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A B S T R A C T   

Soil entities are generally defined based on soil properties, using morphological, genetic, or utilitarian criteria. 
Alternatively, soil entities could be characterized by groupings of homogeneous soil-forming factors under the 
assumption that the dominant soil-forming processes occurring over a time period within each group are similar, 
and therefore develop unique soil entities with similar soil properties. We define the pedogenon as a conceptual 
soil taxon defined from a set of quantitative state variables that represent the soil-forming factors for a given 
reference time. The objective of this study was to develop a methodology for mapping pedogenon classes at the 
time of the European settlement in New South Wales (Australia). This period was chosen as reference because 
from 1788 onwards the intensification of land use has accelerated the rate of change of soil properties. We 
implemented a two-step modelling approach with a set of environmental covariates representing the soil-forming 
factors, including the estimated natural vegetation at 1750. The k-means algorithm was applied to generate 
pedogenon classes suitable for local management. Then, hierarchical clustering was applied to identify the or-
ganization of pedogenons into families or “branches” of higher level taxa. We tested the ability of the pedogenon 
classes for explaining the variance of stable soil properties (particle size fractions) in the subsoil (30–60 cm 
depth) with redundancy analysis (RDA). The results indicated that between 800 and 1000 pedogenon classes 
provide the desired level of detail for both local and regional management across New South Wales. The in-
fluence of the pre-1750 vegetation types (e.g. Acacia open woodlands and shrublands, Callitris forests and 
woodlands) was apparent in the distribution of some pedogenon branches. Pedogenon classes differed in their 
characteristics (median area ≈750 km2), but overall showed meaningful spatial patterns at local scale and 
formed regional assemblages. The RDA models indicated that pedogenon classes explained about 30% of the 
variance of silt and clay content. This flexible modelling framework allows the creation of pedogenon maps over 
large areas at high resolution (90 m) and is applicable at different scales. Potential applications of pedogenon 
maps include the quantitative assessment of soil change and designing soil monitoring surveys.   

1. Introduction 

The soils we observe today are the result of natural soil-forming 
processes that vary widely over the development time of a soil, and 
the direct and indirect effects of human activities on pedogenetic pro-
cesses (Richter, 2007; Richter and Yaalon, 2012). The complexity of soils 
and their diverse response to human forcings require the identification 
of soil-class specific references for monitoring and assessing changes in 
soil multifunctionality due to management practices (Bunemann et al., 
2018; McBratney et al., 2019). Soil condition and capability are com-
ponents of the broader concept of soil security (McBratney et al., 2014), 
which was conceived as a holistic approach for evaluating soil functions 
and their connections with societal needs. Soil capacity refers to soil 

attributes that evolve at a slower rate (e.g., soil texture) and that are not 
readily changed by human activities whereas soil condition refers to 
more dynamic soil properties that are modified at a faster rate by soil 
management (e.g., particulate organic matter, pH). Soil capacity and 
condition determine the soil’s capability, i.e. the potential functionality 
of the soil. While these concepts are relatively new and continue to 
evolve, they can be implemented in a spatially explicit framework for 
quantifying soil change. For this purpose, it is necessary to identify and 
map soil classes that result from natural multimillennial pedogenesis 
and historic anthropedogenesis (Richter, 2007) at a relevant taxonomic 
level for local and regional management (McBratney et al., 2019). Most 
soil classification systems group soils into classes characterized by 
similar soil properties following morphological criteria or diagnostic 
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features that indicate similar long-term pedogenetic processes (Kra-
silnikov et al., 2009). An alternative way of delimiting unique soil en-
tities relies on identifying groups of homogeneous soil-forming factors, 
in accordance with earlier factor-based approaches (Dokuchaev, 1883; 
Jenny, 1941). These classes represent a soil system at quasi steady-state 
for a set of soil-forming factors at a given time and may evolve into 
different soil classes depending on the type and intensity of land use and 
management. 

The concepts of soil genoform and phenoform proposed by Rossiter 
and Bouma (2018) can be applied for investigating soil change in the 
context of conventional soil classifications. Soil genoforms are “soil 
classes as identified by the soil classification system used as basis for 
detailed soil mapping in a given area” whereas soil phenoforms are 
defined as “persistent, non-cyclical variants of a soil genoform with 
sufficient physical or chemical differences to substantially affect soil 
functions”(Rossiter and Bouma, 2018). This framework requires that the 
soil classification system and the soil survey consider human-induced 
changes on soil polypedons when delineating soil mapping units 
(Smeck and Balduff, 2002). Otherwise, soils that share similar historic 
pedogenesis may be assigned to different classes if soil attributes used as 
diagnostic criteria have been severely modified by human activities. For 
example, accelerated erosion rates in croplands causing the loss of upper 
horizons and progressive mixing with subsoil horizons with tillage op-
erations may lead to the separation of heavily eroded pedons and 
adjacent uneroded forest pedons into different soil series or soil orders 
according to Soil Taxonomy (Soil Survey Staff, 2010; Smeck and Balduff, 
2002). In parts of the world where soil surveys are not available at the 
level of detail required for local or sub-regional soil management, digital 
soil mapping (DSM) approaches can be an alternative for identifying and 
mapping genoforms (Huang et al., 2018), but a different term may be 
necessary for designating soil classes with common historic pedogenesis. 
Boulaine (1969) indicated that for relatively large areas where the soil- 
forming processes are not markedly heterogeneous and act over the 
same time period on similar parent material, there would exist units of 
soil evolution or genons. 

Boulaine (1969) defined a genon as “a soil volume comprising all the 
pedons that have the same structure, the same characteristics and result 
from the same pedogenesis”. The genons were conceived as soil mapping 
units that vary in their composition (e.g., simple genons consist of 
pedons belonging to a single taxon, complex genons are associations of 
different taxons) and their spatial arrangement in the landscape 
(Campbell and Edmonds, 1984), and are not associated to any particular 
classification system. The genon follows the concept of polypedon 
defined by Johnson (1963): “a soil individual (polypedon) is also a real 
soil body; it is a parcel of contiguous pedons all of which have charac-
teristics lying within the defined limits of a single soil series”. Hence, the 
polypedon is a taxonomically homogeneous unit that can constitute a 
relatively pure map unit with a single dominant polypedon (consocia-
tion) or composite map units comprising several dominant polypedons 
(association, complex) (Zinck, 2016). On the other hand, Fridland 
(1972) suggested that the degree of homogeneity of the genon in terms 
of taxonomy remains somewhat obscure, since the classificational unit 
that defines its boundaries is not too specific. Other soil mapping units 
that are related to the concepts of polypedon and genon are the pedotop 
(Haase, 1968) and the soil combinations (Fridland, 1972). The latter are 
constituted by the spatial arrangement of elementary soil areals (i.e., 
soils belonging to a single taxa of the lowest rank) due to pedogenetic 
processes. The pedotop is a cartographic unit with homogeneous 
pedological attributes that results from uniform combinations of 
soil-forming factors, although it can present transition areas into 
neighbouring units and within unit variation (Campbell and Edmonds, 
1984). 

DSM approaches apply mostly supervised classification models (e.g., 
logistic regression, machine learning algorithms) for predicting the 
spatial distribution of soil properties or classes (Heung et al., 2016). 
Huang et al. (2018) developed a DSM approach for mapping soil classes 

prior to the European settlement in New South Wales (Australia), 
designated as genosoils and their derived phenosoils (soil classes derived 
from contemporary land use) with supervised classification. This 
approach requires high certainty when estimating the existing soil 
classes at the moment chosen as benchmark and detailed local knowl-
edge of the soils present in the study area, making it challenging to 
implement at large extents. Unsupervised classification has been applied 
to remotely sensed spectral data and topographic variables for identi-
fying patterns in soil-landscape relationships as a preliminary step for 
soil classification (Saunders and Boettinger, 2006), and has been pro-
posed as a rapid, first order soil mapping method for extensive regions 
lacking soil data (Regmi and Rasmussen, 2018). Several studies have 
applied unsupervised classification using climatic, topographic and 
stable soil attributes as state variables for digital terron mapping at 
regional and national scale (Carré and McBratney, 2005; Malone et al., 
2014; Roell et al., 2020). 

The conceptual “changing model of soil” by Cline (1961) later 
revised by Richter and Yaalon (2012) sees soils as natural-human bodies, 
according to which soils and human societies and culture interact and 
co-evolve. The Aboriginal Australians settled in the continent over 
50,000 years ago, being amongst the cultures with longest continuous 
presence in a geographic region (Tobler et al., 2017; Bird et al., 2018). 
Thus, historic anthropedogenesis comprises the land management 
practices carried by the Aboriginal societies over millennia. Controlled 
fire was a very extended land-management practice that shaped the 
structure and composition of the native vegetation in many Australian 
landscapes. Post-fire regeneration would create grasslands where graz-
ing animals would feed while adjacent open forests were preserved as 
wildlife shelter, working as a shepherding method due to the lack of big 
predators (Gammage, 2011). Deep knowledge of the landscape was also 
used for agriculture (Pascoe, 2014). These dynamic land management 
practices maintained the provision of ecosystem services and influenced 
soil pedogenesis through the interactions of landscape, vegetation dy-
namics and fire regime. The intensification of land management after 
the European settlement in Australia during the second half of the 19th 
century has modified soil properties at an accelerated rate (e.g., loss of 
soil organic carbon stocks, erosion, soil sealing in urbanized areas). 
Hence, creating a map of hypothetical soil classes prior to the European 
settlement can be suitable for assessing soil change and guiding sus-
tainable soil management (Huang et al., 2018) by identifying areas less 
affected by recent anthropogenic pressures that can be used as baseline 
within each soil class. 

