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A B S T R A C T   

The assessment of changes in soil condition and capability requires the identification of a reference state specific 
to each soil class. This study develops a framework for mapping soil classes that can be used as a reference state. 
It identifies soil classes that should have undergone similar historic anthropedogenesis, and differentiate, within 
each class, zones that have been less affected by human activities. This approach could be used as a baseline for 
assessing contemporary soil change, as demonstrated in the state of New South Wales in Australia. First, we 
established soil classes with similar multimillennial natural pedogenesis and historic anthropedogenesis, called 
pedogenons. This was achieved by applying unsupervised classification (k-means) to a set of quantitative state 
variables, proxies of the soil-forming factors at the time of the European settlement in New South Wales (climate, 
relief, parent material, and estimated pre-1750s vegetation). Pedogenon classes were then stratified into sub
classes (ranging from remnant pedogenons to different pedophenons) by combining information on native 
vegetation extent, status (remnant or cleared) and current land use (i.e., land use history). The stratification of 
1000 pedogenon classes resulted in 5448 subclasses, ranging from remnant pedogenons (located in protected 
areas of intact native vegetation), quasi-remnant pedogenons (production with low intervention on remnant 
native vegetation), cleared, grazing, and cropping pedophenons. The median of the area proportion of the 
pedogenon that was still preserved as remnant vegetation was 5.3%. This quasi-remnant pedogenon or the less 
affected pedophenon could be used as reference state. Pedophenon grazing and cropping occupied larger areas, 
with mean values of 73 km2 and 153 km2, respectively. The application of this framework for assessing soil 
change is illustrated using legacy data of topsoil pH (5 – 15 cm) as one indicator of soil condition. The ability of 
the pedogenon and pedophenon subclasses for explaining the variation of three stable (total Si, total Al, clay) and 
three dynamic (bulk density, particulate organic carbon, pH) soil properties from agricultural soils. A generalised 
least squares model indicated that the effects of pedogenon, land use history and their interaction on topsoil pH 
were statistically significant (p < 0.001). Paired comparisons between pedogenon/pedophenon subclasses by 
pedogenon class were not statistically significant, although we observed the general trend: remnant pedogenon ≈
quasi-remnant pedogenon < pedophenon cleared ≈ pedophenon grazing < pedophenon cropping. Redundancy 
discriminant analysis indicated that pedogenons explained 40% of the variation of stable and dynamic soil 
properties, pedogenon/pedophenon subclasses explained 0.1% and the shared effect explained 18%, leaving 42% 
of unexplained variance. The effects of pedogenon/pedophenon subclasses on the location of group centroids 
were statistically significant only when dynamic soil properties were considered, but not for stable and dynamic 
soil properties. This framework can be integrated into a soil security assessment once the indicators of soil 
condition and capability are translated into soil functions and ecosystem services. Other potential applications 
include the design of soil monitoring sampling schemes and identifying thresholds of soil degradation.   

Abbreviations: GLS, generalised least squares; PERMANOVA, permutational multivariate analysis of variance; PERMDISP, permutational analysis of multivariate 
dispersions; RDA, redundancy discriminant analysis; SCaRP, national soil carbon research program; SDGs, United Nations sustainable development goals; SOC, soil 
organic carbon; POC, particulate organic carbon; HOC, humic organic carbon; ROC, resistant organic carbon. 
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1. Introduction 

Soil functions are essential for providing ecosystem services to so
ciety and achieving the United Nations Sustainable Development Goals 
(SDGs) (Keesstra et al., 2016). The links between soil functions, soil 
ecosystem services and SDGs are evident for − but not limited to−
achieving food security and ending hunger (SDG2), ensuring health and 
promoting well-being (SDG3), ensuring clean water and sanitation 
(SDG6), taking action to combat climate change (SDG13) and sustaining 
the life on land (SDG15) (Bouma et al., 2019; Pozza and Field, 2020). 
The demand for goods and services by the growing world population and 
the current economic and socio-political system increase the anthropo
genic pressure on soils and accelerate the rate of soil change (Berthe, 
2019). Soil change is also affected by global change processes (e.g., land 
conversion and intensification, climate change, pollution), reducing 
pedodiversity (Lo Papa et al., 2011) and the soils’ ability to supply 
ecosystem services. In this context, optimal soil management needs to 
maximize the supply of ecosystem services according to the soil capa
bility, identify baselines for measuring changes in soil condition 
(Berthe, 2019; McBratney et al., 2019), and define strategies for main
taining soil multifunctionality across the landscape (Greiner et al., 
2017). Detailed information and understanding of soil change can guide 
managers and stakeholders in the decision-making process and assist in 
forecasting the effects of management alternatives on soil condition 
(Tugel et al., 2005). Similarly, incipient soil degradation can be detected 
by identifying thresholds in the temporal evolution of soil properties 
associated with different management (Kuzyakov and Zamanian, 2019). 

The concept of soil security connects the biophysical, economic, and 
social soil attributes with the ecosystem services and can be used for 
sustainable management (McBratney et al., 2014). The ability of a soil to 
deliver an ecosystem service is determined by its capability, which is 
limited by its capacity and modified by its condition (McBratney et al., 
2019; Field, 2020). Capability refers to the inherent potential for per
forming soil functions (‘What functions can this soil be expected to 
perform?’) (McBratney et al., 2014). Soil capacity is determined by 
physicochemical properties that generally evolve over long pedogenetic 
time scales (centuries, multimillenia) and that are not readily changed 
by human forcings (e.g., CEC, soil texture), although presumably, stable 
soil properties can also change over a relatively short time periods (e.g., 
human-induced erosion can modify surface texture in less than 100 
years (Lyles and Tatarko, 1986)). Soil condition concerns biological, 
chemical, and physical soil properties that change at a faster rate and 
reflect contemporary soil management (e.g., microbial biomass, soil 
organic carbon, pH, aggregates). The effects of land use change and 
management on soil condition and capability need to be assessed with 
respect to a reference state. Previous studies established thresholds for 
soil condition from soil monitoring data or repeated soil surveys 
(Cotching and Kidd, 2010; Yang et al., 2018; Dazzi and Lo Papa, 2019). 
Spatially explicit soil security assessments have evaluated soil condition 
setting target values by soil order and land use type for several soil 
physicochemical properties (Kidd et al., 2018; Yang et al., 2018). Dazzi 
and Lo Papa (2019) quantified soil condition with the Soil Potential 
Index (Mancini and Ronchetti, 1968) for different soil orders. They 
assessed the effect of anthropogenic activity on the soil security di
mensions by comparing the temporal change in an area occupied by soil 
order within their study area. Alternatively, the baseline for soil con
dition may be identified at a lower taxonomical level from detailed soil 
maps (Rossiter and Bouma, 2018), and the effects of land use history on 
soil condition assessed with a space-for-time substitution. 

