivalent to the grid sampling when the sampling size was large
(N80).

However, model bias (mean error, ME) had shown different results
among the sampling algorithms. Adaptive sampling with a moderately
correlated covariate (i.e. ECa) had a larger ME (0.003–0.008%) than
grid sampling (0.003–0.006%) when the additional sampling size was
small (b15), while it had a smaller ME (−0.001–0.002%) than the grid
sampling (−0.002–0.003%) when the additional sampling size was in-
termediate to large (15–80).

Fig. 4 also shows the model performance for adaptive sampling and
the simple random sampling. When a moderately correlated covariate
was used (i.e. ECa), the adaptive sampling scheme was better than the
simple random sampling scheme for all the metrics (i.e. R2, concor-
dance, ME, RMSE).

3.4. Model performance: adaptive sampling using different priors

When different covariates (prior information) were used, the adap-
tive sampling schemes showed different performance. As shown in
Fig. 4, when the covariate was moderately correlated with the target
soil variable (i.e. ECa), the model performance was good (R2 N 0.65
and concordance N0.8 when sample size N30). However, when the co-
variate wasweakly correlatedwith the target soil variable (i.e. clay con-
tent), the model performed poorly (R2 b 0.6 and concordance b0.75
when sample size = 20–30), worse than the grid and simple random
sampling schemes. In this case, the prior information (i.e. clay content)
did not reflect the actual variation in the target soil variable (Gamma-K-
ground).

It should also be noted that the effect of prior information decreased
as the sampling size increased. This was not unexpected because with
increasing sampling size, the regression error remained relatively con-
stant while the kriging error decreased significantly. As such, the total
error would be reduced when the additional sampling size was large
enough (N80) and the LMMs performed similarly well with the grid
sampling scheme.

3.5. Spatial distribution of the samples from different sampling schemes

The spatial distributions of different sampling schemes are pre-
sented in Fig. 5. Compared to the regular grid sampling and the simple
random sampling, the adaptive sampling schemes tend to generate
samples that were unevenly distributed across the field. This was be-
cause the sampling selection process of the adaptive sampling was
driven by the minimizing model error within a given time interval. In
general, the samples at the edge of the field were first selected to mini-
mise themodel error that is mostly attributed to kriging error. Once the
samples at the edge of the field were selected, the samples in the centre
were then selected. This implies that the current adaptive sampling
tends to cause clustering of the samples.

The quality of the prior information had an influence on the sam-
pling selection process. When the covariate was moderately correlated
with the target soil variable (i.e. ECa), the samples were relatively well
distributed across the field. When the covariate was weakly correlated
with the target soil variable (i.e. clay content), the samples weremainly
located at the edge of the field. In this case, the prior information
contained little useful information for the LMM and the minimization



Fig. 4.Model performance of various sampling algorithms versus sampling size and including; a) R2, b) concordance correlation coefficient, c) mean error (%), and d) root mean squared
error (%). Note: Lines with different colours represent models established using different sampling algorithms, including grid and simple random sampling, adaptive sampling with
covariates of different quality (e.g. PRP-1 m ECa, Gamma-K-air, and clay content).
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Fig. 5. Spatial distribution of the common initial 10 samples and 20 additional samples collectedusing different sampling algorithms and including; adaptive samplingwith a) PRP-1mECa,
b) Gamma-K-air, and c) clay content, and d) grid sampling and e) simple random sampling.
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Table 2
Comparison of different sampling schemes used in this study.

Sampling
schemes

Sampling
locations

Use of prior
information

Prediction accuracy with
small sampling size

Modification/addition of
new samples

Travel time during
sampling

Grid Fixed No Low Difficult Short
Random Fixed No Low Difficult Short
Adaptive Adaptive Yes High Easy Long
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ofmodel error wasmostly due to the reduction of kriging error. As such,
the algorithms tend to select samples at the edge of thefield to achieve a
better estimation of the target variable within a target time limit.

In addition, it should be noted that the number of initial sampleswas
set to 10. In this study, we did not investigate the number of initial sam-
ples for the configuration of the adaptive sampling scheme because the
sampling locations would also vary with the quality of the covariates. It
is expected that an increase of initial samples will improve the model
performance (e.g. R2) when the sample size is small (b15). Afterwards,
the rate of increasing model performance with increasing sample size
will become slightly smaller (approaching to the maximummodel per-
formance) for the large initial sample size as compared to that under a
small initial sample size.