The objective of this study was to create soil classes characterized by 
homogeneous soil-forming factors with the assumption that the domi-
nant soil-forming processes over a temporal period within each class are 
similar, and therefore comprise soils with similar soil properties. We 
define the pedogenon as a conceptual soil taxon created from a 
regionalised set of quantitative state variables representing the soil 
forming factors for a given reference time. This concept is closely related 
to soil genoform (Droogers and Bouma, 1997; Rossiter and Bouma, 
2018) and genon (Boulaine, 1969). This study presents the methodology 
for mapping pedogenon classes, discusses their spatial characteristics 
and tests their ability to explain the variation of stable soil properties 
with New South Wales as case study. The proposed DSM framework was 
designed to have the following advantages: 1) it is easy to implement 
over large extents (regional, state and continental) at high resolution, 2) 
it defines soil map units that can be applied for local and regional soil 
management, and 3) the output maps can be compared with soil profile 
data and existing soil-landscape maps for evaluating the correspondence 
with pedogenetic processes (Regmi and Rasmussen, 2018). 

2. Methods 

2.1. Digital soil mapping framework 

The digital soil mapping framework stems from the conceptual 

M. Román Dobarco et al.                                                                                                                                                                                                                     



Geoderma 393 (2021) 115012

3

model of Jenny (1941), in which soil properties or classes result from the 
interaction of the classical soil-forming factors climate (cl), organisms 
(o), relief (r), parent material (p), and time (t). Groups of homogeneous 
quantitative state variables representing the soil-forming factors at the 
time selected as benchmark are identified with unsupervised classifi-
cation. Environmental covariates were used as proxies of soil-forming 
factors that have remained relatively constant (relief, parent material) 
or that we assume representative of the conditions at the time of the 
European settlement (climate, estimated native vegetation). In this 
study, a pedogenon is defined as follows: 

pedogenon = f (clt, ot, rt, pt)where t = reference time (1) 

In the context of pedogenetic time, during which the characteristics 
of the soil-forming factors and processes vary widely (Richter and 
Yaalon, 2012), this represents only a brief and static moment. Hence, the 
modelling framework can be generalized as:  

where the environmental covariates may represent the conditions of the 
soil forming-factors across the time of soil formation (e.g., paleoclimate 
data, past vegetation), and soil (s) or soil attributes that inform of 
pedogenetic pathways can be also included. 

2.2. Study area 

The study area is the state of New South Wales (NSW), situated on 
the eastern side of the Australian continent with an area of 801,137 km2. 
NSW has high diversity of environmental and soil conditions. The 
climate ranges from hot arid in the western areas, warm temperate in the 
north, temperate in the south, and sub-alpine in the southeaster high-
lands (Gray et al., 2016). Mean annual temperature ranges between 4 
and 21 ◦C and mean annual rainfall varies from less than 200 mm in the 
northwest of NSW to more than 1500 mm along the north-east coast 
(Hobley et al., 2015). The diversity of landscapes and ecosystems is 
reflected in the 17 bioregions present in NSW, that vary from sandy 
deserts, riverine plains, wooded grasslands, lush rainforests to rugged 
mountains (NSW National Parks and Wildlife Service, 2003). A moun-
tain range, the Great Dividing Range, runs in direction north–south 
about 100–300 km inland, separating the eastern seaboard from the 
western interior (Hobley et al., 2015). 

The surface geology of NSW is characterized by Paleozoic and 
Mesozoic siliceous, intermediate igneous and sedimentary rocks in 
eastern regions, and mainly Tertiary alluvial sands, silts, and clays in the 
western plains (Gray et al., 2016). The soils in NSW include 12 of the 14 
soil orders of the Australian Soil Classification (Isbell et al., 1997), of 
which Vertosols occupy the greatest area, followed by Calcarosols, 
Chromosols, Kurosols, and Kandosols (Pino et al., 2019). The majority of 
the region is dedicated to grazing and cropping, with other land uses 
being nature conservation and forestry (Hobley et al., 2015). 

2.3. Environmental covariates 

The output of the models (Section 2.4) was highly sensitive to co-
variate selection. Hence, in preliminary analyses we trialled several 
combinations of covariates (results not shown) and decided to keep the 
covariates presented in Table 1 as proxies of soil-forming factors. The 
raster covariates were reprojected to WGS84 (EPSG:4326) projection 
and resampled to 3-arc second grid cell resolution when necessary. 
Continuous variables were resampled with the bilinear interpolation 
method and categorical variables with the nearest neighbour method. 

2.3.1. Climate 
Soil water and temperature are key drivers of pedogenesis. Soil 

temperature controls the rate of chemical reactions and biological pro-
cesses (e.g., release of soil minerals into the soil solution, soil organic 
matter decomposition) and this influences the rates of soil formation 
(Buchan, 2011). Precipitation enables the transport of materials down 
the soil profile and soil moisture influences on-site transformations of 
minerals and organic matter (Kleber et al., 2015). We selected nine 
bioclimatic indices primarily developed for biodiversity and ecological 
models (Williams et al., 2012) that characterized the energy, tempera-
ture and precipitation gradients (Table 1). Gridded historical climate 
data are available for precipitation (1900–2020) and temperature 
(1910–2020) (Jones et al., 2009), but are scarce and with limited spatial 
coverage prior to 1900 (Ashcroft et al., 2014). Hence, although the 
bioclimatic indices are based on ANUCLIM 6.1 (Xu and Hutchinson, 
2011) 30-year average climate surfaces (1975–2005), we follow the 
assumption that the general spatial patterns are representative of rela-

tively stable climate conditions since the last ice age (Malone and Searle, 
2020). 

2.3.2. Parent material 
Four variables based on airborne gamma-ray spectrometry imagery 

(Minty et al., 2009) were included as proxies of the parent material. The 
concentration of radioelements is related to the geochemistry and 
mineralogy of the bedrock and weathered materials (Wilford, 2012). We 
included the concentration of potassium (K), thorium (Th), and their 
ratio (Th/K). A weathering intensity index (WII) developed by Wilford 
(2012) estimates the degree of weathering of primary minerals into 
secondary minerals and oxides, and correlates well with regolith prop-
erties. The WII is complexly related to the soil-forming factor t, time or 
age, as it reflects the history of landscape processes, weathering and 
erosion. 

2.3.3. Relief 
Five covariates derived from the 3-second digital elevation model 

(DEM) produced from the Shuttle Radar Topographic Mission (SRTM) 
(Farr and Kobrick, 2000) data were included for describing relief 
(Table 1). Besides elevation and slope, two variables described 
geomorphic features (ridge top, valley bottom). The topographic 
wetness index informs on the likelihood of soil water saturation and the 
accumulation of transported materials. 

2.3.4. Organisms 
The historic natural vegetation was represented with a map of the 

estimated major vegetation groups (MVG) at the time of the European 
settlement (hereafter referred to as pre-1750 vegetation) developed by 
the National Vegetation Information System (NVIS Version 5.1, 2018) 
for the extent of Australia at 100 m resolution. MVG are defined based 
on vegetation structure, floristic composition and association informa-
tion. Map units represent the dominant vegetation group. The scale of 
the source data is 1:1,000,000 or coarser for most of NSW. However, this 
map is the latest and spatially exhaustive summary of Australia’s pre- 
clearing native vegetation. Several MVG classes were aggregated 
based on biotope descriptions and the comparison of the soil C:N:P 
stoichiometry under natural vegetation (Bui and Henderson 2013) 
leading to 15 classes of natural vegetation (Supplementary Material S1). 

pedogenon = f (s, cl, o, r, p, t)where t = period from the origin of soil formation up to the reference time (2)   
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2.4. Clustering mixed data 

Clustering was used to partition the dataset of environmental cova-
riates into groups where the soil-forming factors within a group are 
homogeneous, and distinct from the elements of different groups. Most 
clustering algorithms are either specific for numerical or categorical 
data, and few can deal efficiently with large datasets of mixed data 
(Huang, 1998; Budiaji and Leisch, 2019). A common practice when 
dealing with mixed data is to calculate the Gower similarity coefficient 
(Gower, 1971) and apply a hierarchical or partitioning clustering 
method (e.g., partitioning around medoids). This approach is not 
feasible for very large datasets (e.g., >105–106 observations) due to the 
high computational cost and software memory limitations. Huang 
(1998) developed the k-prototypes algorithm, which combines numer-
ical and categorical distances for finding the cluster centroids. K-pro-
totypes requires careful weighing of both distance components for 
avoiding favouring either categorical or numerical variables. Recent 
partitioning algorithms increase the flexibility for calculating distance 
metrics for mixed datasets (Budiaji and Leisch, 2019). Alternatively, 
categorical variables can be transformed into numerical in a pre- 
processing step for applying numerical clustering algorithms. 