Soils are human-natural bodies, often a “kind of polygenetic paleo
sol” that accrued features through processes that evolved widely over 
pedogenetic time (Cline, 1961; Richter and Yaalon, 2012). Hence, the 
reference state has to be defined for a specific temporal context. Yaalon 
and Yaron (1966) defined a theoretical framework according to which a 
soil in steady-state (SN), resulting from the long-term effects of the 
soil-forming factors (clorpt (Jenny, 1941)) is the initial point for 

human-induced changes in soil processes and properties, i.e., meta
pedogenesis or anthropedogenesis. The properties of the new soil (SHN) 
will depend on the intensity of the anthropedogenetic processes, initial 
soil properties, and the resistance and resilience of the initial soil SN. 
Richter (2007) incorporated the temporal scale of soil formation into the 
conceptual model by Yaalon and Yaron (1966) by differentiating be
tween multimillennial natural pedogenesis, the legacy of historic 
anthropedogenesis (i.e., time scale of centuries and millennia) and 
contemporary anthropedogenesis (i.e., decadal time scale). This model 
can be implemented with a digital soil mapping approach to identify the 
reference state specific for each soil class and assess changes in soil 
condition and capability caused by contemporary management. A soil 
map representing soil classes at a reference point in time can be over
layed with spatial information of contemporary human pressures on 
soils. The reference state for each soil class will be the one with the 
minimum degree of anthropogenic modification of soil properties. 

In the context of the Australian continent, the historic anthropedo
genesis comprises the land management and agricultural practices car
ried by the First Nations Australians over millennia (Gammage, 2011; 
Pascoe, 2014). These practices include modifying watercourses for 
pisciculture, applying controlled fire for managing the vegetation 
structure and composition, creating wildlife habitats, and agriculture 
with native crops (Gammage, 2011; Pascoe, 2014). As one of the soci
eties with an extensive presence in a geographic region (Tobler et al., 
2017; Bird et al., 2018), the management of landscape structure, vege
tation dynamics and fire regime influenced pedogenetic processes and 
maintained the provision of ecosystem services. Land use practices after 
the European settlement in Australia, from 1788 onwards, modified the 
pressures on soils (Russell and Isbell, 1986). Clearing native forests and 
farming led to increased soil erosion, gully formation and increased al
luvium deposits in valley bottoms in some areas (Gale and Haworth, 
2005; Muñoz-Salinas et al., 2014). The species composition and struc
ture of native forests likely shifted as a result of clearing of Eucalyptus 
forests followed by fire suppression (Lunt et al., 2006). In central New 
South Wales, former Eucalyptus-dominated woodlands may have 
evolved into either open savanna-like pastoral landscapes or dense 
Callistris-dominated forests (Lunt et al., 2006). The effects of contem
porary agricultural activities like intensive cropping and grazing on 
dynamic soil properties are well documented: loss of soil organic carbon, 
increased bulk density, reduction of infiltration rates, increased soil 
erosion, modified nutrient availability and pH (Wilson et al., 2011; 
Yates et al., 2000). 

The concepts of genoform and phenoform were conceived for dis
tinguishing pedons within the same map unit and shared long-term 
pedogenesis that present substantial differences in properties and 
functions due to management (Droogers and Bouma, 1997; Rossiter and 
Bouma, 2018). This approach has been applied for investigating soil 
change and its relationship with soil type and management (Stevenson 
et al., 2015; Huang et al., 2018; Seaton et al., 2020) and requires the 
availability of detailed soil maps in which the soil survey groups poly
pedons with common historic anthropedogenesis. Some systems classify 
soils with the primary aim of describing current morphological features 
rather than following genetic criteria or accounting for pre-disturbance 
features (e.g., Australian Soil Classification (ASC), Isbell et al., 1997). 
Hence, information on the contemporary human disturbance is not 
provided explicitly at some level of the classification. Contemporary soil 
change may have modified soil attributes to the extent that polypedons 
with common long-term pedogenesis are assigned to different classes 
(Smeck and Balduff, 2002). 

The main goal of this study is to design a digital soil mapping (DSM) 
approach that can serve for assessing changes in soil capability and 
condition due to contemporary land use history. We expand a DSM 
framework designed for defining groups of homogeneous quantitative 
state variables representing the soil-forming factors for a reference time, 
under the hypothesis that the dominant soil-forming processes within 
each group are similar, and therefore develop unique soil entities (i.e., 
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pedogenons) (Román Dobarco et al., 2021). The specific objectives of 
this study are: (1) to map pedogenon classes defined for the time of the 
European settlement in New South Wales and further divide them into 
subclasses according to contemporary land use and vegetation status, (2) 
to test differences in soil pH, as a proxy for soil condition, by pedogenon, 
and (3) to assess the ability of pedogenon classes, pedogenons and 
pedophenon subclasses for explaining the variation in dynamic and 
stable soil properties in agricultural soils. 

2. Methods 

2.1. Framework for mapping pedogenons and pedophenons 

The modelling framework consists of two steps. First, soil entities are 
defined by identifying groups of homogeneous soil-forming factors, in 
accordance with classic factor-based approaches (Dokuchaev, 1883; 
Jenny, 1941). Each group represents a historic soil system (SNH) that 
results from long-term anthropedogenetic processes up to a reference 
time, i.e., pedogenon (Fig. 1) (Román Dobarco et al., 2021). Then, in
dicators of contemporary soil change are implemented with a look-up 
table for dividing the pedogenons into subclasses depending on the 
type and degree of intensity of human pressure on soils. These subclasses 
correspond to contemporary human-affected soil systems (SNHC) (Fig. 1) 
(Richter, 2007). 

Pedogenon classes are generated by applying unsupervised classifi
cation to a regionalised set of quantitative state variables. The envi
ronmental covariates are proxies of the soil-forming factors for a given 
reference time, e.g., European settlement in New South Wales. The 
characteristics of the soil-forming factors and processes vary widely 
during soil formation, which can span from millennia to millions of 
years (Richter and Yaalon, 2012). Hence, the pedogenon model can be 
generalized as: 

pedogenon = f (s, cl, o, r, p, t)where t

= pedogenetic time up to a reference time  

where pedogenons are a function of the prior natural soil system (s), 
climate or paleoclimates (cl), organisms (o), relief (r) and parent mate
rial (p) acting from the origin of soil formation until a reference time (t). 
Soil attributes that inform of long-term pedogenetic processes may be 
included as covariates and information on historic land use. In this 
example, we did not differentiate sequences of natural pedogenetic and 
historic pedogenetic processes, but rather grouped them in a more static 
approach. We selected covariates that we considered relatively constant 
(relief, parent material) or assumed representative of the conditions at 
the time of the European settlement (estimated native vegetation, 
climate). In this study, a pedogenon is defined as follows: 