3.6. Advantages and disadvantages of different sampling schemes

The comparison between different sampling schemes are presented
in Table 2. Compared to traditional grid-based and simple random sam-
pling schemes, the adaptive sampling schemes used in this study have
some advantages. First, the adaptive samplingmakes use of the prior in-
formation of the field and generates more accurate estimation of target
soil properties when the sampling size is small (b15). This suggests that
the adaptive sampling schememay reduce the sampling cost when the
sampling process (“ground-truthing” or “labelling”) is time-consuming
and cost-prohibitive.

Secondly, the adaptive sampling scheme is adaptive. This enables
subsequent sampling effort to be made when previous sampling
schemes do not achieve a satisfactory model performance. This is not
applicable to the traditional grid sampling scheme whereby adding
new samples to the existing samples will change the whole sampling
design.

There are a few disadvantages of the adaptive sampling scheme.
First, the adaptive sampling scheme may generate predictive models
that are biased when the sampling size is (too) small. When the trav-
elling time is a limiting factor, the adaptive sampling scheme is worse
than a regular grid sampling. This is because the adaptive sampling
scheme will firstly select the points at the edges of the field repre-
sented by large kriging variance values and prioritize the points closer
to the previously selected points when the travelling time becomes
too long.

Secondly, the adaptive sampling scheme may expend more travel-
ling time as compared to the grid and simple random sampling
schemes. In theory, a shortest route can be calculated and implemented
by a robot to survey the whole field within a time limit when the total
number of samples are determined by the regular grid and simple ran-
dom sampling schemes. However, this cannot be done for the adaptive
sampling scheme because the location of the subsequent samples are
not known a priori, it is determined from the previously collected sam-
ples and prior information. This may lead to a potential drawback of the
algorithmwhen the travelling time is a limiting factor than the sampling
cost (e.g. travelling on tough terrains or via airborne remote sensing
platforms). An alternative non-adaptive sampling approach can be
found in Brus and Heuvelink (2007) where simulated annealing was
used to reach a balance between optimisation of the sample pattern in
geographic and feature space by minimizing the spatial average (or
sum) of the universal kriging variance at points. As the samples are se-
lected to cover the geographic space, the total travelling time can be
short for this non-adaptive sampling approach (Brus and Heuvelink,
2007).

Thirdly, the current adaptive sampling scheme tends to visit the
edges of the field first due to the model uncertainty estimated by a
kriging approach. This is not ideal and could be modified in the future
by replacing the kriging approach with some machine learning algo-
rithms that do not have an edge effect. This aspect requires further in-
vestigation. One potential solution is to use algorithms such as
quantile random forest (Meinshausen, 2006; Vaysse and Lagacherie,
2017) so thatmodel uncertainty (not affected by the location of existing
samples) can be calculated across the field and used to guide the deter-
mination of the subsequent samples.

Lastly, the current adaptive sampling scheme and the linear mixed
model treat all the covariates (prior information) equally regardless of
their quality (correlations with the target variables). Future work can
be done to use Bayesian frameworks to include the uncertainty of the
prior information in the predictive models (Vrugt et al., 2009; Yang
et al., 2015). In addition, non-linear regression models to account for
the complex relationship between target soil variables and covariates
(Archontoulis and Miguez, 2015). This would make the adaptive sam-
pling algorithm more widely applicable.

3.7. Caveats and implications for automated agricultural management

In general, the adaptive sampling scheme can be used when the rel-
ative travelling time is short. When the sampling cost is high, the adap-
tive sampling scheme used in this study can produce more accurate
(smaller RMSE) but more biased (larger ME) estimations of the target
variables. The adaptive sampling can also be used when continuous
monitoring of variables is needed whereby subsequent samples can be
designed based on the previous samples to minimise the total model
error, such as soil quality monitoring (Morvan et al., 2008) and census
(Brawn and Robinson, 1996).

4. Conclusions

A prior-based adaptive adaptive sampling algorithm was evaluated
in comparison with the grid sampling and simple random sampling
for automated environmental management. We conclude:

• The adaptive sampling scheme was superior to the grid and simple
random sampling schemes in terms of the accuracy of the linear
mixedmodel when the sampling sizewas small (b 15 additional sam-
ples) due to the use of prior information that waswell correlatedwith
the target soil variable.

• The accuracy of the linear mixed models associated with the adaptive
sampling schemes deterioratedwhen the correlation between the tar-
get soil variable and the prior information decreased.

• The algorithm has the potential to be applied elsewhere for auto-
mated adaptive sampling design when sampling cost is expensive
and travelling time of the sensor is small.
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