The k-means algorithm is a popular non-hierarchical clustering 
method for numeric data (Hartigan and Wong, 1979) and efficient for 
very large datasets. The algorithm searches a partition of a numeric 
dataset X into k clusters that minimises the within-cluster sum of 
squared errors (WCSS), i.e., sum of squared distance to the cluster 
centroids. The centroids of the clusters are the means of the variables. 
The k-means algorithm operates with the following steps (Han et al., 
2012):  

- An initial k starting cluster centroids are selected (normally 
randomly). 

Table 1 
Covariates used to describe clorpt (Jenny, 1941) or scorpan (McBratney et al., 
2003) factors and generate pedogenon classes. p: parent material; s: soil; t: time; 
r: relief; cl: climate; o: organisms; C: continuous variable; N: nominal or cate-
gorical variable.  

Covariate Description Clorpt 
factor 

Variable 
type 

Original 
raster 
resolution 
(m) 

Reference 

PTA Annual 
precipitation 
(mm) 

cl C 270 Williams 
et al. (2012) 

PTS1MP Precipitation: 
ratio of annual 
contrast in 
regional 
rainfall 
conditions 
between 
summer and 
winter solstice 
conditions. 

cl C 270 Williams 
et al. (2012) 

PTS2MP Precipitation: 
ratio of annual 
contrast in 
regional 
rainfall 
conditions 
between spring 
and autumn 
equinox 
conditions. 

cl C 270 Williams 
et al. (2012) 

TNM Minimum 
temperature 

cl C 270 Williams 
et al. (2012) 

(continued on next page) 

Table 1 (continued ) 

Covariate Description Clorpt 
factor 

Variable 
type 

Original 
raster 
resolution 
(m) 

Reference 

(annual mean) 
(◦C) 

TXX Maximum 
temperature 
(monthly 
maximum) (◦C) 

cl C 270 Williams 
et al. (2012) 

TNI Minimum 
temperature 
(monthly 
minimum) (◦C) 

cl C 270 Williams 
et al. (2012) 

TRX Maximum 
monthly mean 
diurnal 
temperature 
range (◦C). 
high variation 
in temperature 
conditions 
(inland or 
continental 
locations). 

cl C 270 Williams 
et al. (2012) 

TRI Minimum 
monthly mean 
diurnal 
temperature 
range (◦C). 
Consistent 
temperature 
conditions 
(coastal 
locations). 

cl C 270 Williams 
et al. (2012) 

RSM Short-wave 
solar radiation 
- annual mean 
(MJ/m2/day) 

cl C 90 Wilson and 
Gallant 
(2000) 

K Radiometrics: 
filtered K 
element 
concentrations 
(%) 

s, p C 100 Minty 
(2019a); 
Geoscience 
Australia 
(2019) 

Th Radiometrics: 
filtered Th 
element 
concentrations 
(ppm) 

s, p C 100 Minty 
(2019b); 
Geoscience 
Australia 
(2019) 

K/Th Radiometrics: 
Ratio Th/K 
derived from 
the filtered Th 
and K grids 

s, p C 100 Minty 
(2019c); 
Geoscience 
Australia 
(2019) 

WII Weathering 
intensity index 

p, t C 100 Wilford 
(2012) 

Elevation SRTM-derived 
3 Second 
Smoothed 
Digital 
Elevation 
Model 

r C 90 Gallant et al. 
(2009) 

Slope Slope (%) r C 90 Gallant et al. 
(2009) 

TWI Topographic 
wetness index 

r C 90 Quinn et al., 
(1991) 

MRVBF Multi- 
resolution 
valley bottom 
flatness index 

r C 90 Gallant and 
Dowling 
(2003) 

MRRTF Multi- 
resolution 
ridge top 
flatness index 

r C 90 Gallant and 
Dowling 
(2003) 

MVG Estimated pre- 
1750 major 
vegetation 
groups. 

o N 100 National 
Vegetation 
Information 
System V5.1 
(2018)  
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- Each data point is assigned to the cluster to which is most similar 
based on the Euclidean distance between the point and the cluster 
mean. The cluster centroids are recalculated with the points assigned 
to the cluster.  

- The data points are re-assigned to its nearest new cluster centroids.  
- The iterations continue until the assignment is stable, that is, the 

clusters formed in the current round are the same as those formed in 
the previous round. In practice, the optimal solution is achieved 
when the squared distance of the centroids is smaller than a defined 
tolerance value (e.g., 0.0001).  

- After a defined maximum number of iterations, if the assignment is 
not stable, the algorithm stops. 

The 15 natural vegetation classes were transformed into binary 
variables (for each class, 1 = presence and 0 = absence) and a regular 
sample of 5,000,000 pixels subject to principal component analysis. The 
first 7 principal components explaining 50% of the variance were 
retained and the principal component scores predicted across NSW 
added to the dataset of 18 continuous variables. MVGs were well 
discriminated with 7 PCs: PC1, PC2 and PC7 characterized the Euca-
lyptus MVG, PC3 and PC4 described the MVG dominant in western NSW 
(e.g., Acacia, Mallee, Chenopod shrublands), and PC5 and PC6 discrim-
inated diverse MVG that occupied smaller areas (e.g., rainforests and 
vine thickets, Tussock grasslands, Casuarina, Callitris forests and wood-
lands, heathlands). 

The 25 continuous variables were centered and standardized. A 
regular sample of 259,000 observations were taken across NSW on a grid 
of 1.6 km × 1.6 km. The clustering dataset was rescaled by applying the 
inverse of the Cholesky transformation of the variance–covariance 
matrix: 

ΣX = LLT  

Y = XL− 1  

where ΣX is the variance–covariance matrix of the environmental 
covariates sample X, L is the Cholesky factor of ΣX, a lower triangular 
matrix with positive diagonal values, and Y is the rescaled covariates 
dataset. The Euclidean distance calculated on the dataset Y is equivalent 
to the Mahalanobis distance calculated in X (Wicklin, 2012). Hence, the 
correlation among environmental covariates was accounted for in the 
clustering process. 

The k-means algorithm is known for converging at local optima 
rather than at the global minimum. Hence, the initial assignment of 
cluster centroids is relevant for the outcome. The k-means++ is an 
initialization algorithm that chooses the first cluster centroid randomly 
and the remaining centroids are subsequently selected from the points 
with a probability proportional to the squared distance to its closest 
centroid (Arthur and Vassilvitskii, 2007). The clustering process was 
repeated 10 times with the k-means++ initialization and a maximum of 
5000 iterations. The best initialization in terms of total WCSS was 
selected. The k-means algorithm was implemented with the Kmeans_rccp 
function of the ClusterR package (Mouselimis, 2020). The process was 
repeated with 18 continuous variables, excluding the pre-1750 esti-
mated natural vegetation variables. This was done for the purpose of 
assessing the influence of the pre-1750 vegetation layer on the pedo-
genon maps. Pedogenon classes were mapped with 90 m grid cell res-
olution assigning each pixel to its closest cluster centroid after rescaling 
with the inverse Cholesky transformation. 

2.5. Optimal number of soil classes and cluster evaluation 

A requirement of distance-based clustering methods is that the 
number of clusters needs to be specified. We selected the number of 
pedogenon classes based on three criteria: 1) area-pedodiversity re-
lationships (Guo et al., 2003), 2) the elbow method, and 3) visual 

assessment of the spatial patterns of different pedogenon maps. 
Ibañez et al. (1998), McBratney et al. (2000) and Minasny et al. 

(2010) found a positive linear relationship between the area occupied in 
a studied region and pedodiversity (soil class richness and Shannon’s 
entropy index) characterized with major soil groups (FAO major soil 
groups (FAO, 1993), World Reference Base (WRB) soil groups (IUSS, 
2006)). We assumed that the pedodiversity-area relationship observed 
at continental and subregional scale (Guo et al., 2003; Minasny et al, 
2010) would be inherent in the unsupervised classification of pedogenon 
classes. Currently, no soil classification system represents comprehen-
sively the diversity of soils across the world (Ibañez et al., 1998) 
although some efforts have been made to unify various classification 
systems (Hughes et al., 2017). We chose Soil Taxonomy (Soil Survey 
Staff, 2010) as reference for selecting the number of classes because it 
was defined for a wide range of pedogenetic conditions and area- 
pedodiversity equations were available at various taxonomic levels 
(Guo et al., 2003), even though the purpose of Soil Taxonomy was not to 
characterize pedodiversity but rather detailed mapping. An objective of 
this study was to generate soil mapping units that can serve for local soil 
management. Hence, the desired final number of classes should be of a 
similar magnitude as for the taxonomic level of families from the Soil 
Taxonomy system (Soil Survey Staff, 2010). This level is one above the 
series but is considered a useful general group for management. We 
estimated the approximate number of pedogenon classes based on taxa 
richness-area equations published by Guo et al. (2003) for the USA based 
on Soil Taxonomy (Soil Survey Staff, 2010). The number of classes at an 
equivalent taxonomic level to soil family, for the area of mainland New 
South Wales (801,137 km2) would be around 1040 classes. 