pedogenon = f (clt, ot, rt, pt) where t = reference time 

The pedogenons constitute the historic soil system (SNH) or starting 
point for assessing the effects of contemporary management. Next, 
pedogenon classes are divided into different subclasses depending on the 
type and degree of intensity of anthropogenic activities. These sub
classes constitute the contemporary human-affected system (SNHC) 
(Richter and Yaalon, 2012), and range from remnant pedogenons (the 
closest to the pre-European baseline) to several pedophenon types. 
Several data layers (e.g., native vegetation extent and status, land cover 
changes, land use) combined with a rule-based algorithm inform where 
it is likely to find the reference state or minimally-altered soils for each 
pedogenon class: 

pedogenon = f (clt, ot, rt, pt)ot=native vegetation 1750

=

{
remnant pedogenon, o = remnant native vegetation

pedophenon, o ∕= remnant native vegetation 

For clarity, we may refer to the factor pedogenon or pedophenon 

Fig. 1. Diagram of the modelling framework for mapping pedogenons and pedophenons. The framework of soil change proposed by Richter (2007) distinguishes 
three time scales: the multimillennial natural soil system (SN), the historic soil system (SNH) affected by natural and historic anthropedogenetic processes (which in 
the case of Australia comprise several millennia), and the contemporary human-affected system (SNHC). The pedogenons are related to the historic soil system and 
constitute the baseline for assessing the effects of contemporary management on soil properties. This diagram is adapted from Richter and Yaalon (2012), Richter 
(2007) and Yaalon and Yaron (1966). 
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subclasses, either as pedogenon/pedophenon subclasses or land use 
history, to differentiate it from the factor pedogenon class. The pedo
genon subclasses are populated with soil data. Information on stable and 
dynamic soil properties by fixed depths, and horizon and profile features 
can be used to calculate distance metrics either for a depth interval or 
the entire profile (Carré and Jacobson, 2009) between observations from 
different pedogenon/pedophenon subclasses. The distances between 
pedogenon/pedophenon subclasses (defined in soil properties) indicate 
whether recent management and land use have modified soil condition. 
Multivariate statistical analyses that compare distances and dispersion 
within- and between-groups were used for this objective. 

2.2. Digital pedogenon mapping 

The modelling framework for digital pedogenon mapping applied to 
New South Wales, the characteristics of the pedogenon classes and their 
spatial distribution are explained in detail in Román Dobarco et al. 
(2021). Here, we provide a brief description of the modelling process. 

We selected 25 continuous environmental covariates (Table 1), 
proxies of the soil-forming factors that would have remained relatively 
constant (e.g., relief and parent material) or that we assume represen
tative of the conditions prior 1750 (e.g., vegetation). Due to the lack of 
accurate estimates and limited spatial coverage for the pre- 
industrialized climate data in Australia (Ashcroft et al., 2014), we 
used nine bioclimatic indices calculated from the ANUCLIM 6.1 (Xu and 
Hutchinson, 2011) 30-year average climate surfaces (1975–2005). Four 
gamma-ray spectrometry variables and a weathering intensity index 
(Wilford, 2012) informed on the geochemistry, mineralogy and degree 
of weathering of the regolith and bedrock. Five covariates derived from 
a 3-second digital elevation model produced from the Shuttle Radar 
Topographic Mission (SRTM) (Farr and Kobrick, 2000) described the 
relief and geomorphology. The categories of the estimated vegetation at 

the time of the European settlement (pre-1750 vegetation) (National 
Vegetation Information System V5.1 © 2018) were grouped into 15 
classes (Fig. 2), transformed into binary variables, and subjected to 
principal component analysis. We kept the first seven principal com
ponents that collectively retained 50% of the variation which amply 
discriminated the major vegetation groups. Including available esti
mates of paleoclimate data would have raised the matter of whether 
applying a sequential workflow (grouping covariates by geological 
period) or weighing the climate data depending on the duration of the 
period they represent. Hence, we excluded paleoclimate from this ex
ercise for simplicity, but we will consider it in future studies. We trialled 
several combinations of covariates in preliminary analyses since the 
output of the unsupervised classification can be susceptible to covariate 
selection (Román Dobarco et al., 2021). The 25 environmental cova
riates were centred, standardized, and sampled at 259,000 locations in a 
1.6 km × 1.6 km grid. 

We created 1000 pedogenon classes applying the k-means algorithm 
(Hartigan and Wong, 1979) to the dataset of 25 environmental cova
riates. K-means is a non-hierarchical clustering method, efficient for 
very large datasets of numerical data. The algorithm searches the 
partition of k clusters from dataset X that minimized the within-cluster 
sum of squared errors, i.e., the sum of squared distances to the cluster 
centroids (Han et al., 2012). Before clustering, the environmental 
dataset X was rescaled by applying the inverse of the Cholesky trans
formation of the variance-covariance matrix (Wicklin, 2012). The 
Euclidean distance calculated on the rescaled dataset Y is equivalent to 
the Mahalanobis distance calculated in X (Wicklin, 2012). This trans
formation allows for correlations among variables to be considered in 
the partitioning process. The clustering process was repeated 10 times 
with the k-means++ initialization (Arthur and Vassilvitskii, 2007) and a 
maximum of 5000 iterations. The k-means algorithm was implemented 
with the Kmeans_rccp function of the ClusterR package (Mouselimis, 

Table 1 
Covariates used to describe clorpt (Jenny, 1941) or scorpan (McBratney et al., 2003) factors and generate pedogenon classes. P: parent material; S: soil; T: time; R: 
relief; Cl: climate; O: organisms.  

Covariate Description Clorpt 
factor 

Original raster 
resolution (m) 

Reference 

PTA Annual precipitation (mm) Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

PTS1MP Precipitation: ratio of annual contrast in regional rainfall conditions between summer and 
winter solstice conditions. 

Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

PTS2MP Precipitation: ratio of annual contrast in regional rainfall conditions between spring and 
autumn equinox conditions. 

Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

TNM Minimum temperature (annual mean) (◦C) Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

TXX Maximum temperature (monthly maximum) (◦C) Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

TNI Minimum temperature (monthly minimum) (◦C) Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

TRX Maximum monthly mean diurnal temperature range (◦C). high variation in temperature 
conditions (inland or continental locations). 

Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

TRI Minimum monthly mean diurnal temperature range (◦C). Consistent temperature conditions 
(coastal locations). 

Cl 270 Xu and Hutchinson (2011)  
Williams et al. (2012) 

RSM Short-wave solar radiation - annual mean (MJ/m2/day) Cl 90 Wilson and Gallant (2000) 
K Radiometrics: filtered K element concentrations (%) S, P 100 Minty (2019a); Geoscience 

Australia (2019) 
Th Radiometrics: filtered Th element concentrations (ppm) S, P 100 Minty (2019b); Geoscience 

Australia (2019) 
Th/K Radiometrics: Ratio Th/K derived from the filtered Th and K grids S, P 100 Minty (2019c); Geoscience 

Australia (2019) 
WII Weathering intensity index P, T 100 Wilford (2012) 
Elevation SRTM-derived 3 S Smoothed Digital Elevation Model R 90 Gallant et al. (2009) 
Slope Slope (%) R 90 Gallant et al. (2009) 
TWI Topographic wetness index R 90 Quinn et al., (1991) 
MRVBF Multi-resolution valley bottom flatness index R 90 Gallant and Dowling (2003) 
MRRTF Multi-resolution ridge top flatness index R 90 Gallant and Dowling (2003) 
MVG Estimated pre-1750 major vegetation groups (MVGs). First 7 principal components retaining 

50% of the variation of the MVGs represented as binary variables (presence/absence). 
O 100 National Vegetation 

Information System V5.1 (2018)  
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2021). Pedogenon classes were mapped at 90 m resolution assigning 
each pixel to its closest cluster centroid after rescaling with the inverse 
Cholesky transformation. 

