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Soil water directly or indirectly affects almost all ecological processes. Soil available water capacity (AWC), the
difference between field capacity, or drained upper limit (DUL), and wilting point, or lower limit (LL15), and sat-
urated water content (SAT) are among the most important soil hydraulic properties controlling soil water dy-
namics. These properties vary across space and are expensive to measure directly. It is difficult to obtain
reliable estimates of soil hydraulic properties at an appropriate scale for water and land management. Here we
modelled LL15, DUL, SAT and AWC measurements from 1127 whole-soil profiles across Australian agricultural
areas with the Random Forest machine learning model using 19 bioclimatic and 15 topographical covariates.
The amount of variance explained by the model reached up to R2 = 0.69 depending on the property and soil
depth assessed. For all soil hydraulic properties, the bioclimatic variables alone contributed to more than 90%
of the explained variance. Particularly, temperature of driest and wettest quarter, and precipitation of warmest
month were the three most influential variables. Using the derived models, we also mapped the four hydraulic
properties across Australian agricultural areas in six sequential depths down to 2 m at a spatial resolution of
90m.Moreover, we combined ourmapping of AWCwith existing products via an ensemblemodel averaging ap-
proach which proved to be more accurate than each of the three contributing products. Our results uncover the
significant role of bioclimatic variables in regulating soil hydraulic properties, providing a benchmark assessment
of soil hydraulic properties in agricultural regions for efficient water-related land management.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Soil water influences almost every aspect of ecosystem behaviour,
from water quality to soil fertility, from organic matter decomposition
to plant growth (Weil and Brady, 2016). Accurate information about
soil hydraulic properties is fundamental for the assessment of soil
water dynamics and their interactions with ecological processes as
well as for sustainable water and land management. Due to the high
spatial variability in soil hydraulic properties even at the scale of several
meters (Nielsen et al., 1973; Russo and Bresler, 1981), direct measure-
ments via soil sampling are difficult, time-consuming, and therefore ex-
pensive, particularly across large extents.

A common approach for the prediction of soil hydraulic properties is
via pedotransfer functions (Bouma, 1989; Wösten et al., 2001), which
use relatively easier-to-measure soil properties as predictors such as
soil bulk density, particle size distribution and organic matter (Gupta
and Larson, 1979; Arya and Paris, 1981; Saxton et al., 1986; Schaap
e).
et al., 1998; Reynolds et al., 2000; Merdun et al., 2006; McNeill et al.,
2018). One issue, however, is that pedotransfer functions developed
from a specific soil database may produce poor results when the func-
tion is applied to other soils which the database cannot represent or
without measurements of predictors, i.e., they often do not generalise
very well. An alternative approach proposes that vegetation dynamics
can signal soil hydraulic properties (Mohanty and Skaggs, 2001; Araya
et al., 2016). But such vegetation signals are hard to detect due to con-
founding effects of various environmental constraints (e.g., soil nutrient,
natural and anthropogenic disturbances) and species-specific responses
of plants to soil water dynamics (Martínez and Gilabert, 2009;
Verbesselt et al., 2010). Due to the shortcomings of these approaches,
a more reliable approach independent of other soil properties and/or
using readily available data resources is required for prediction of soil
hydraulic properties at a resolution that is appropriate for soil
management.

Soil hydraulic properties are closely associated with soil physical
properties such as particle size distribution (i.e., texture), which in
turn are influenced by five factors controlling soil formation (Jenny,
1941); namely, parent materials, climate, biota, topography and age
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(Weil and Brady, 2016). These factors influence soil properties in con-
cert. Among these factors, climate and topography are fundamental
controls of soil hydraulic properties. Covariates representing these
two factors are plentiful and most easily obtainable (thanks to the cli-
mate station networks across the globe and the advancement of cli-
mate models and satellite-based observations). Other variables such
as gamma radiometrics – used as a proxy variable for parent material
and to some extent, age – is also commonly used when it is of good
quality, in terms of information content, as is generally the case across
Australia (Minty et al., 2009). These data together with associated de-
rivatives have been used in digital soil mapping studies within
Australia, and specifically for the mapping of soil physical and hydrau-
lic properties too. Key examples include Viscarra Rossel et al. (2015)
as the basis for the Soil and Landscape Grid of Australia (Grundy
et al., 2015) where multiple soil variables including AWC were
mapped across Australia, consistent with the Global Soil Map specifi-
cations (Arrouays et al., 2014) in terms of spatial and depth support
and the quantification of uncertainties. Padarian et al. (2014) used a
suite of variables including topography, climate and gamma radiomet-
ric data to estimate and map the spatial variability of crop lower limit
(CLL), DUL and AWC across Australia’ agricultural zone. The spatial
and depth support of these products were consistent with those of
Viscarra Rossel et al. (2015).