The optimal number of classes was also evaluated in terms of total 
WCSS (i.e., sum of within-cluster squared errors per cluster) and the 
ratio between-CSS to total WCSS (i.e., (total SSE – total WCSS)/ total 
SSE) for the range between 100 and 1500 in intervals of 100 classes with 
the elbow method (Han et al., 2012). The optimal number of clusters is 
indicated by the turning point in the curve of total WCSS with respect to 
the number of clusters, after which the marginal effect on reducing the 
WCSS with increasing the number of classes is minor (Han et al., 2012). 
Finally, relative cluster evaluation was performed by inspecting visually 
the spatial patterns of pedogenon maps for different number of classes in 
smaller study areas where the soils have been well studied previously, 
which include Namoi-Edgeroi (Triantafilis and McBratney, 1993; Ward, 
1999) and the Hunter Valley region (Malone et al., 2014). The evalua-
tion did not compare pedogenon maps with soil maps using Soil Tax-
onomy, but relied in the resemblance between the spatial patterns of 
pedogenons and the variation previously observed in these soils, with 
maps of continuous soil properties and soil classes according to the 
Australian Soil Classification (Isbell and the National Committee on Soil 
and Terrain, 2016). 

Summary statistics of the environmental variables sampled at the 
clustering dataset locations (259,000 cases) were calculated for each 
pedogenon class, as well as the Mahalanobis distance among all cluster 
centroids and to the closest centroid. The area occupied by each pedo-
genon class across NSW and the average distances between pixels of the 
same pedogenon class were calculated with the gridded predictions. 

To illustrate the local and regional attributes of the pedogenon 
classes we examined their patterns across a smaller study area, Nowley 
farm. The E. J. Holtsbaum Agricultural Research Institute (Nowley farm) 
is a 2083 ha farm dedicated to dryland cropping and cattle located in the 
Liverpool plains area in north-western NSW. A detailed description of 
the topography, lithology and soils found at Nowley farm can be found 
in Stockmann et al. (2016). The entropy-based local indicator of spatial 
association (ELSA) (Naimi et al., 2019) was applied to explore the local 
patterns in clustering and their degree of association. ELSA is a local 
indicator of spatial association for categorical and continuous data that 
incorporates a measure of dissimilarity (attribute distance) between 
neighbouring sites and normalized entropy. The index varies between 
0 and 1 from homogeneous to more heterogeneous areas (Naimi et al., 
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2019). In addition, we calculated the degree of association between the 
pedogenon classes and the soil landscape units found at Nowley farm 
(Curlewis 1:100,000 Soil Landscape Mapsheet area (Banks, 1995)) with 
biased corrected Cramér’s V (Cramér, 1946). Carmer’s V ranges between 
0 and 1, with a 1 indicting a perfect association between categorical 
variables. 

2.6. Hierarchical clustering 

An agglomerative hierarchical clustering was applied for assessing 
the similarities among clusters and their organization, treating the 
cluster centroids as individuals. The dissimilarity between cluster cen-
troids was estimated with Ward’s method, which minimizes the total 
within-cluster variance. Ward’s method merges the pair of clusters with 
minimum between-cluster distance at each successive step. The result-
ing dendrogram was divided into branches and different colour ramp 
scales were assigned for enabling the interpretation of the spatial dis-
tribution of families or assemblages of similar pedogenon classes. The 
number of branches was selected after trialling several partition 
numbers and visualizing the dendrograms, so that the groups that we 
could identify were separated but the amount of isolated leaves or very 
small clusters was minimized. 

2.7. Soil data 

Legacy soil data was accessed with the Soil Data Federator (http:// 
esoil.io/TERNLandscapes/SoilDataFederatoR/R/help/index.html), a 
web API that gathers soil data from different sources and is managed by 
the Terrestrial Ecosystem Research Network (TERN). All available data 
for clay (%), silt (%) and sand (%) measured with different particle size 
analysis methods (i.e., Coventry and Fett pipette (Coventry and Fett, 
1979), hydrometer (Day, 1953) and plummet balance (Marshall, 1956)) 
were extracted. The rate of change of soil texture would be very slow, so 
it is considered a relatively stable soil property. The data quality was 
checked, followed by modifying or eliminating incomplete, incorrect, 
and duplicated records. Since much of the legacy data comes from 
agricultural fields only, data between 30 and 60 cm depth were selected 
for statistical analyses, since past tillage operations may have homoge-
nised texture in upper horizon layers. After these processes, there were 
1102 observations of particle size fractions at 836 locations for depths 
ranging between 30 and 60 cm. 

2.8. Redundancy analysis 

We applied an exploratory ordination analysis to visualize the vari-
ability of texture across and within classes and test the ability of pedo-
genon classes for explaining the variation of particle-size fractions. 
Redundancy discriminant analysis (RDA) is a linear canonical ordina-
tion method designed for identifying patterns of variation in a multi-
variate dataset that can be associated to potential explanatory variables 
(Legendre and Legendre, 2012; Borcard et al., 2018). RDA can be 
considered as a constrained version of principal component analysis, 
wherein the canonical axes built from linear combinations of response 
variables are also linear combinations of the explanatory variables. 
Here, particle-size fractions were the response variables, pedogenon 
class was the explanatory variable and horizon depth the covariable 
(Legendre and Legendre, 2012; Borcard et al., 2018). The canonical axes 
represent environmental gradients. The pedogenon classes can be 
interpreted as a nominal designation of environmental gradients defined 
a priori. Given the correlation among the three fractions, sand was 
removed from the set of dependent variables and only those classes with 
at least 10 silt and clay observations were used in the analysis. A partial 
RDA was performed to remove the effect of mean horizon depth before 
evaluating the effect of pedogenon class on clay and silt (Zuur et al., 
2007). The RDA analyses were performed with the vegan package in R 
(Oksanen et al., 2019). 

3. Results 

3.1. Optimal number of classes 

The scree plots of the total WCSS and the ratio between-CSS to total 
WCSS did not show any abrupt changes that indicated the minimum 
optimal number of clusters (Fig. 1). Smaller values of total WCSS indi-
cated more compact clusters (feature space) as the number of clusters 
increases. The ratios between-CSS to total WCSS were above 0.80 from 
500 clusters for both sets of variables, indicating a relatively good 
clustering pattern. The ratio between-CSS to total WCSS was slightly 
higher when pre-1750 vegetation was included as a covariate. Visual 
examination of the spatial patterns and number of classes present in 
smaller study areas with good available knowledge of soil properties 
suggested that the maps with 1000 pedogenon classes were most suit-
able for the objectives of this study (Supplementary Material S2). Hence, 
only the maps of 1000 classes were subjected to further analyses. 

Fig. 1. a) Number of clusters (k) vs. total within cluster sum of squares (total WCSS) and b) Number of clusters (k) vs. ratio between-cluster sum of squares (between- 
CSS) to total within cluster sum of squares. 
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3.2. Pedogenon maps for NSW 

The dendrogram of 1000 pedogenon classes created with pre-1750 
vegetation and 18 continuous covariates was divided into small 
branches or families with the exception of a larger branch distributed 
along central NSW (purple-violet) that represented 26% of the total area 
(Fig. 2.a and Table 2 of Supplementary Material S1). The influence of the 
pre-1750 estimated vegetation was very apparent in the spatial patterns 
of some pedogenon classes, despite including only 7 principal compo-
nents to keep a good balance between soil-forming factors. The distri-
bution of some pedogenon classes reproduced the boundaries between 
MVG, but this also allowed to group together soils that likely present 
similar pedogenesis (e.g., Vertosols along the Darling Riverine Plains) 
(Fig. 3). The predominant major vegetation groups across all branches 
were Eucalyptus woodlands or open forests, although six pedogenon 
branches had other distinct dominant vegetation (e.g., Acacia wood-
lands and shrublands in the north-western corner, Callitris forests and 
woodlands, or Mallee woodlands and shrublands) (Table 2, Supple-
mentary Material S1). 

Towards the west of NSW, the pedogenon classes located in areas 
characterized by low precipitation, higher minimum temperatures and 
maximum diurnal temperature range, depositional areas (higher TWI), 
flat landscapes and relatively high weathering intensity index were 
organized into five branches (Table 2 and Fig. 1 of Supplementary Ma-
terial S1). Towards the Great Dividing Range and the coast, the pedo-
genon branches were more scattered along the north–south and 
reflected differences in relief conditions and microclimate. The alpine, 
high elevation region in southeast NSW was grouped into a distinct 
branch (Table 2 and Fig. 1 of Supplementary Material S1). 