The number of clusters was selected based on three criteria: the 
elbow method, pedodiversity-area equations (Guo et al., 2003), and 
visual examination of the spatial patterns of pedogenon maps at smaller 
study areas where soil properties have been well studied in the past. 
These areas included the Namoi-Edgeroi district (Triantafilis and 
McBratney, 1993; Ward, 1999), the Hunter Valley region (Malone et al., 
2014) and Nowley farm (Stockmann et al., 2016). 

We hypothesized that the variation and complexity in combinations 
of environmental variables, proxies of soil-forming factors, would follow 
a power function, S = cAz (S is richness, A is area and c and z are con
stants) (Guo et al., 2003). The richness-area relationships observed at 

continental and subregional scales for established soil classification 
systems (Guo et al., 2003; Minasny et al., 2010) should be intrinsic to 
pedogenon classes. We used equations developed by Guo et al. (2003) 
for the conterminous USA for the family level of Soil Taxonomy (Soil 
Survey Staff, 2010) to approximate the number of desired pedogenon 
classes for New South Wales. This taxonomic level is above the soil se
ries, but it is considered a useful general group for management. For the 
area of mainland New South Wales (801,137 km2) the number of classes 
at the taxonomic level of family would be around 1040 (Román Dobarco 
et al., 2021). Further information on selecting the optimal number of 
pedogenon classes, and a discussion on the relevance of the number of 
classes, representation of the different soil-forming factors and selection 
of environmental covariates on the output pedogenon maps can be 
found in Román Dobarco et al. (2021). The ratio between cluster sum of 

Fig. 2. Estimated pre-1750 native vegetation (National Vegetation Information System V5.1, 2018) reclassified into 15 major classes used for pedogenon mapping.  
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squared errors to total sum of squared errors (between-CSS / total-SS) 
was used as an indicator of clustering quality. When the ratio 
between-CSS / total-SS is close to 1, it is indicative that the observations 
follow a pattern in the clustering (Mouselimis, 2021). 

Hierarchical agglomerative clustering was applied to investigate the 
similarities and hierarchical organization of the pedogenon classes. The 
pedogenon centroids were treated as individuals and the clustering was 
performed with Ward’s method. The optimal number of branches or 
pedogenon families was selected with the Silhouette and the Dunn 
indices, setting 30 as the maximum number of clusters. The visualization 
of the 1000 pedogenon classes was determined by trial and error, 
assigning a different colour palette to different dendrogram branches. 

2.3. Stratification into pedogenon/pedophenon subclasses with a rule- 
based algorithm 

A categorical map distinguishing areas with the different expected 
degree of anthropogenic modifications of soil properties (i.e., land use 
history) was generated combining information on native vegetation 
extent, status (cleared or intact), and current land use. The map was 
produced at 90 m resolution, although the resolution of the input layers 
ranged between 5 m and 250 m. The maps used to delineate pedogenon 
and pedophenon subclasses answered the following questions:  

• Is the vegetation potentially native? The NSW Native Vegetation Extent 
5 m Raster v1.2 (NSW Office of Environment and Heritage (OEH) 

2019) determined the extent of native vegetation. This layer was 
developed under the NSW State Vegetation Type Map program and 
differentiates tree cover, woodland matrix, candidate native grass
lands, forestry plantations, non-native areas, and water bodies. The 
mapping method used high-resolution and SPOT5 satellite imagery 
for mapping individual trees (Fisher et al., 2017). Its currency is for 
2011–2018. It assumes that all tree cover different from plantations 
are native. Areas with grassland vegetation and no signs of agricul
tural management are classified as candidate native grasslands.  

• Is it remnant or secondary native vegetation? A drawback of using 
current vegetation extent and structure is that the anthropogenic 
degradation of natural ecosystems might have taken place prior to 
the availability of remote sensing imagery. Land cover classification 
may not distinguish vegetation structures resulting from human ac
tivities (Harwood et al., 2016). For example, it may be difficult to 
determine whether a native open woodland or native grassland re
sults from ecosystem degradation following forest clearing or 
reflective of natural environmental conditions. Hence, we included 
the map by Keith and Simpson (2008) on native vegetation at 250 m 
resolution in the analysis. This binary map discriminated between 
remnant native vegetation (intact grasslands and woody vegetation) 
and cleared vegetation (including non-native and secondary grass
lands of native vegetation). The map was produced combining the 
best available information from 46 vegetation maps with currency 
ranging between 1966 and 2005, although the available information 

Table 2 
Look-up table for classifying pedogenon or pedophenon subclasses.  

Native vegetation 
extent 

Native vegetation 
status 

Land Use class CLUM category Pedogenon / pedophenon 
subclass 

Native Native remnant 110:117 
120:125, 
130,131,133 
610,611,614, 
630,631, 
650,651, 
660,661 

1.1 Nature conservation 
1.2 Managed Resource Protection 
1.3 Other Minimal Use 
6.1 Lake (conservation and saline) 
6.3 River conservation 
6.5 Marsh/wetland 
6.6 Estuary/coastal 

Pedogenon Remnant 

132 
200:222 
314, 
414, 
612, 
632, 
652 
662 

1.3.2 Stock route 
2. Production from relatively natural environments 
3.1.4 Environmental forest plantation 
4.1.4 Irrigated environmental forest plantation 
6.1.2 Lake production 
6.3.2 River production 
6.5.2 Marsh production 
6.6.2 Estuarine production 

Quasi-remnant pedogenon 

Native Native cleared 110:117, 
120:125, 
130,131,133, 
200:222, 
314,414, 
610:614, 
630:632, 
650:652, 660,661  

Pedophenon Cleared 

Native or non-native Remnant or cleared 310:313, 
410:413 

3.1 Dry forestry 
4.1 Irrigation forestry 

Pedophenon Forestry 

320:325 
420:424 

3.2 Dry Grazing 
4.2 Irrigated Grazing 

Pedophenon Grazing 

330:353, 
360:365, 
430:465 
542 

3.3 Cropping 
3.4 Perennial horticulture 
3.5 Seasonal horticulture 
3.6 Land in transition 
4.3 Irrigated Cropping 
5.4.2 Rural residential with agriculture 

Pedophenon Cropping 

500:595 
613 
620:623 
633 
640:643 
134 

5. Intensive Uses (mining, industrial, urban, greenhouses, livestock 
facilities, etc.) 
6.1.3 Lake intensive 
6.2 Reservoir/dam 
6.3.3 River intensive 
6.4 Channel/aqueduct 
1.3.4 Rehabilitation 

Excluded from analysis  
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on native grasslands was limited at the time (Keith and Simpson 
2008).  