While keeping these existing studies of the digital mapping of AWC
inmind, a lot of our focus in this study is the nature of the climatic infor-
mation used in digital soil mapping (DSM) where we believe more nu-
anced information regarding this soil forming factor may confer
improved prediction of soil hydraulic properties. Climate covariates
have been used in continental scale spatial modelling and DSM
(Viscarra Rossel et al., 2015; Brevik et al., 2016) but only few key cli-
matic variables such as annual mean precipitation and temperature,
Table 1
Bioclimatic and topographic variables used in the modelling.

Theme Variable Definition

Temperature T1 Annual mean temperature
T2 Mean diurnal range calculated as the mean of monthly differenc
T3 Isothermality calculated as 100 × T2/T7
T4 Temperature seasonality calculated as standard deviation × 100
T5 Max temperature of warmest month
T6 Min temperature of coldest month
T7 Temperature annual range calculated as the difference between
T8 Mean temperature of wettest season
T9 Mean temperature of direst season
T10 Mean temperature of warmest season (i.e., summer)
T11 Mean temperature of coldest season (i.e., winter)

Precipitation P1 Annual precipitation
P2 Precipitation of wettest month
P3 Precipitation of driest month
P4 Precipitation seasonality (coefficient of variation)
P5 Precipitation of wettest season
P6 Precipitation of driest season
P7 Precipitation of warmest season (i.e., summer)
P8 Precipitation of coldest season (i.e., winter)

Topography Aspect The direction in which a land surface slope faces expressed in de
fm 300 m focal median of percent slope
fr1000 1000 m elevation range
fr300 300 m elevation range
mrRTF Multi-resolution ridge top flatness
mrVBF Multi-resolution valley bottom flatness index
PI The Prescott Index
planC Plan curvature
profileC Profile curvature
SD Mean monthly solar radiation
SP Percent slope
SR Slope relief
TPIc Topographic position index, a topographic position classification
TPIm A mask of TPIc identifies where topographic position cannot be r
TWI Topographic wetness index calculated as ln(specific catchment a

catchment
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mean annual maximum and minimum temperatures and solar radia-
tion have been considered. As climate shows strong intra- and inter-
annual variability, the role of climate would be largely underestimated
by climate variables (e.g., mean annual temperature or precipitation)
which cannot holistically reflect such variability.

Given the direct effect of climate as well as its indirect effect via reg-
ulating biota (e.g., the distribution of biomes) and weathering of paren-
tal materials, the proposition of this study is that models explicitly
accounting for inter-annual and seasonal variability of climate may en-
hance the predictability of soil hydraulic properties. This hypothesis is
borne from the generalisation that the Australian land surface is very
flat and geologically very old and has been subject to intensive and
prolonged weathering. Consequently, Australian soils are likely to be
less affected by other confounding factors such as modern geologic
activities-induced transportation and translocation (Johnson, 2009).
By focusing on only agricultural regions, taking into account the poten-
tial influence of intra- and inter-annual variability of climate might
largely improve the prediction.

Using a comprehensive data set of measured soil hydraulic
properties in 1127 whole-soil profiles across Australian agricul-
tural soils, we tested our hypothesis on the role of climate variabil-
ity in improving spatial prediction of soil hydraulic properties.
Combining this data set with 19 biologically meaningful climatic
variables (i.e., bioclimatic variables, Table 1) calculated based on
historical climate records as well as topographic attributes
(Table 1), we trained a machine learning model to: 1) assess the
relative importance of climate and topography, 2) identify the
most influential variables assessed, and 3) map the four hydraulic
properties in the whole soil profile down to 2 m across the
Australian cropping region at 90 m grid cell resolution. From
these outcomes we used a model averaging approach to combine
Source

SILO
e of max and min temperature

T5 and T6

grees from north Gallant and Austin
(2015)

identifying upper, middle and lower parts of the landscape
eliably derived in low relief areas.
rea/slope) and estimates the relative wetness within a
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our own predictions with AWC outputs created in the Viscarra
Rossel et al. (2015) and Padarian et al. (2014) to generate what
would be considered the best possible estimate of this variable
given to date.

2. Materials and methods

2.1. Soil profiles and harmonization

This study used 1127 whole-soil profile data from across Australian
agricultural regions in the APSOIL database (http://www.apsim.info/
Products/APSoil.aspx). This database covers a broad range of climate
zones and terrain/landscape attributes (Fig. 1) and includes measure-
ments of three volumetric hydraulic properties (m3 water per m3

soil). They are wilting point, or lower limit (LL15), field capacity, or
drained upper limit (DUL), and saturated water content (SAT). We
also calculated soil available water capacity (AWC) as the difference be-
tween DUL and LL15. These soil profiles are all located on agricultural
land and have been accumulated since 1980s until now under enor-
mous efforts of field work. As the soil hydraulic properties in the
APSOIL database were not measured systematically across the same
depth intervals, we harmonized them to six standard depths
(i.e., 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and
100–200 cm) using mass-preserving splines (Bishop et al., 1999;
Malone et al., 2009) specified by the GlobalSoilMap project (Arrouays
et al., 2014). As AWC is more commonly expressed to farmers in
terms of mm of water (gravimetrically) rather than volumetrically, we
reported this variable in mm units, which is estimated by multiplying
the soil layer thickness by the soil water volume.