The dendrogram of 1000 pedogenon classes generated with 18 
covariates (climate, parent material, relief) was divided into 18 
branches (Fig. 2.b). The broad spatial patterns agreed to some extent 
with bioregions of NSW (bioregions are areas characterized by broad 
landscape-scale geophysical and ecosystem features, designed for 
biodiversity conservation planning). There were clear divisions of NSW 
into areas with dominant branches, the largest one occupying 35% of the 
total area (Fig. 2 of Supplementary Material S1). For example, the north- 
western area (north-west of the Darling river) corresponds mostly to a 
branch of the dendrogram (blue-green) that also has some classes pre-
sent in the centre of NSW (Cobar Peneplain bioregion). Similarly, the 
classes located in the Murray Darling Depression (southwestern NSW) 
belong mostly to the same branch (purple-pink). However, other bio-
regions like the Darling Riverine Plains, are divided into two branches. 
Towards the east, the families of pedogenon classes are distributed along 
a north-south gradient, as response to the patterns in relief and climate 
variables parallel to the coast (Table 3 and Fig. 3 of Supplementary 
Material S1). Similarly to the previous model, the alpine region was 
separated into a distinct branch. The areas attributed to a single branch 
are smaller than in central and western NSW. 

The patterns of the pedogenon classes from both maps were similar 
in some regions, like in north-western and south NSW, despite following 
a different organization in their respective dendrograms. Perhaps the 
most apparent differences were in central NSW, where the pedogenon 
map with pre-1750 vegetation reflected the Callitris forests and wood-
lands and Mallee woodlands and shrublands. The degree of association 
between the categories of both maps measured with Cramér’s V = 0.53 
was strong considering the number of categories. 

The summary statistics of the pedogenon classes’ attributes were 
similar for both maps (Table 2). The median area occupied by a pedo-
genon class in NSW was 770 and 729 km2, ranging between 4 and 2842 
km2. The summary statistics of the within-pedogenon geographic dis-
tances suggest that most of the pixels from the same pedogenon class are 
located between 30 km and 120 km apart. The mean maximum distance 
around 500 km indicated that some pixels are scattered far from the 
main area of occurrence of its pedogenon class. The difference between 
the maximum Mahalanobis distance to the closest pedogenon and the 

third quantile indicated that there were few pedogenon classes whose 
centroids are far from all other classes. The spatial patterns of pedoge-
non classes were highly variable. Some pedogenons were quite compact, 
whereas others were more disperse, occupying relatively small areas 
over an extensive geographical range. Overall, pedogenon classes were 
distributed over relatively extensive areas forming assemblages, but 
they can be considered mappable, relatively compact units. 

3.3. Case study: Nowley farm 

There were 33 and 31 pedogenon classes present at Nowley farm for 
the maps with and without pre-1750 vegetation respectively (Nowley 
farm is recognised as having a large pedodiversity). The first 7 pedo-
genon classes of the map created with pre-1750 vegetation represented 
25%, 19%, 12%, 9%, 7%, 7% and 6% of the farm whereas secondary 
classes together occupied 15% of the area. Similarly, in the map with 18 
continuous variables, the predominant pedogenons occupied 27%, 26%, 
16%, 7% and 6% of the farm respectively, whereas the remaining 26 
classes represented only 18% of the area (Fig. 4.b). The total extension of 
the 33 and 31 pedogenon classes across NSW was 25921 km2 and 27902 
km2. Most of the pedogenons were located in proximity to the study area 
(approximately within a 150 km radius) forming compact units (Fig. 4.c) 
Few pedogenons spread towards the west of NSW with a more scattered 
pattern (Fig. 4.a). 

The level of spatial association among the pedogenon classes at 
Nowley farm was calculated using the Mahalanobis distance among 
centroids as attribute distance. The values of ELSA for each cell were 
calculated within a local distance of 0.005 decimal degrees (approxi-
mately 475 m) indicated relatively high homogeneity across the study 
area, with a maximum value of 0.33. There was some variation in the 
degree of spatial association, with higher heterogeneity (higher ELSA 
values) in the eastern and western extremes of the farm (Fig. 5), which 
corresponded with different soil types in the farm (Stockmann et al., 
2016). 

Two soil landscape units were dominant across Nowley farm 
(‘Noojee’ and ‘Trinkey Forest’) and two soil landscape units had a 
smaller representation towards the eastern and western extremes of the 
farm (‘Mount Milbulla’ and ‘Quirindi Creek’) (Fig. 6.c) (Stockmann 
et al., 2016). The association between the 4 soil landscape units and the 
pedogenon classes was strong, with Cramér’s V of 0.62 and 0.56 for the 
pedogenon maps with and without pre-1750 vegetation respectively. 
When we expanded the analysis area to the whole Curlewis Mapsheet 
(38 soil landscape classes, Fig. 6.a), the degree of association decreased, 
with Cramér’s V equal to 0.33 and 0.28, respectively. Although these 
values still indicated a moderate association between the soil landscape 
units and the pedogenon maps. The association was higher with groups 
of main geomorphic processes (Fig. 6.b), with Cramér’s V of 0.39 and 
0.33 for the pedogenon maps with and without pre-1750 vegetation. 

The soil landscape unit ‘Mount Milbulla’ overlapped with three 
pedogenon classes that were close to each other in the feature space 
(designated with the numeric codes 135, 139 and 222) (Fig. 3.b and 3.a 
dendrogram). These slopes have shallow and stony soils derived from 
weathered basalt and Vertosols in the benches (Stockmann et al., 2016). 
Similarly, the soil landscape unit ‘Quirindi Creek’ was mainly occupied 
by a distinct subgroup of pedogenon classes (code 272, 830, 86 and 318 
in Fig. 4.b and dendrogram; also see Fig. 6.e for the map with pre-1750 
vegetation). The soils in the floodplain of mixed origin vary, but towards 
the northwest of the farm are poorly drained grey-brown Vertosols 
(Stockmann et al., 2016). The soil landscape unit ‘Trinkey Forest’, 
located on undulating low hills with alluvial fan systems derived from 
sedimentary rocks, presents Sodosols in the southwest of the farm 
(Stockmann et al., 2016). This unit was not captured well by the pedo-
genon map without pre-1750 vegetation when we only consider the 
pedogenons present in the farm (Fig. 4.b), but the correspondence 
improved when all pedogenon classes (with pre-1750 vegetation) pre-
sent in the mapsheet were represented (Fig. 6.e). The soil landscape unit 
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Fig. 2. Pedogenon classes for New South Wales (n = 1000) generated with a) 18 continuous environmental covariates and 7 principal components of the estimated 
pre-1750 vegetation, and b) 18 continuous variables. The dendrograms of pedogenon centroids were divided into 21 and 18 branches respectively, and a different 
colour branch assigned to each of them for identifying patterns in spatial distribution of more similar classes and showing a possible aggregation into higher level 
taxa. Background map from © OpenStreetMap contributors. 
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‘Noojee’ is located in broad and long footslopes, with deep Vertosols and 
Chromosols developed over alluvium, basalts and dolerites (Stockmann 
et al., 2016). ‘Noojee’ had representation of several pedogenon classes 
that were not unique to the soil landscape unit (Fig. 6). 

3.4. Redundancy analysis of stable soil properties and pedogenon classes 

There were 19 pedogenon classes with at least 10 observations (23 ±
10 observations (mean ± standard deviation) for silt and clay in the 
pedogenon map created with pre-1750 vegetation for a total of 436 
observations. The pedogenon map without pre-1750 vegetation had 20 
pedogenon classes with at least 10 silt and clay observations (22 ± 11 

Fig. 3. Estimated pre-1750 vegetation (NVIS 5.1, 2018) reclassified into 15 major vegetation groups.  

Table 2 
Summary statistics of pedogenon classes for NSW. The distance* presents the mean ± standard deviation across all pedogenons of the summary statistics (1st quantile, 
median, 3rd quantile) of the distances between the pixels of the same pedogenon.  

Covariates Statistic Pedogenon area (km2) Distance between pixels of the  
same pedogenon (km)* 

Mahalanobis distance  
among all centroids 

Mahalanobis distance to the closest centroid 

Climate 
Relief 
Parent material 

Min 4 –  0.81  0.81 
Q25 501 34 ± 19  4.4  1.37 
Median 770 65 ± 38  5.6  1.77 
Mean 798 –  6.17  2.12 
Q75 1062 107 ± 67  7.11  2.53 
Max 2415 473 ± 246  50.14  33.31 

Climate 
Relief 
Parent material 
Vegetation 
(pre-1750) 

Min 4 –  0.92  0.92 
Q25 513 37 ± 20  5.38  1.59 
Median 729 71 ± 41  6.56  2.04 
Mean 799 –  7.02  2.38 
Q75 1017 120 ± 74  7.96  2.81 
Max 2842 535 ± 253  49.86  34.77  
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observations) and a total of 431 observations. The results of the partial 
RDA indicated that 29% of the particle size fraction variance was 
explained by the pedogenon map with pre-1750 vegetation (constrained 
variance), 5% variance was accounted by the conditioning horizon 
depth, and the remaining 65% was unexplained variance. The first and 
second axes of the RDA explained respectively 54% and 46% of the 
constrained variance. A permutation test indicated that the global RDA 
model and both constrained axes were statistically significant (p =
0.001). The results of the partial RDA for the pedogenon map without 
pre-1750 vegetation indicated that the constrained variance was 35% 
and 61% of the variance remained unexplained. The effect of mean 
horizon depth accounted for 4% of the variance of silt and clay. The RDA 
axes explained 74% and 26% of the constrained variance. The RDA 
model and both canonical axes were statistically significant (p = 0.001). 
The pedogenon classes were not separated in the ordination plots for 
both RDA models but rather overlapped, with variability among ob-
servations of the same pedogenon class (Fig. 7). 