• Can the current land use affect soil functions substantially? Current land 
use is an indicator of the intensity of human pressures on soils. The 
Catchment Scale Land Use of Australia dataset (CLUM) at 50 m 
(ABARES, 2019) was reclassified into five categories to differentiate 
between conservation areas, production from relatively natural en
vironments, forestry, grazing, and cropping. Intensive uses (mining, 
industrial, greenhouse horticulture, livestock production facilities, 
etc.), urban areas, and water bodies were excluded from the analysis. 

The rules for classification are presented as a look-up table (Table 2). 
For an area to be considered a remnant pedogenon it was required that 
the vegetation was potentially native, intact from clearing and that 
current land use has a small or negligible impact on soil condition (i.e., 
conservation). The next pedogenon subclass along the gradient of 
anthropogenic pressure (quasi-remnant pedogenon) was designed for 
areas where land use was close-to-nature management. Areas of 
potentially native vegetation that have been cleared (Keith and Simp
son, 2008), and where current land use has a relatively small effect on 
soil condition, were designated as a pedophenon with a low degree of 
modification (i.e., Pedophenon Cleared). This class may be relevant for 
grasslands resulting from degradation of woodlands and forests due to 
previous land use management (grazing, fire management, etc.). Land 
uses indicative of severe modification on native vegetation and dynamic 
soil properties (e.g., cropping, grazing on managed pastures) override 
the information on native vegetation extent and status. Water bodies and 
intensive land uses (mining, industrial, etc.) were excluded from this 
analysis since the focus of this study is on agricultural activities. 

2.4. Population of pedogenon and pedophenon subclasses with legacy soil 
data 

Soil pH was chosen as an indicator of soil condition because it is a 
dynamic property that is affected by management. Legacy data were 
accessed with the Soil Data Federator (http://esoil.io/TERNLandscapes/ 
SoilDataFederatoR/R/help/index.html). This web API is managed by 
CSIRO and compiles soil data from different institutions and government 
agencies throughout Australia. We selected soil pH measured with 1:5 
soil/0.01 M calcium chloride extract (Rayment and Lyons, 2011). After 
cleaning and checking the quality of the data, mass-preserving splines 

(Bishop et al., 1999) were applied to estimate pH values by the Global
SoilMap depth intervals (Arrouays et al., 2014). The subset of 5047 
observations for the 5–15 cm depth interval was selected for assessing 
changes in soil condition. 

Data from the national Soil Carbon Research Program (SCaRP) 
(Baldock et al., 2013b) constituted a second dataset. SCaRP was 
designed to quantify carbon stocks across combinations of land uses and 
management practices in the main agricultural regions of Australia. The 
main land uses were cropping and grazing in managed pastures or native 
grasslands. Hence, forests and rangelands outside the main agricultural 
regions are not represented in the dataset. Soil samples were mainly 
collected at 0–10, 10–20, and 20–30 cm depth from 10 sampling points 
in 25 m × 25 m plots within a paddock and combined in a composite 
sample (Sanderman et al., 2011). A minimum of three additional sam
ples per depth interval was collected for measuring bulk density. The 
samples were air dried at 40 ◦C and sieved with a 2 mm mesh. At the 
laboratory total organic carbon was determined with a LECO CN ana
lyser (LECO Corporation, MI, USA). Soil organic carbon (SOC) fractions 
were determined for a representative subset of samples with a combi
nation of size-density fractionation and solid-state 13C nuclear magnetic 
resonance spectroscopy (Baldock et al., 2013a). The fractionation 
scheme separated particulate organic carbon (POC), mineral-associated 
SOC or humic organic carbon (HOC), and resistant organic carbon 
(ROC) or charcoal. These fractions were related with carbon pools of 
different turnover time of the Roth C model (Skjemstad et al., 2004). 
Diffuse reflectance mid-infrared spectra were acquired for all samples 
with a Thermo Nicolet 6700 FTIR spectrometer (Thermo Fisher Scien
tific Inc., MA, USA) over the range 8000–400 cm− 1 at 8 cm− 1 resolution. 
SOC fraction contents of all samples were determined with partial least 
squares regression models calibrated with MIR spectra and fractionation 
data (Baldock et al., 2013a). Gravimetric clay content, soil pH, total 
nitrogen, and total concentration of Al, Si, and Fe were determined with 
MIR predictive models (Janik et al., 1995; Janik and Skjemstad, 1995). 

2.5. Statistical analyses 

We calculated summary statistics on the distribution of pedogenons 
into subclasses as total area and percentages of their respective pedo
genon of origin. We applied a generalised least squares (GLS) model to 
test the effect of pedogenon, land use history (pedogenon/pedophenon 
subclass) and their interaction on topsoil pH (5–15 cm depth). Only 

Fig. 3. Silhouette and Dunn indices for different number of clusters applied in the hierarchical clustering of the pedogenon centroids.  
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pedogenon/pedophenon subclasses with at least 5 observations were 
included in the model. GLS models can deal with variance heterogene
ity, and hence we fitted the variance structure by pedogenon class (Zuur 
et al., 2009). Since not all pedogenon/pedophenon subclass levels 
existed in every pedogenon, we created a new factor designating their 

combinations. We tested the significance of the interaction term with the 
likelihood-ratio test, i.e., comparing nested models (with and without 
interaction) fitted with maximum likelihood (Zuur et al., 2009). Paired 
comparisons between estimated means were calculated across all 
pedogenon and pedophenon subclasses by pedogenon class with Tukey’s 

Fig. 4. (a) Pedogenon classes for New South Wales and organization into different branches following hierarchical clustering. (b) Spatial distribution of remnant 
pedogenons. The colour designates the pedogenon of origin following the hierarchical dendrogram. 
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honest significance test. Paired comparisons between estimated means 
were performed aggregated by pedogenon and pedophenon classes. 

We applied redundancy discriminant analysis (RDA) to identify 
patterns of variation in the multivariate SCaRP data that could be 
associated to pedogenons and pedogenon/pedophenon classes. We 
selected three stable (clay, total Si, total Al) and three dynamic (bulk 
density, pH, POC) soil properties. The variance inflation factor smaller 
than 3 indicated acceptable collinearity. POC is considered a proxy of 
the active C pool and very responsive to management, and hence we 
chose it over SOC, although both were highly correlated. We also per
formed RDA to compare the ability of soil order (ASC, Isbell et al., 1997) 
and higher-level taxa pedogenon class, i.e., branch or family, to explain 
the variation of soil properties because both variables had a number of 
factor levels in the same order of magnitude. We tested the suitability of 
the rule-based algorithm by performing the RDA with the three source 

layers (native vegetation extent, status and land use) as explanatory 
variables and only the classification pedogenon/pedophenon as 
explanatory variable. RDA is a linear canonical ordination method that 
can be considered as a constrained version of principal component 
analysis (Zuur et al., 2007). The canonical axes are built from linear 
combinations of the response variables and the explanatory variables 
(Legendre and Legendre, 2012; Borcard et al., 2018). 