2.2. Bioclimatic and terrain covariates

We obtained daily weather data (including rainfall, maximum and
minimum temperature) in the period 1957–2017 from 8022 SILO cli-
mate stations across Australia (https://legacy.longpaddock.qld.gov.au/
silo/). Based on the climate data, we calculated 19 biologicallymeaning-
ful variables (i.e., bioclimatic variables) representing the intra- and
inter-annual climate variability (Table 1). Eleven of the19 bioclimatic
variables are temperature-related, and eight are precipitation-related.
Then,wemapped these bioclimatic variables by interpolating the calcu-
lations across Australia at the resolution of 3 arc-second (~ 90m)using a
hybrid regression kriging model that entailed generalised additive
modelling (GAM; Hastie and Tibshirani, 1990) and residual kriging.
For the GAM component, each bioclimatic variable was modelled as a
Fig. 1. Study region. Location of soil profiles and Australian agricultural regions (including
cropping and pasture areas).
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function of terrain and topo-climatic variables derived from the
Australian 3 arc-second digital elevation model (Geoscience Australia,
2010). Specifically, these predictor variables included: elevation, slope,
topographic wetness index and aspect. Through a series of cross-
validation steps for each bioclimatic variable we determined the opti-
mal level of wiggliness (Wood, 2011) to attribute to the smoothing
spline terms for each predictor variable in the model. In this cross-
validation we also assessed whether the relationship could simply be
determined by simple linear regression together with the smoothing
spline functions to come to the simplest or most parsimonious model.
Once fitted, the models were used to predict each bioclimatic variable
across the mapping extent given the grids of the predictor variables as
inputs. After the GAM fitting, model residuals were assessed for auto-
correlation via globally fitted variograms (herewe considered either ex-
ponential, spherical or Matern model parametrisations). The fitted
variograms were then used as input to krige model residuals onto the
same grid configuration as the GAM predicted bioclimatic variables.
The final step in this process was to add the GAM predictions with the
kriged residuals to derive a final map of each bioclimatic variable.

Themapping of the bioclimatic variables was completely performed
using R (R Core Team, 2018) with the following packages: gam (Hastie,
2018) andmgcv (Wood, 2011) for the GAMs and gstat (Pebesma, 2004)
for the variogram fitting and kriging. The raster (Hijmans, 2019) and
rdgal (Bivand et al., 2019) packageswere used for preparation and han-
dling of raster data layers and in the spatial application of both GAMand
residual kriging models. Finally, we extracted the 19 bioclimatic vari-
ables for the 1127 soil profiles from the maps.

For each of the soil profiles, we also extracted 15 topographic attri-
butes (Table 1) from maps estimated by the Shuttle Radar Topographic
Mission (SRTM) digital elevation model (DEM) at the resolution of ~3
arc-second (Gallant and Austin, 2015). The details of these topographic
attributes and maps were described by Gallant and Austin (2015).

2.3. Machine learning

To identify the most important bioclimatic and topographic vari-
ables, we trained a machine learning-based statistical model - random
forest (RF) - to predict LL15, DUL, SAT, and AWC at each of the six stan-
dard depths. Fundamentally, the RF model (Breiman, 2001) predicts a
typical soil hydraulic property (HP) in each depth as a function of biocli-
matic and topographic covariates:

HPk ¼ f topography, climateð Þ þ ε, ð1Þ

whereHPk is the target variable of either LL15, DUL, SAT, or AWC and ε is
model residuals. In brief, RF predictions are the average of predictions of
individual decision trees determined via bootstrap resampling. Before
training the RF model, we selected a subset of variables optimally suit-
able for predictingHPusing a variable selection (which is also called fea-
ture selection) algorithm. Variable selection is an important component
for finding relevant variables since it achieves parsimony(which in turn
reduces the computational effort) but potentially also improves the ac-
curacy of the machine learning algorithms (Nilsson et al., 2007). We
used the Boruta algorithm (Kursa and Rudnicki, 2010), which uses a
wrapper approach built around the random forest algorithm
(Breiman, 2001) to eliminate irrelevant variables. We executed Boruta
selection runs for each soil depth and each soil hydraulic property inde-
pendently using the package Boruta in R. The RF model was evaluated
using a 10-fold cross-validation repeated 10 times in R 3.3.1 (R Core
Team, 2018) using the algorithms implemented in the R package ranger
(Wright and Ziegler, 2017). The best model tuning parameters were
targeted by running the model under a series of parameter combina-
tions. The model performance was assessed by the root mean squared
error (RMSE) which quantifies prediction accuracy, the coefficient of
determination (R2) which quantify the amount of variance explained
in the relationship between observed target variables and their
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correspondingmodelled predictions. The final model was selected with
the minimum RMSE.