4. Discussion 

4.1. Optimal number of classes 

We hypothesized that the diverse combinations of soil-forming fac-
tors identified by clustering would result in unique soil entities or 
classes. The number of combinations should have a positive relationship 
with the size of the study area as observed by Guo et al. (2003) for the 
conterminous USA. The results by Ibañez et al. (1998) and Minasny et al. 
(2010) suggested that pedodiversity (measured with Shannon’s index) is 
smaller in Australia than in other continents at the level of major soil 
group. Hence, if differences in pedodiversity between continents were 
analogous at lower hierarchical level, the number of classes for NSW at 
an equivalent level of soil family should be smaller than that estimated 
from the equations by Guo et al. (2003) for the conterminous USA. 
However, when the mean taxonomic distance is used as pedodiversity 
index, this is not related to the area but rather to the level of detail of the 
soil surveys (Minasny et al., 2010). The pedodiversity-area relationship 
depends on the diversity index used. 

Fig. 4. Pedogenons present at Nowley Farm from the map created with 18 continuous variables (without pre-1750 vegetation). a) Distribution of the pedogenon 
classes across NSW and dendrogram of the pedogenons present at Nowley Farm, with a custom colour palette for this study area. The labels indicate the number 
designation of the pedogenon classes. b) Nowley Farm. c) Distribution of the pedogenon classes in the surroundings of the study area. A small black rectangle in-
dicates the location of Nowley Farm. 
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The choice of the optimal number of classes is one of the critical 
points of the proposed methodology. Here, the elbow method did not 
provide a clear indication of the optimal number of classes, and we 
depended on rather subjective criteria. However, future studies should 
use intrinsic cluster evaluation metrics (e.g., silhouette index) (Han 
et al., 2012) for selecting the optimal number of classes. Alternatively, 
the comparison of pedogenon maps with traditional soil maps or survey 
data can also help for evaluating the number of classes (Supplementary 
Material S2). Overall, several pedogenon classes ranging between 800 
and 1000 for New South Wales seem to provide the level of detail needed 
for both local and regional soil management and show moderate 
agreement with soil maps by the Australian Soil Classification (Isbell and 
the National Committee on Soil and Terrain, 2016) (Supplementary 
Material S2). The modelling framework is flexible and allows the end- 
users to aggregate pedogenons into higher level taxa with hierarchical 
clustering, treating the centroids as individual observations and 
optionally weighing the centroids by cluster size. 

The maps of 1000 pedogenon classes had meaningful spatial patterns 
in smaller study areas (Fig. 6 and Supplementary Material S2), indi-
cating that 1046 classes at the taxonomical level of families estimated 
with the equation by Guo et al. (2003) were a good first approximation 
for the optimal number of pedogenon classes. According to the taxa-area 
relationships for the Soil Taxonomy (Guo et al., 2003), for an area like 
New South Wales there should be around 300 pedogenon classes at the 
level of subgroups, 80 for great-groups, 26 for suborders and eight for 
soil orders. Considering the structure of the dendrograms (Fig. 2) and 
that in New South Wales there are 14 orders of the Australian Soil 
Classification (Isbell et al., 1997), the richness of pedogenon classes at 
higher levels may be higher than estimated based on analogies with the 
conterminous USA. 

4.2. Representation of estimated vegetation at the reference state 

The estimated pre-1750 vegetation was a central component of the 
modelling approach for mapping pedogenons. The classes created using 
pre-1750 vegetation presented spatial patterns that agreed with areas 
with distinct soil characteristics, e.g., Vertosols along the Darling 
Riverine Plains. However, since the dissimilarity between vegetation 
classes was assumed the same across all categories, this translated into 
higher heterogeneity in the hierarchical organization of the pedogenons 
(Fig. 2). In some cases, the imprint of the vegetation classes was very 
clear in the pedogenon map, like the regions of Casuarina forests and 

woodlands, Callitris forests and woodlands, or Hummock grasslands. 
Vegetation could be represented by the probability of occurrence of each 
MVG, which would describe the co-occurrence of different vegetation 
communities within an area instead of indicating the dominant vege-
tation class and would likely reduce the presence of crisp edges in the 
map. 

Natural vegetation communities in Australia follow a climatic 
gradient while edaphic properties play a secondary role, although soil 
phosphorus and P:N are relevant for predicting the distribution of 
Eucalyptus communities (Bui and Henderson, 2013). Phosphorus 
cycling is controlled by biotic and geochemical processes. Thus, there 
are strong feedbacks between the spatial patterns of MVG and soil 
stoichiometry. Phosphorus is present in many rocks as apatite, but it is 
much less abundant in siliceous rocks (Binkley and Fisher, 2020). 
Instead of including the map of pre-1750 estimated vegetation, the po-
tential distribution of natural vegetation communities can be indirectly 
included in the clustering dataset by including additional bioclimatic 
variables and information of soil parent material and mineralogy. In 
addition to gamma radiometrics that inform on surface geochemistry 
and mineralogy, the abundance of siliceous rocks may be estimated from 
remote sensed spectral band ratios (Cudahy et al., 2016). Vegetation 
communities adapted to singular edaphic conditions (e.g., saline soils, 
wetlands) are possibly captured by the combination of parent material 
and relief. 

4.3. Identifying pedogenons in an ancient landscape 

Climate has been considered the main driver of long-term pedo-
genesis, as it is reflected by some soil classification systems (Wilding, 
1994; Bockheim et al., 2014). Soil-forming factors, particularly climate, 
are represented as relatively constant in many DSM models. The state 
variables used in this study identified the pedogenons with current 
climate and relatively recent vegetation, characterizing them somewhat 
as “zonal” soils (Marbut, 1935). However, most soils are formed by 
polygenesis and result from the combination of soil-forming processes 
that evolve over pedogenic time and the influence of palaeoclimates 
(Wilding, 1994; Richter and Yaalon, 2012). Soils in arid and semi-arid 
environments often present relict features developed by soil-forming 
processes occurring under past humid climates (Dergne, 1976). 
Former climatic conditions have a strong influence on the soil properties 
of highly weathered, ancient landscapes like those in western New South 
Wales. Thus, the application of a state factor model has its limitations for 

Fig. 5. Entropy-based local indicator of spatial association (ELSA) at Nowley farm.  
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Fig. 6. a) Soil landscape units and), b) geomorphic process of the Curlewis 1: 100,000 sheet map (Banks, 1995), c) soil landscape units at Nowley farm, d) pedogenon 
classes present at the extent of the Curlewis 1: 100,000 sheet map (18 continuous environmental covariates) and e) pedogenon classes generated with 18 continuous 
environmental covariates and the estimated pre-1750 vegetation. 

M. Román Dobarco et al.                                                                                                                                                                                                                     



Geoderma 393 (2021) 115012

13

old soils that have a higher probability of polygenesis (Wilding, 1994). 
The dynamic evolution of pedogenetic processes linked to climate is a 
challenge for the quantitative modelling of pedogenons. A partial solu-
tion for highlighting the relevance of former climates would be to 
integrate spatial information of paleoclimates (Brown et al., 2018) or the 
most detailed available information of geological stratigraphy or age of 
the geological substrate as a proxy for the soil-forming factor time. 
High-resolution paleoclimate surfaces available at global scale, such as 
WorldClim 1.4 (Hijmans et al., 2005) and PaleoClim (Brown et al., 
2018), provide bioclimatic indices for several time periods of the Ho-
locene, Pleistocene and Pliocene. However, the incorporation of paleo-
climate data would raise the questions on how to weigh the data 
depending on the duration of the period they represent, and whether the 
cluster analysis should be done simultaneously on all covariates or 
designing a sequential workflow that grouped covariates by time 
periods. 