Distance metrics calculated with a multivariate set of soil properties 
can inform on substantial differences in condition and capability be
tween pedogenon and pedophenon groups, by comparing within- and 
between-group distances and the location of the group centroids in the 
multivariate space. A permutational multivariate analysis of variance 
(PERMANOVA) (Anderson 2001) was applied to the subset of stable and 
dynamic soil properties using the Mahalanobis distance as dissimilarity 
metric. PERMANOVA is a multivariate variance partitioning method 

Fig. 5. Distribution of six categories for pedogenons and pedophenons in New South Wales.  

Table 3 
Summary statistics of the area occupied by different pedogenon and pedophenon subclasses (km2).  

Pedogenon / Pedophenon subclass Distinct Pedogenons classes Minimum Area Q25 Area Median Area Mean Area Q75 Area Maximum Area 

Remnant pedogenon 997 0.007 9.8 38.5 101.8 130.7 976.7 
Quasi-remnant pedogenon 995 0.299 54.2 158.3 360.4 578 2827.6 
Pedophenon Cleared 987 0.007 25.7 73.9 114.3 163.7 1042.7 
Pedophenon Forestry 604 0.007 0.1 0.4 3.8 1.8 134.9 
Pedophenon Grazing 950 0.007 5.3 25.1 72.8 79.6 881 
Pedophenon Cropping 915 0.007 2.1 32.5 152.6 230.9 1244.7  
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with p-values obtained with distribution-free permutation techniques 
(Anderson and Walsh 2013). PERMANOVA tests the null hypothesis of 
equivalence in the position (location) of group centroids in the space of 
dissimilarity measure, under the assumption of exchangeability of 
sample units among the groups (Anderson and Walsh 2013). We tested 
the effect of pedogenon class, land use history (pedogenon/pedophenon 
subclass) and their interaction on the location of group centroids with 
9999 permutations. PERMANOVA makes no assumptions in the distri
butions of the variables or the dissimilarity metrics, and is very robust to 
heterogeneity for balanced designs but not unbalanced designs, and 
insensitive to the correlation (shape) among groups (Anderson and 
Walsh 2013). Then we performed multilevel pairwise comparisons and 
calculated the Bonferroni-corrected p-values between pedogenon/pe
dophenon subclasses (combinations of pedogenon and land use history) 
to test if the effect of management was significant within a pedogenon 
class. A test for homogeneity of multivariate dispersion (PERMDISP) was 
also done for each factor using the Mahalanobis distance as dissimilarity 
metric and 9999 permutations. PERMDISP compares within-group 
spread among groups with the average distances from individual ob
servations to their group centroid (Anderson, 2017). We made pairwise 

Table 4 
Summary statistics of the contribution (%) that the pedogenon/pedophenon 
subclasses represent of their respective pedogenon class.  

Pedogenon / 
Pedophenon 
subclass 

Minimum Q25 Median Mean Q75 Maximum 

Remnant 
pedogenon 

0.001 1.3 5.3 17.1 21.4 98.7 

Quasi-remnant 
pedogenon 

0.337 9 26.2 39.4 73.5 99.8 

Pedophenon 
Cleared 

0.001 4.1 11.9 14.9 23.1 85.3 

Pedophenon 
Forestry 

0 0 0.1 0.5 0.3 14.6 

Pedophenon 
Grazing 

0 0.8 3.6 9.8 12.5 77 

Pedophenon 
Cropping 

0.001 0.3 3.9 19.2 32.5 90.6  

Fig. 6. (a) Annual precipitation (mm) in New South Wales (NSW), (b) Location of pH data (5–15 cm) across pedogenon classes in NSW (N = 5047) and hierarchical 
clustering of pedogenon classes, with a colour palette by pedogenon branch, (c) Boxplot of annual precipitation by pedogenon/ pedophenon class. The lower and 
upper whiskers represent respectively the ranges between the first (Q1) and third (Q3) quantiles to the smallest value at most Q1 - 1.5 * IQR and to the largest values 
no greater than Q3 + 1.5 * IQR (IQR is the inter-quartile range, or Q3 – Q1), and (d) soil pH (5–15 cm) observations by pedogenon and pedophenon class. In open 
circles individual soil pH observations, in closed circles, mean pH for those subclasses with at least 5 observations by pedogenon-pedophenon subclass (3224 ob
servations across 176 pedogenons). The colour indicates the pedogenon class with the same colour scheme as in the hierarchical dendrogram. 
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comparisons between different pedogenon/pedophenon classes by 
pedogenon. The GLS model was fitted with the nlme package (reference), 
pairwise mean comparisons with the package emmeans (Lenth, 2020), 
RDA, PERMANOVA and PERMDISP analyses were performed with the 
vegan package in R (Oksanen et al., 2019) and the pairwise.adonis 
function (Martinez Arbizu, 2020). 

3. Results 

3.1. Pedogenon mapping and stratification into pedogenon and 
pedophenon subclasses 

The k-means algorithm set for k = 1000 produced 997 pedogenon 
classes for NSW (three centroids had no observations assigned to them) 
with a mean area of 799 km2, ranging between 4 and 2842 km2. The 
ratio between-CSS / total-SS was 0.85, indicating a relatively good 
clustering pattern. The Silhouette index indicated that 2 was the optimal 
number of clusters. The index decreased from 2 to 7 clusters and 
increased progressively until reaching a local maximum at 20 clusters. 
The Dunn index indicated that 3 was the optimal number of clusters. The 
Dunn index had very small values between 4 and 16 clusters and 
increased slightly for 17–20 clusters (Fig. 3). Hence, the 997 pedogenon 
classes were grouped into 20 branches or families according to the hi
erarchical dendrogram (Fig. 4.a). The pedogenon families distributed 
along the Great Dividing Range and towards the coast followed the 
gradient in relief and climatic conditions and generally had a smaller 
size than those towards the west of the Great Dividing Range (Román 
Dobarco et al., 2021). In central NSW, a large pedogenon family was 

distributed along the north-south direction, where the predominant 
estimated pre-1750 vegetation were Eucalyptus and Acacia woodlands 
(Fig. 2). The influence of the estimated pre-1750 vegetation on the 
pedogenon classification was apparent for several pedogenon branches, 
e.g., Casuarina forests or Chenopod shrublands (Figs. 4 and 2). 