To derive the controls and the relative importance of individual pre-
dictors, we calculated the overall variable importance for each soil hy-
draulic characteristic in each soil depth, with the varImp function in
the caret library of the R software (Kuhn et al., 2019). The function com-
putes a linear combination of all predictor variables used in the RF algo-
rithms and reports the percent variable importance. Focusing on the
identifiedmost important predictor variable, we also conducted a linear
regression analysis to detect its first-order relationship with the corre-
sponding soil hydraulic characteristic.

2.4. Mapping soil hydraulic properties and prediction uncertainty

Using the random forest model, we mapped the four soil hydraulic
properties in the six standard layers across the Australian agricultural
regions at the resolution of 3 arc-second (~90 m) grid using the com-
piled terrain and bioclimatic raster data sources. Prediction uncertainty
was quantified using a Monte Carlo approach proposed for digital soil
mapping with machine learning by Viscarra Rossel et al. (2014a,
2014b, 2015) and Coulston et al. (2016). First, 200 bootstrap samples
of soil profiles were randomly drawn with replacement to construct
200 random forest models. For each bootstrap resample, 90% of the
data (randomly selected without replacement) was used to train a ran-
dom forest model with 200 individual trees, while the leftover 10% was
held-out formodel testing. For each derived random forest model, then,
a scaling factor τ for each observation in the hold-out testing data was
estimated to approximate prediction uncertainty (Coulston et al.,
2016):

τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−by� �2

var by� �
vuuut , ð2Þ

where y is the observed value, var by� �
the variance of the predictions of

individual trees (i.e., 200 trees) in the random forest model, by the aver-
age of by, i.e., the prediction of the random forest model. As such, we ob-
tained a vector of τ with a length of the number of observations in the
hold-out data multiplied by bootstrapping times 200, which represents
the distribution ofmodel prediction errors. Finally, a new random forest
model based on all available data was trained for mapping. In each grid,
soil hydraulic property HP was estimated as:

HP ¼ by� bτ∙sd by� � ð3Þ

where by is the prediction of the new random forest model, sd by� �
the

standard deviation of the predictions of individual trees in the new ran-
dom forest model, bτ the scaling factor for desired prediction interval
width estimated based on the derived distribution of model prediction
errors. Using a Monte Carlo approach, we took the 95% percentile of
the distribution as bτ to quantify the 95% prediction interval (Coulston
et al., 2016). In each grid, uncertaintywas standardized as the half range
of the 95% prediction interval divided by the mean (i.e., by).
2.5. Model averaging

Acknowledging prior efforts that have already mapped AWC either
across Australia (Viscarra Rossel et al., 2015) or Australia's agricultural
region only (Padarian et al., 2014), we sought to integrate these with
our own efforts into a model averaging framework. The main idea be-
hind model averaging is to deliver an outcome, in our case, maps of
AWC, that are either better than or equivalent to, (in terms of accuracy)
the best contributing map (Malone et al., 2014). Diks and Vrugt (2010)
provided extensive discussion and examples of different model averag-
ing frameworks. Each has a fundamental basis in that a combined out-
come is the result of competing contributor outcomes, each weighted
4

according to some measure of accuracy or prediction certainty. Note
that in some cases, preferential weighting is not given and instead,
each contributingmodelmay be given equalweighting. However, prob-
ably the simplest known preferential weighting method is the variance
weighted model average approach (Bates and Granger, 1969). In the
work by Padarian et al. (2014) they experimented with equal weight
averaging and Granger-Ramanathan averaging (GRA; Granger and
Ramanathan, 1984). GRA is a special case where instead of all the con-
tributing model weights summing to 1, the weights correspond to ordi-
nary least square (OLS) estimates of a multiple linear regression
between a target variable and predictor variables. In our case the target
variable is spline processed AWC values, and predictor variables are the
predicted outcomes of each of the contributing models at each corre-
sponding point. Given the relative simplicity of the GRA approach and
its relatively good performance in past studies (Diks and Vrugt, 2010;
Malone et al., 2014), we use it in this study also where:

Y ¼ W0 þ AWCmal∙Wmalð Þ þ AWCpad∙Wpad
� �þ AWCslga∙Wslga

� � ð4Þ

Here Y is observed AWC data (for a given depth layer) and AWCmal,
AWCpad, and AWCslga are corresponding modelled predictions from this
present study, Padarian et al., 2014, and Viscarra Rossel et al. (2015) re-
spectively. Eq. (4) is used to solve for the parameters: W0, Wmal, Wpad,
andWslga .W0, the intercept term is an ‘in-built’ bias correction term be-
tween the observed values and the individual model predictions. Once
this model is fitted, given the availability of the Viscarra Rossel et al.
(2015) data from the CSRIO Data Access Portal (https://data.csiro.au/
dap/search?q=TERN+Soil) and from Padarian et al. (2014) via per-
sonal communication, it is used as a ‘global’ model to derive the com-
bined digital soil map of AWC for each of the prescribed soil depth
intervals. Note that as the digital mapping of all three products were
more-or-less identical in terms of spatial and depth support, minimal
processing of the raster datawas required to fulfill the last step of apply-
ing the GRA model spatially. The spatial extent of the mapping for the
different products were somewhat different due to methodological dif-
ferences in terms of delineating Australia's agricultural areas.While this
is a non-issue for the Viscarra Rossel et al. (2015) where the entire con-
tinent is mapped completely, the Padarian et al. (2014) mapping en-
compasses agricultural land and nearby surrounding areas that may
not be classified as Agricultural land according to ABARES (2011),
which is what we used in the present study to delineate the mapping
extent. Therefore, the spatial application of the GRA model is extended
to the areas where there were modelled predictions for each of the
three contributing sources only.

Given differences in terms of data used for model calibration and
cross-validation between each of the three studies, all the available
data (n = 1127) was used for the GRA model. However, repeated
(5000 iterations) cross-validation was used to assess the sensitivity of
the model parameters to different dataset configurations. We found
there to be tight distributions around the means of each parameter,
and consequently used these for the spatial prediction component.
The predicted values from both the Padarian et al. (2014) and Viscarra
Rossel et al. (2015) maps were acquired at each of the point locations
using the raster::extract (nearest neighbour) function (Hijmans, 2019)
in R.

3. Results and discussion

Cross-validation results suggest that the random forestmodel driven
by 19 bioclimatic variables and 15 terrain attributes returned R2 out-
comes (modelled predictions vs. observed data) of between 20 and
69% for the four soil hydraulic properties depending on soil depth inter-
val considered (Table 2). The modelling better explains LL15 and DUL,
comparedwith SAT andAWC(Table 2). It is generally found that soil hy-
draulic characteristics in deeper soil layers are more difficult to explain
as evidenced by the decreased R2with soil depth (Table 2). In particular,
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Table 2
Cross-validation statistics of model performance. The statistics are the coefficient of deter-
mination (R2) and the root mean squared error (RMSE).

Variable Soil depth (cm) R2 RMSE

LL15 (m3/m3) 0–5 0.681 0.0471
5–15 0.666 0.0473
15–30 0.615 0.0511
30–60 0.549 0.0551
60–100 0.498 0.0564
100–200 0.512 0.0561

DUL (m3/m3) 0–5 0.688 0.0720
5–15 0.676 0.0713
15–30 0.629 0.0738
30–60 0.620 0.0706
60–100 0.574 0.0691
100–200 0.547 0.0676

SAT (m3/m3) 0–5 0.391 0.0587
5–15 0.436 0.0559
15–30 0.452 0.0564
30–60 0.453 0.0533
60–100 0.403 0.0524
100–200 0.381 0.0517

AWC (mm) 0–5 0.410 2.66
5–15 0.440 4.86
15–30 0.366 7.16
30–60 0.327 13.64
60–100 0.284 19.27
100–200 0.209 51.21
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R2 decreased from ~0.41 for AWC in the top 0–5 cm soil layer to ~0.20 in
the 100–200 cm soil layer (Table 2). For model accuracy (i.e., RMSE),
those results follow the similar pattern to the R2 results (Table 2).

The relative importance analyses revealed that bioclimatic variables
(which contribute >90% to the explained variances) aremuchmore im-
portant than topographic variables (Fig. 2). For all four soil hydraulic
properties in all soil layers, the most important variable was climate-
related. However, neither T1 (i.e., annual mean temperature) nor P1
(annual mean precipitation) were the most important climate variable.
Rather, T8 (mean temperature of wettest quarter), T9 (mean tempera-
ture of driest quarter) and/or P7 (precipitation of warmest quarter)
were the three most influential variables depending on soil hydraulic
characteristic and soil depth (Fig. 2). Fig. 3 shows the linear relationship
between soil hydraulic characteristics in each layer with their corre-
sponding most influential predictor variables. The results indicated
Fig. 2. Relative importance of bioclimatic and topographic covariates. The relative
importance of bioclimatic and topographic variables in predicting LL15, DUL, SAT and
AWC in different soil layers. All values are normalized to the most important variable.
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that LL15, for example, in the top 0–5 cm soil is positively correlated
with T8, which alone can explain 50% (R2= 0.5) of the variance (Fig. 3).