4.4. Pedogenon modelling approach 

The methodology presented here was implemented as a two-step 
clustering approach. In the first step we applied a non-hierarchical 
hard clustering algorithm (k-means) to identify mapping units suitable 
for local and regional studies. The second step consisted in a hierarchical 
clustering using Ward’s criterion for quantifying the similarities among 
classes and describe its organization into higher-level taxa. Hierarchical 
clustering offers some flexibility to the end-user (e.g., environmental 
and agricultural agencies, land managers), who can select the desired 
number of classes for national or regional assessments and recalculate 
the summary statistics of environmental variables per class for higher- 
level taxa. We gave the same weight to each variable and tried to keep 
the balance between all represented soil-forming factors although 
climate had more representation than relief or parent material (nine 
climate variables, seven vegetation variables, four parent material var-
iables and five relief variables). The output pedogenon maps are very 
sensitive to the representation of the soil-forming factors and covariates 
used as proxies. Here, we selected environmental covariates that have 
meaning for pedogenesis through trial and error, but the optimal se-
lection of covariates may improve with automated algorithms. The co-
variate selection process could use soil data from traditional soil surveys 
(e.g., stable properties from subsoil horizons and information on 

pedogenetic pathways), preferentially with multivariate methods that 
allow for simultaneous selection of variables and consider multidimen-
sional data. An alternative method would be to follow a successive 
clustering approach (Roell et al., 2020). Environmental variables, 
proxies of the dominant soil-forming factors at national scale (e.g., 
paleoclimate and parent material), would be used in a first clustering 
step. Afterwards these units would be divided into more classes using 
variables of soil-forming factors relevant at subregional scale (e.g., 
current climate, relief, parent material at higher resolution, pre-1750 
vegetation). Since the choice of the variables affects greatly the result-
ing pedogenon classes (Fig. 2), this approach requires expert-knowledge 
on the hierarchy of soil-forming factors at national and subregional 
scale. 

The pedogenon mapping approach is similar to digital terron map-
ping at regional (Carré and McBratney, 2005; Malone et al., 2014; 
Coggins et al., 2019) and national scale (Peng et al., 2020; Roell et al., 
2020) in its use of unsupervised soil classification with clustering al-
gorithms. However, there are some conceptual differences between the 
concepts of terron and pedogenon. The term terron was originally linked 
to the terroir, i.e., an area where the combination of agricultural man-
agement, history and culture with a particular soil, landscape and 
microclimate confers distinctive qualities to food products. A terron was 
defined as a soil-landscape entity described by soil and landscape at-
tributes and their interactions (Carré and McBratney, 2005). Climate 
variables were later included for defining terron units (Coggins et al., 
2019) in larger areas with heterogeneous microclimate (Peng et al., 
2020; Roell et al., 2020). The definition of terron is oriented to crop 
production and environmental risk assessment, and the application de-
termines the soil and environmental variables selected for the analysis. 
The objective of digital terron mapping is to create soil-landscape en-
tities characterized by homogeneous soil, landscape, and climate attri-
butes as a tool for supporting agricultural management. On the other 
hand, the objective of pedogenon mapping is to delineate soil entities 
with homogeneous soil-forming factors for a given reference time and 
among other applications, may serve as basis for soil change assessment. 
Besides differences in definition and application, there were differences 
with the modelling framework for terron mapping at national scale. 
Roell et al. (2020) followed a hierarchical clustering approach that 
started from the definition of national terrons that were further divided 
into regional terron classes. However, both terron and pedogenon 

Fig. 7. Ordination plots (scaling = 1) of partial redundancy discriminant analysis (RDA) of silt and clay with pedogenon class as explanatory variable. a) RDA biplot 
for the map with pre-1750 vegetation, and b) pedogenons (map with pre-1750 vegetation) with soil texture data included in the RDA model. The legend indicates the 
number designation of the pedogenon classes. 
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mapping are flexible and reproducible methods, applicable locally or 
over large areas, and face the same caveats of variable selection and 
optimization of the number of classes (Peng et al., 2020; Roell et al., 
2020). Including some soil gridded information that could be used as 
proxy for long-term pedogenetic processes (e.g., subsoil mineralogy) 
would incorporate some elements of terron mapping but could be 
equally applied to generate soil mapping units for soil change 
assessment. 

4.5. The concept of pedogenon and its potential applications for soil 
management 

The definition of pedogenon as expressed in this study is broader 
than that of genon by Boulaine (1969) since the classes were generated 
exclusively with information on soil-forming factors and not on soil 
properties. Nevertheless, the methodology can be applied at a larger 
scale for identifying local genons of size closer to that conceptualized by 
Boulaine. At regional scale we missed some unique combinations of soil- 
forming factors due to the current sampling density (259,000 pixels 
represent less than 1% of the New South Wales gridded information at 
90 m resolution), but higher sampling density requires longer processing 
time. Pedogenon maps at local scale can use a higher sampling density of 
the environmental covariates that would improve the identification of 
local patterns in soil variation. For example, in the southwest of Nowley 
Farm there is an area with sandy texture that was not discriminated 
when mapping at regional scale (Stockmann et al., 2016). 

The spatial characteristics of the pedogenon classes mapped at the 
scale of New South Wales allows assessment of the soil condition and 
capability of a local study area within its regional context, meaning that 
knowledge on the effects of management practices on soil properties 
may be transferable between farms with similar pedogenon classes. 
Pedogenon classes with marginal presence in an area of interest can also 
be merged with their closest pedogenon class using the Mahalanobis 
distance between centroids as a criterion. 

Pedogenon maps provide spatially explicit information for investi-
gating the effect of anthropogenic activities on soil properties with 
space-for-time substitutions and transfer knowledge on the effect of 
different management practices between study areas of homogeneous 
environmental conditions. Conceptual frameworks of soil change (Yaa-
lon and Yaron, 1966; Richter, 2007) can be implemented with pedoge-
non maps, if the classes are interpreted as genoforms for a reference 
time. Then, information on human activities since the reference time (e. 
g., land use change, agricultural management) can be overlayed to 
divide these soil classes into subclasses, and dissimilarity metrics be-
tween soil profiles can be used for identifying persistent soil variations 
(phenoforms). These variations are persistent enough that significant 
management intervention or a long period under a different land man-
agement would be necessary to revert them to the genoform (Rossiter 
and Bouma, 2018). Off-site alterations ranging from local to global 
change (e.g., atmospheric deposition, climate change) can be incorpo-
rated as explanatory variables in statistical models used for soil change 
assessment. 

Another potential application is to provide the basis for designing 
soil monitoring surveys. A stratified random sampling scheme based on 
pedogenon information could be implemented for estimating baseline 
values of soil properties by pedogenon families (higher level taxa). For 
example, the strata may be defined by the combination of land use/ 
cover with pedogenon families, resembling existing soil sampling 
schemes at national and continental scale (e.g., LUCAS Soil, Orgiazzi 
et al. (2018)). 

4.6. Evaluation of pedogenon classes 

The current study does not include an explicit evaluation of the 
pedogenon classes besides testing their explanatory power for subsoil 
texture. Pedogenon class explained only 29% and 35% of the variation 

of subsoil clay and silt, and the RDA ordination plot indicated high 
within-class variability (Fig. 7). Given the spatial extent of the pedoge-
non classes, it is expected that the soils found within a pedogenon have 
some degree of variability. Nevertheless, the RDA results suggest that 
the methodology for pedogenon mapping requires further improvement 
and these first pedogenon maps should be considered with prudence. 
However, the pedogenons’ ability to explain particle size distribution 
may be enhanced by including more variables for parent material at a 
finer resolution, such as remote sensing spectral band ratios for unve-
getated areas (Cudahy et al., 2016; Roberts et al., 2019), although the 
latter may be limited to local pedogenon maps in semi-arid and arid 
areas (Regmi and Rasmussen, 2018). Only two stable soil properties 
were included as response variables, but including other stable soil at-
tributes like soil crystalline minerals, secondary minerals and Fe and Al 
oxides, presence of duripan (silcrete) or plinthite (Richter, 2007) could 
improve the evaluation of the pedogenon classes with legacy soil data. 
We did not include these variables in our analysis because the number of 
observations was not as numerous as particle size distribution. Hence it 
would limit the number of pedogenon classes included in the RDA. The 
evaluation of the pedogenon maps with new field data is unfeasible at 
the scale of New South Wales in terms of time and human resources. 
However, the measurement of soil properties and description of soil 
profiles by pedogenon class is feasible at local scale and will be carried in 
future studies. 

The comparison of soil profile properties between pedogenon classes 
can use several metrics and sources of information, e.g., taxonomic 
distance based on soil horizon and profile attributes calculated with 
stable soil properties (Carré and Jacobson, 2009) or soil spectral infor-
mation (Viscarra Rossel et al., 2011). Soil spectra in the mid and vis-near 
infrared range have intrinsic information on the biological, chemical 
and physical soil properties (Soriano-Disla et al., 2014). Hence, by 
selecting spectral bands correlated with the mineral soil fraction, it may 
be possible to quantify the similarities in soil properties among pedo-
genon classes and even compare the degree of diversity within and be-
tween different pedogenon classes using spectral-based diversity indices 
(Fajardo et al., 2017). The use of spectral information for characterizing 
pedogenon classes has to be done with caution, since it is sensitive to 
land use changes (Tivet et al., 2013; James et al., 2019). Hence, it may 
be more suitable to assess the effects of anthropogenic activities on soil 
spectral properties in interaction with pedogenon class. 