The distribution of the pedogenons among pedogenon and pedo
phenon subclasses indicated that 46% of the area in NSW corresponded 
to areas of native remnant vegetation dedicated to productive uses, 
mainly grazing, classified as quasi-remnant pedogenon, whereas 
remnant pedogenon represented 13% of NSW. The predominant pedo
phenon was pedophenon cropping (18%) followed by pedophenon 
cleared (14%) and pedophenon grazing (9%), while pedophenon 
forestry occupied only 0.3% of NSW (Fig. 5). 

The stratification of the 997 pedogenons by land use history pro
duced a total of 5448 subclasses. For each pedogenon there was at least 
one grid cell (≈ 0.007 km2) classified as a remnant pedogenon (Table 3). 
Remnant pedogenon subclasses represented on average, 17% of their 
respective pedogenon class, ranging between 0.001 and 99% (Table 4 
and Fig. 3.b). The median of the proportion of the pedogenon of origin 
preserved as a remnant pedogenon was 5.3% (Table 4). The 995 quasi- 
remnant pedogenon subclasses occupied larger areas, with a mean of 
360 km2 in comparison to the 102 km2 of remnant pedogenon (Table 3). 
Quasi-remnant pedogenon constituted on average 39% of their pedo
genon of origin, with a median of 26% (Table 4). The next pedophenon 
along the gradient of anthropogenic pressure (pedophenon cleared) 
were present in 987 pedogenons and had a mean area of 114 km2. The 
pedophenons occupied by forestry were present in only 604 pedogenons 
and had a mean area of 3.4 km2, although the maximum value was 134 

Table 5 
Analysis of variance of the generalised least squares (GLS) model parameters and maximum likelihood test of the interaction term.  

GLS model df F-value p-value 

pH = Pedogenon + Land use history variance weights = varIdent(form = ~ 1 | Pedogenon)    
Intercept 1 261,008.4 <0.0001 
Pedogenon 175 24.5 < 0.0001 
Land use history 4 11.8 < 0.0001  

GLS model (interaction term) df AIC BIC logLik L.Ratio p-value 

pH = Pedogenon x Land use history variance weights = varIdent(form = ~ 1 | Pedogenon) 487 6476.8 9436.9 − 2751.4   
pH = Pedogenon + Land use history variance weights = varIdent(form = ~ 1 | Pedogenon) 356 6413.2 8577.1 − 2850.6 198.5 0.0001  

Table 6 
Multiple comparisons of mean pH by pedogenon/pedophenon subclasses. The diagonal presents the mean pH value by class. The lower triangle the difference between 
estimated means and the upper triangle the p-values.  

Pedogenon/Pedophenon Remnant pedogenon Quasi-remnant pedogenon Pedophenon Cleared Pedophenon Grazing Pedophenon Cropping 

Remnant pedogenon 4.79 0.88 <0.0001 <0.0001 <0.0001 
Quasi-remnant pedogenon − 0.04 4.83 0.0004 <0.0001 <0.0001 
Pedophenon Cleared − 0.21 − 0.17 5.00 0.60 0.27 
Pedophenon Grazing − 0.26 − 0.22 − 0.05 5.05 0.87 
Pedophenon Cropping − 0.31 − 0.27 0.10 − 0.05 5.11  

Table 7 
Summary statistics of pairwise comparisons of estimated mean pH by pedogenon/pedophenon subclasses by pedogenon class. N indicates the number of pedogenon 
classes where the pairwise comparison by subclass could be made.  

Pedogenon/ Pedophenon Pedogenon/Pedophenon Minimum 25th percentile Mean 75th percentile Maximum Standard deviation N 

Remnant Pedogenon Quasi-remnant pedogenon − 0.331 − 0.201 − 0.029 0.124 0.369 0.216 22 
Remnant Pedogenon Pedophenon Cleared − 1.791 − 0.45 − 0.216 0.045 0.51 0.456 26 
Remnant Pedogenon Pedophenon Grazing − 0.577 − 0.512 − 0.297 − 0.094 0.057 0.232 19 
Remnant Pedogenon Pedophenon Cropping − 1.238 − 1.141 − 1.045 − 0.948 − 0.851 0.274 2 
Quasi-remnant pedogenon Pedophenon Cleared − 0.804 − 0.412 − 0.155 0.102 0.507 0.367 29 
Quasi-remnant pedogenon Pedophenon Grazing − 0.747 − 0.454 − 0.256 − 0.077 0.253 0.291 17 
Quasi-remnant pedogenon Pedophenon Cropping − 0.994 − 0.364 − 0.255 − 0.152 0.535 0.433 8 
Pedophenon Cleared Pedophenon Grazing − 0.57 − 0.114 0.055 0.162 1.032 0.311 48 
Pedophenon Cleared Pedophenon Cropping − 0.79 − 0.27 − 0.036 0.249 0.538 0.354 21 
Pedophenon Grazing Pedophenon Cropping − 0.804 − 0.52 − 0.298 − 0.104 0.258 0.31 15  
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km2. Thus, the proportion that pedophenon forestry occupied of their 
respective pedogenons was on average 0.5%. Pedophenons grazing and 
cropping occupied larger areas, with mean values of 73 km2 and 153 
km2, respectively. The subclasses dedicated to cropping constituted in 
general a larger proportion of the pedogenons than grazing, with mean 
contributions of 19% and 10%, respectively (Table 4). 

3.2. Soil pH as an indicator in soil condition. Effects of pedogenon and 
pedophenon subclasses 

The soil pH dataset consisted of 5047 observations distributed in 577 
pedogenon classes, while the remaining 420 pedogenon classes did not 
have any pH observation. The pH data were mainly located in the 
agricultural areas and the coastal fringe (Fig. 6.b). The subset with at 
least 5 observations by pedogenon/pedophenon subclass (combination 
of the factors pedogenon and land use history) resulted in 3224 obser
vations across 176 pedogenon classes. We will also refer to the latter as 
land use history to differentiate between the pedogenon class and the 
pedogenon/pedophenon subclass levels. The GLS model indicated that 
the effects of pedogenon, land use history and their interaction were 
statistically significant (p < 0.001) (Table 5). Paired comparisons of 
mean pH aggregated by pedogenon/pedophenon level suggested that 
topsoil pH did not differ between remnant pedogenon and quasi- 
remnant pedogenon. Mean pH of both pedogenon classes differed 
from pedophenons. Estimated pH means did not differ between pedo
phenon classes, although it followed the trend remnant pedogenon <
quasi-remnant pedogenon < pedophenon cleared < pedophenon graz
ing < pedophenon cropping (Table 6). Paired mean comparisons be
tween pedogenon/pedophenon subclasses within the same pedogenon 
class were not statistically significant. However, the differences between 
estimated means had a maximum absolute value of 1.8 (Table 7). Most 
of the differences in mean pH (absolute values) that were in the upper 
25th percentile = 0.4 (irrespective of the p-value) corresponded to 
pedophenon cleared and remnant pedogenon. 