Using the derived random forest model and taking into account the
uncertainty in predictions, wemapped the four soil hydraulic character-
istics for the six soil layers at the resolution of 3 arc-seconds (~90 m)
across the whole Australian agricultural region. Across the region, the
LL15 in the top 0–5 cm soil layer ranges from 0.0136 m3/m3 to
0.296 m3/m3, showing a clear increasing pattern from west to east and
from south to north (Fig. 4). These maps also show the uncertainty of
the predicted four hydraulic properties which is calculated as the half
range of 95% prediction interval divided by the mean. The spatially ex-
plicit analysis provides a unique inventory to derive soil hydraulic char-
acteristics adequately along the soil profile. Note for better visualisation
of the maps, we show only the outputs corresponding to the 0-5 cm
only (Fig. 4). The supplementary figures sections contain maps for all
variables at each depth with their associated uncertainty estimates.

In general, LL15 increases with soil depth. In the 100–200 cm soil
layer, for example, the range of LL15 is increased to from0.0349m3/m3

to 0.394 m3/m3. The DUL and SAT across the region as well as in dif-
ferent layers generally shown the similar pattern as LL15. For the
AWC, the spatial distribution shows that the AWC is higher in east-
ern regions (e.g., New South Wales) than in western regions
(e.g., Western Australia).

While Table 2 summarises the model diagnostics based on cross-
validation outcomes, Table 3 however is based on all available data
and therefore the R2 and RMSE appear to show improvedmodel perfor-
mance of the processes conducted in this study. The intention here
however is to provide a side-by-side comparison between our estimates
with those from Viscarra Rossel et al. (2015) and Padarian et al. (2014)
and the combined model from GRA, and this is only really possible by
using all of the available data given differences between studies in
terms of data used in model calibration and cross-validations.

The results from this study are comparable with those from
Viscarra Rossel et al. (2015) where a full suite of predictive covariates
was used. The Padarian et al. (2014) results show for all depths less
accuracy than what was achieved in this study and from Viscarra
Rossel et al. (2015). The simple explanation for this is possibly differ-
ences in the data used for the modelling, where firstly the Padarian
et al. (2014) effort, 806 soil profiles were used from the APSOIL data-
base, whereas in the present study 1127 were used. Secondly, in the
present study we used LL15 for the dry end of the soil hydraulic prop-
erty whereas in Padarian et al. (2014) the CLL was used, and by defi-
nition were estimating plant AWC (PAWC) rather than AWC.
Therefore, estimates of AWC are going to differ as CLL is crop depen-
dent and measured in the field setting, while LL15 is a physical mea-
sure of the soil and measured in the laboratory. While this may be
true for most cases in the APSOIL database, we have since learned
(and noted for future investigations) that for many characterisations,
LL15 is an estimated parameter (derived from CLL) rather than mea-
sured (pers comm. K. Verburg), and it is unknowable to determine
which characterisation are measured or estimated due to issues with
data entry into the database. Strictly speaking the equitable approach
to combine outputs from the present study with those from Padarian
et al. (2014) would be to focus on the DUL variable, but for practical
reasons, AWC is a much more useful variable to investigate. The
third reason is that in both the present study and Viscarra Rossel
et al. (2015), AWC was modelled directly whereas in Padarian et al.
(2014) it was derived as the difference between DUL and CLL. To-
gether these similarities and differences equate to the present study
predictions being comparable to those from Viscarra Rossel et al.
(2015) whom used the same data, despite the present study using a
lesser range of predictive covariates, but more nuanced in terms of cli-
matic and temperature data characterisations.

Combining the threemodels usingGRAmodel averaging yielded im-
proved prediction accuracy for all depthswhichwas to be expected and
signifies the value in considering other covariates not used in this study



Fig. 3. Themost important variable among all assessed variables. The effect of themost important variable identified by random forestmodel on four soil hydraulic characteristics in six soil
layers. From left to right, LL15, DUL, SAT and AWC. From top to bottom, 0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm soil layers.
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such as gamma radiometrics and remote sensing data. This highlights
the value of the GRAmodel aswe don't necessarily need to explicitly in-
corporate these variables into the modelling procedure, but rather in-
corporate them indirectly via contributing models that use them
through the model combination process. Regarding the relative contri-
bution of eachmodel to theGRAmodels for each depth, Table 4 summa-
rises the OLS estimates of the weighting attributed to each contributing
model. Our interpretation of these parameter values is to compare them
relative to one another which after bias correction given by the W0 pa-
rameter, both the estimates for the present study and Viscarra Rossel
et al. (2015) are quite similar, meaning similar contribution to the
GRA estimates. On the other hand, the contribution of the Padarian
6

et al. (2014) predictions appears relatively smaller, the reasons for
which we believe to be like the ones described above.