5. Conclusion 

This study introduced a methodology for mapping pedogenons, units 
defined by homogeneous quantitative state variables representing the 
soil-forming factors for a reference time. The main purpose of pedoge-
non mapping is to delineate units with similar multimillennial pedo-
genesis and historic anthropedogenesis that will serve as basis for soil 
change assessment, as well as for designing soil sampling and field 
surveys that can afterwards serve for soil mapping. The two-step clus-
tering approach combined k-means (but could be replaced by fuzzy 
clustering or other partitioning algorithms) and hierarchical clustering. 
This framework allows us to generate pedogenon classes over large areas 
at fine resolution, is reproducible and easily applicable at different 
scales. This can be especially useful for large areas lacking detailed soil 
surveys (Regmi and Rasmussen, 2018) or where soil mapping units do 
not reflect common long-term pedogenesis. The application of the 
methodology at the state scale produced a detailed classification that 
had meaningful spatial patterns. The flexibility of the model enables us 
to merge pedogenon classes developed in a taxonomic level equivalent 
to soil family into higher level taxa depending on the management ap-
plications. Pedogenon mapping faces the challenges of optimizing the 
number of classes and variable selection, but more relevant for ancient 
landscapes is representing different polygenetic pathways. Indeed, the 
choice of covariates becomes an even more critical step in polygenetic 
soils (pedogenic paleosols sensu Richter and Yaalon, 2012). The 
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selection of the optimal number of classes and covariates needs to be 
improved by implementing objective cluster evaluation metrics and 
multivariate selection methods and soil information respectively. Future 
work will demonstrate how to apply pedogenon maps for assessing the 
effects of recent anthropedogenesis on soil condition and capability, and 
also focus on developing and evaluating pedogenon maps at local scale 
or support the design of soil monitoring surveys. 
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Tivet, F., de Moraes Sá, J.C., Lal, R., Milori, D.M.B.P., Briedis, C., Letourmy, P., 
Pinheiro, L.A., Borszowskei, P.R., da Cruz Hartman, D., 2013. Assessing humification 
and organic C compounds by laser-induced fluorescence and FTIR spectroscopies 
under conventional and no-till management in Brazilian Oxisols. Geoderma 207 
(208), 71–81. https://doi.org/10.1016/j.geoderma.2013.05.001. 

Tobler, R., Rohrlach, A., Soubrier, J., Bover, P., Llamas, B., Tuke, J., Bean, N., Abdullah- 
Highfold, A., Agius, S., O’Donoghue, A., O’Loughlin, I., Sutton, P., Zilio, F., 
Walshe, K., Williams, A.N., Turney, C.S.M., Williams, M., Richards, S.M., Mitchell, R. 
J., Kowal, E., Stephen, J.R., Williams, L., Haak, W., Cooper, A., 2017. Aboriginal 
mitogenomes reveal 50,000 years of regionalism in Australia. Nature 544, 180–184. 
https://doi.org/10.1038/nature21416. 

Triantafilis, J.; McBratney, A.B., 1993. Application of continuous methods of soil 
classification and land suitability assessment in the Lower Namoi Valley. Canberra, 
ACT: CSIRO Division of Soils. 10.25919/5c9522aec8bad. 

Viscarra Rossel, R.A., Chappell, A., De Caritat, P., McKenzie, N.J., 2011. On the soil 
information content of visible–near infrared reflectance spectra. Eur. J. Soil Sci. 62, 
442–453. https://doi.org/10.1111/j.1365-2389.2011.01372.x. 

Ward, W.T., 1999. Soils and landscapes near Narrabri and Edgeroi, NSW, with data 
analysis and using fuzzy k-means. CSIRO Land and Water Technical Report No.:22/ 
99. http://hdl.handle.net/102.100.100/213385?index=1. 

Wicklin, R., 2012. What is Mahalanobis Distance? https://blogs.sas.com/content/iml/ 
2012/02/15/what-is-mahalanobis-distance.html (accesed 4 March 2020). 

Wilford, J., 2012. A weathering intensity index for the Australian continent using 
airborne gamma-ray spectrometry and digital terrain analysis. Geoderma 183, 
124–142. https://doi.org/10.1016/j.geoderma.2010.12.022. 

Williams, K.J., Belbin, L., Austin, M.P., Stein, J.L., Ferrier, S., 2012. Which 
environmental variables should I use in my biodiversity model? Int. J. Geogr. Inf. 
Sci. 26, 2009–2047. https://doi.org/10.1080/13658816.2012.698015. 

Wilson, J.P., Gallant, J.C., 2000. Secondary topographic attributes. In: Wilson, J.P., 
Gallant, J.C. (Eds.), Terrain Analysis: Principles and Applications. John Wiley & 
Sons, New York, pp. 87–131. 

Wilding, L.P., 1994. Factors of soil formation: contributions to pedology. Factors of soil 
formation: a fiftieth anniversary retrospective, SSSA Special Publication No. 33, 
SSSA, Madison, WI. pp. 15-30. https://doi.org/10.2136/sssaspecpub33.c2. 

Xu, T., Hutchinson, M.F., 2011. ANUCLIM Version 6.1 User Guide. Fenner School of 
Environment and Society. The Australian National University. 

Yaalon, D.H., Yaron, B., 1966. Framework for Man-Made Soil Changes - an Outline of 
Metapedogenesis. Soil Sci 102 (4), 272–277. 

Zuur, A.F., Ieno, E.N., Smith, G.M., 2007. Principal component analysis and redundancy 
analysis, in: Analysing Ecological Data. Statistics for Biology and Health. Springer, 
New York, NY. 10.1007/978-0-387-45972-1_12. 

M. Román Dobarco et al.                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0016-7061(21)00086-0/h0205
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0205
https://doi.org/10.1016/j.geoderma.2019.03.019
https://doi.org/10.1016/j.geoderma.2019.03.019
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0225
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0225
https://doi.org/10.2136/sssaj1963.03615995002700020034x
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0235
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0235
https://doi.org/10.1016/bs.agron.2014.10.005
https://doi.org/10.1016/bs.agron.2014.10.005
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0250
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0250
https://doi.org/10.1016/j.geodrs.2014.08.001
https://doi.org/10.1016/j.geoderma.2020.114579
https://doi.org/10.1016/j.geoderma.2020.114579
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0265
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0265
https://doi.org/10.1016/S0016-7061(03)00223-4
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0275
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0275
https://doi.org/10.3390/su11123350
https://doi.org/10.3390/su11123350
https://doi.org/10.1016/S0016-7061(00)00043-4
https://doi.org/10.1016/j.geoderma.2009.04.024
https://doi.org/10.1016/j.geoderma.2009.04.024
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0295
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0295
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0295
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0300
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0300
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0300
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0305
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0305
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0305
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0310
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0310
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0310
https://doi.org/10.1016/j.spasta.2018.10.001
http://refhub.elsevier.com/S0016-7061(21)00086-0/optwpoEEXM9BN
http://refhub.elsevier.com/S0016-7061(21)00086-0/optwpoEEXM9BN
http://refhub.elsevier.com/S0016-7061(21)00086-0/optwpoEEXM9BN
https://doi.org/10.1111/ejss.12499
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0340
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0340
https://doi.org/10.1016/j.geoderma.2020.114174
https://doi.org/10.1016/j.geoderma.2020.114174
https://doi.org/10.1016/j.geoderma.2019.07.018
https://doi.org/10.1002/hyp.3360050106
https://doi.org/10.1016/j.catena.2018.02.031
https://doi.org/10.1016/j.catena.2018.02.031
https://doi.org/10.1097/ss.0b013e3181586bb7
https://doi.org/10.1016/j.cageo.2020.104454
https://doi.org/10.1016/j.geoderma.2017.11.002
https://doi.org/10.1016/j.geoderma.2017.11.002
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0395
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0395
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1080/05704928.2013.811081
https://doi.org/10.1016/j.catena.2016.01.007
https://doi.org/10.1016/j.geoderma.2013.05.001
https://doi.org/10.1038/nature21416
https://doi.org/10.1111/j.1365-2389.2011.01372.x
https://doi.org/10.1016/j.geoderma.2010.12.022
https://doi.org/10.1080/13658816.2012.698015
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0450
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0450
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0450
https://doi.org/10.2136/sssaspecpub33.c2
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0455
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0455
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0460
http://refhub.elsevier.com/S0016-7061(21)00086-0/h0460

	A modelling framework for pedogenon mapping
	1 Introduction
	2 Methods
	2.1 Digital soil mapping framework
	2.2 Study area
	2.3 Environmental covariates
	2.3.1 Climate
	2.3.2 Parent material
	2.3.3 Relief
	2.3.4 Organisms

	2.4 Clustering mixed data
	2.5 Optimal number of soil classes and cluster evaluation
	2.6 Hierarchical clustering
	2.7 Soil data
	2.8 Redundancy analysis

	3 Results
	3.1 Optimal number of classes
	3.2 Pedogenon maps for NSW
	3.3 Case study: Nowley farm
	3.4 Redundancy analysis of stable soil properties and pedogenon classes

	4 Discussion
	4.1 Optimal number of classes
	4.2 Representation of estimated vegetation at the reference state
	4.3 Identifying pedogenons in an ancient landscape
	4.4 Pedogenon modelling approach
	4.5 The concept of pedogenon and its potential applications for soil management
	4.6 Evaluation of pedogenon classes

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Code availability
	Appendix A Supplementary data
	References