Fig. 5 shows the GRAmodel estimated AWC for the 0–5 cmdepth in-
terval. This figure also shows focused mapping centred on southern
Australia's wheat-sheep region to illustrate similarities and differences
between each of the contributingmaps and the combinedGRAmodel es-
timates. Just from these focusedmaps, theAWCestimates of prior studies
have substantial areas of lower AWC compared with estimates made in
the present study. As can be seen in the GRAmodel mapping, there is a
subtle adjustment of ourmodelled AWC to reflect the predictions made
in the prior studies. The contribution of the Padarian et al. (2014) esti-
mates appear to be minimal compared with those from Viscarra Rossel



Fig. 4.Maps of predicted AWC, SAT, DUL and LL15 and associated prediction uncertainties
for the 0–5 cm depth interval. Similar maps are provided for the other depth intervals in
the supplementary figure section.

Table 4
GRAmodel parameter estimates attributed to intercept term (W0) and eachof the contrib-
uting models.

Soil depth
interval

W0 Our
estimate

Padarian et al.
(2014)

Viscarra Rossel et al.
(2015)

0-5 cm −3.00 0.96 −0.09 0.57
5-15 cm −5.55 0.67 0.02 0.75
15-30 cm −9.73 0.73 −0.05 0.80
30-60 cm −16.39 0.71 −0.02 0.71
60-100 cm −27.84 0.89 −0.08 0.73
100-200 cm −109.67 1.09 −0.04 0.80

B.P. Malone, Z. Luo, D. He et al. Geoderma Regional 23 (2020) e00344
et al. (2015) which is to be expected given the parameter estimates
established by the GRAmodelling. Supplementary figures show theGRA
modelled estimates for all the depths investigated in this study.
4. Discussion

Temperature of driest (T9) and wettest quarter (T8) and precipita-
tion of warmest month (P7) appear to be the most influential biocli-
matic variables on average, albeit the most influential bioclimatic
Table 3
Coefficient of determination (R2) and the root mean squared error (RMSE) between AWC
measured at the 1127 sites and associated predictions at these sites for each depth interval
from theGRAmodel averaging estimates, and the contributing estimates from the present
study, Padarian et al. (2014) and Viscarra Rossel et al. (2015).

Soil depth interval GRA model
estimate

Our estimate Padarian
et al. (2014)

Viscarra
Rossel et al.
(2015)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

0-5 cm 0.61 2.31 0.54 2.38 0.41 2.69 0.42 2.66
5-15 cm 0.64 3.89 0.54 4.45 0.44 4.91 0.49 4.69
15-30 cm 0.65 5.42 0.51 6.33 0.41 6.96 0.53 6.20
30-60 cm 0.59 10.74 0.49 11.97 0.38 13.17 0.53 11.53
60-100 cm 0.55 15.31 0.44 17.22 0.30 19.32 0.47 16.80
100-200 cm 0.57 36.89 0.42 41.68 0.21 48.67 0.40 42.45
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variable is not consistent for different soil hydraulic properties in differ-
ent soil layers. It is intriguing to note that these three variables reflect
some interdependence of temperature and moisture, reflecting the im-
portance of soil weathering including physical and chemical weathering
for determining soil hydraulic characteristics. This may be due to the
fact that weathering is the most important process regulating soil for-
mation and soil physical structure such as particle size distribution
Fig. 5. GRA model estimated AWC for the 0–5 cm depth interval (a). Focussed region
corresponds to a region of the southern Australian wheat-sheep belt. (b) GRA model esti-
mates of AWC (c) AWC estimated by our own modelling using bioclimatic and topo-
graphic variables, (d) AWC estimated by Viscarra Rossel et al. (2015), (e) AWC
estimated by Padarian et al. (2014).
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(Weil and Brady, 2016). Physical weathering is usually accentuated in
very cold and very dry environments, which is correctly captured by
the importance of T9. T9 reflects the fact that temperature may experi-
ence great variability (e.g., apparent and intensive heat up and cool
down cycle), causing alternate expansion and contraction of soil. As
some minerals expand more than others, temperature changes set up
differential stresses that eventually cause the rock to crack apart
(i.e., soil formation and soil physical structure). Furthermore, as ex-
pected, T9 (temperature of driest quarter) shown opposite effects on
the assessed soil hydraulic characteristics compared with the effect of
T8 (temperature of wettest quarter). For chemical weathering, it is
mainly chemical reactions which are most intense under wet and hot
conditions, which is also correctly captured by the importance of P7
(i.e., precipitation of warmest month).

It is a common recognition that soil hydraulic characteristics are
closely correlated to soil particle size distribution (Gupta and Larson,
1979; Arya and Paris, 1981; Saxton et al., 1986) – a partial reflection
of soil physical structure. Indeed, most pedotransfer functions (includ-
ing emerging machine learning-based approaches) used to estimate
soil hydraulic characteristics are primarily driven by soil particle size
(Schaap et al., 1998; Reynolds et al., 2000; Merdun et al., 2006;
McNeill et al., 2018). However, the predictive power of soil particle
size alone is very limited. For example, a study assessing available
water capacity (AWC) across the whole of Australia using similar ma-
chine learning-based approach and a large proportion of the same
dataset for the agricultural regions (the APRSU set) found that only
<30% variance in AWC can be explained by a series of environmental
covariates including soil mineralogy (Viscarra Rossel et al., 2015).
While, in our study, >50% variance in AWC can be explained by biocli-
matic variables alone (Fig. 2).We assume that the reason for the greater
explained variance in our modelling here might be due to the smaller
scale and the focus on only agricultural regions of Australia, where
water is not likely to be as limited as elsewhere in Australia. Most appli-
cation of pedotransfer functions across large scales depends on other
soil mapping products (Miller and White, 1998; Reynolds et al., 2000;
McBratney et al., 2003; Grunwald, 2009). The uncertainties in those
mapping products are inevitably propagated into the estimation of soil
hydraulic characteristics. Based on our findings, here, we suggest that
bioclimatic variables are useful predictors of soil hydraulic characteris-
tics at the large spatial scale investigated than soil particle size distribu-
tion as they reflect the dominant control of soil weathering on a series of
soil physical properties therefore on soil hydraulic characteristics.

Although bioclimatic variables are important for all soil hydraulic
characteristics in all assessed soil depths, it should benoted that their ef-
fects becomeweaker in deeper soil layers. This may be attributed to the
general observation that deep soil is relatively younger than top soil,
and its properties may be largely controlled by parental materials or
something other than climate. In addition, the deep soil environment
is inherently more stable than top soil. The effect of inter- and intra-
annual climate variability is largely buffered by top soil layers. The effect
of biota in deep soils is also very limited due to constrained biological
activity in deep soils. As the close association between climate and
biota, the effect of both climate and biota is thus limited in deep soils,
resulting in the observed larger effect of bioclimatic variables on soil hy-
draulic characteristics in surface soils.

Our study focuses on the soil hydraulic characteristics in Australian
agricultural soils. Some special features of the Australian continent
may intensify the role of bioclimatic variables in regulating soil forma-
tion and thus soil hydraulic characteristics. First, the Australian conti-
nent, particularly the agricultural regions, is relatively flat compared
with other continents. As such, the soil in general is less affected by to-
pography (McKenzie et al., 2004) as evidenced by the relative
unimportance of topographic attributes. Second, the Australian conti-
nent is old and less affected by modern geological activities such as
orogeny and volcanic activity (Johnson, 2009). For this reason,
Australian soils are to large extent stable and intact.
8

The results in this study revealed that bioclimatic variables alone can
explainmore than 50% of variance in some soil hydraulic characteristics
such as LL15 and DUL in the top 30 cm soil layer. Soil hydraulic charac-
teristics are important parameters to predict soil moisture dynamics
(McColl et al., 2017) and therefore any ecological processes relating to
soil moisture. Their reliable, affordable and fast estimation is a persis-
tent challenge (Minasny et al., 1999; Cornelis et al., 2001; Dobarco
et al., 2019) and vital for effective water management, particularly in
agroecosystems (Saxton and Rawls, 2006; Dobriyal et al., 2012). For ex-
ample, irrigated agriculture alone accounts for ~85% of global total
human consumption of freshwater (Gleick, 2003). Our finding could
be particularly valuable for the design of effective irrigation systems
which requires high-quality information on soil hydraulic characteris-
tics. Irrigation can be tuned to local soil hydraulic properties to alleviate
water scarcity, which is important in this era of global water crisis
(Hanjra and Qureshi, 2010; Cosgrove and Rijsberman, 2014). As biocli-
matic variables can be directly calculated based on climate records
which are readily obtainable formost regions across the globe, our find-
ings mean these data could potentially be useful for other similar stud-
ies where there is need to reliably and cheaply predict soil hydraulic
characteristics at local scale as well as across large scales. Digital soil
mapping is important for the communication of the relevant informa-
tion among land-users, scientists, and policy-makers, and is critical for
the development of specific soil management recommendations
(Sanchez et al., 2009). Our mapping and the relevant uncertainty esti-
mation of soil hydraulic characteristics provide critical inputs to models
predicting soilwater-regulated ecosystemchanges in response to global
climatic and human disturbances and making local-specific soil man-
agement strategies.

5. Conclusions

In this study,we hypothesized that soil hydraulic properties could be
skilfully estimated with a suite of environmental variables, especially
bioclimatic variables because of their direct and indirect effects via reg-
ulating biota and the weathering of parental materials. Testing this hy-
pothesis using data from Australian agricultural soils, we found that
temperature of driest andwettest quarter, and precipitation ofwarmest
month were strong predictor variables where overall the bioclimatic
variables accounted for 19–69% of the variance in the four soil hydraulic
properties determining soil holding capacity and water availability for
plant growth.We further improved upon our estimates of AWC through
an ensemble modelling approach which combined estimates from ear-
lier studies. This approach is ideal as it facilitated indirect use of predic-
tive covariates not considered in our own modelling experiments.
Collectively, these new estimates of hydraulic properties provide an
important inventory for Australian agricultural soils.
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