3.3. Variation in stable and dynamic soil properties from the SCaRP 
dataset explained by pedogenon classes and land use history 

The number of SCaRP observations per pedogenon class ranged 

between 1 and 51 with a mean of 3.6 observations/pedogenon for the 
top 0–10 cm. From the total of 1444 observations, only 18 were located 
in soils classified as remnant pedogenon and 76 in quasi-remnant 
pedogenon. Most of the soil samples were located in cropping and 
grazing pedophenons (Table 8). 

3.3.1. RDA on stable and dynamic soil properties 
The subset of the SCaRP dataset that had at least 5 observations per 

pedogenon/pedophenon subclass consisted of 599 observations across 
69 different pedogenon classes. The lack of SCaRP observations in most 
pedogenon classes is explained by the purpose of the SCaRP programme, 
focused on characterizing the SOC stocks of agricultural soils across 
Australia. The RDA axes explained 63% of the variation, leaving 37% of 
unexplained variance. The first and second axes of the RDA explained 
respectively 67% and 18% of the constrained variance (Table 9). A 
permutation test indicated that the global RDA model and the first four 
RDA axis were statistically significant (p = 0.001). The RDA distance 
triplot (scaling 1) did not discriminate pedogenon and pedophenon 
classes completely. Pedophenons grazing had higher POC content than 
pedophenons cropping, which had higher pH, clay, and bulk density 
(Table 8 and Fig. 7.b). Sites from pedogenons that belonged to the same 
family (similar colours) were closer in the RDA distance triplot, with the 
exception of some pedogenon classes that had a high dispersion. Vari
ance partitioning of the RDA using the adjusted R2 (Borcard et al., 1992; 
Zuur et al., 2007; Legendre and Legendre, 2012) indicated that the pure 
pedogenon effect was equal to 40% of the variation and the pure 
pedogenon/pedophenon effect (land use history or management) was 
0.1% of the total variation. The shared amount of variation was 18% and 
it was not possible to differentiate between them due to some collin
earity between pedogenon and pedogenon/pedophenon subclasses. 
These results indicate that pedogenon class (and hence environmental 
variables) explained most of the variation of soil properties. The shared 
effect of land use history and pedogenon suggests that the occurrence of 
some land uses mediates the variation explained by management where 
the environmental conditions and intrinsic soil properties (pedogenons 
and their capability) make them more suitable. The adjusted R2 was 58% 
and the residual variation was 42%. RDA on dynamic soil properties 
explained a similar amount of variation (63%) and partition of variance 
between pedogenon classes, and pedogenon/pedophenon subclasses. 

Table 8 
Summary statistics of soil properties from the SCaRP dataset (0–10 cm) per pedogenon/pedophenon class (N = 1444), mean annual temperature (MAT) and mean 
annual precipitation (MAP). BD: bulk density; SOC: soil organic carbon; POC: particulate organic carbon; HOC: humic organic carbon; TN: total nitrogen; Si: total silica; 
Fe: total iron; Al: total aluminium.  

Pedogenon/ Pedophenon N MAT ( ◦C) MAP (mm) BD (g soil cm− 3) SOC (mg C g− 1 soil) POC (mg C g− 1 soil) HOC (mg C g− 1 soil) 

Remnant pedogenon 18 14.3 ± 1.8 815 ± 248 1.32 ± 0.12 25.78 ± 7.82 4.59 ± 2.07 13.79 ± 3.81 
Quasi-remnant pedogenon 76 17.0 ± 2.5 495 ± 252 1.38 ± 0.18 14.15 ± 8.17 2.48 ± 1.56 7.61 ± 4.52 
Pedophenon Cleared 213 15.6 ± 2.8 672 ± 175 1.30 ± 0.18 21.81 ± 11.97 4.30 ± 3.24 11.55 ± 6.20 
Pedophenon Grazing 464 14.4 ± 2.2 746 ± 177 1.28 ± 0.18 24.70 ± 11.25 5.41 ± 2.93 12.86 ± 6.04 
Pedophenon Cropping 673 16.9 ± 1.8 572 ± 129 1.34 ± 0.20 14.78 ± 6.66 2.11 ± 1.57 8.60 ± 3.75  

Pedogenon/ Pedophenon TN (mg N g− 1 soil) pH Clay (mg g− 1 soil) Si (mg g − 1 soil) Fe (mg g− 1 soil) Al (mg g− 1 soil)  

Remnant pedogenon 1.60 ± 0.48 5.35 ± 1.08 293.84 ± 131.21 754.04 ± 58.61 19.71 ± 19.21 90.91 ± 36.18  
Quasi-remnant pedogenon 1.06 ± 0.48 6.54 ± 1.12 444.07 ± 191.05 731.96 ± 99.45 38.53 ± 26.21 98.87 ± 31.39  
Pedophenon Cleared 1.61 ± 0.69 5.90 ± 1.10 424.95 ± 194.97 714.17 ± 121.53 42.61 ± 37.64 96.80 ± 34.62  
Pedophenon Grazing 1.91 ± 0.72 5.24 ± 0.72 320.96 ± 144.14 746.47 ± 114.06 34.40 ± 35.82 84.39 ± 32.58  
Pedophenon Cropping 1.17 ± 0.42 6.13 ± 0.94 468.39 ± 168.62 660.84 ± 194.16 50.22 ± 36.78 92.91 ± 39.68   

Table 9 
Redundancy discriminant analysis with topsoil data (0–10 cm) from SCaRP sites with at least 5 observations per pedogenons and pedogenon/pedophenon subclass (N 
= 599). The explanatory variables were pedogenon class and pedogenon/pedophenon.  

Axis λ λ as% λ as cumulative% λ as% of sum of all canonical eigenvalues λ as cumulative% of sum of all canonical eigenvalues 

RDA 1 2.53 42.2 41.5 66.8 66.8 
RDA 2 0.69 11.6 53.9 18.4 85.2 
RDA 3 0.22 3.7 57.6 5.8 91.0 
RDA 4 0.17 2.9 60.4 4.5 95.5  
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Fig. 8 
Soil order (ASC, Isbell et al., 1997) and land use history (pedoge

non/pedophenon classes) explained 39% of the variation of the response 
variables (clay, total Si, total Al, bulk density, pH, POC) and the adjusted 
R2 was 37% (Fig. 7). The global model and the first three RDA axis were 
statistically significant following a permutation test. Variance parti
tioning indicated that the pure soil order effect corresponded to 19% of 
the variation, the pure pedogenon/pedophenon effect 8% and the 
shared effect 10% of the variation. Compared to the RDA with 

pedogenon as explanatory variable, land use and management explained 
more variation of soil properties. On the other hand, when the RDA 
included as explanatory variables the branch (pedogenon family) and 
pedogenon/pedophenon class, the constrained variance decreased to 
23% of the variation and the adjusted R2 to 22%, suggesting that this 
aggregation of pedogenon classes into higher-level taxa failed to explain 
the variation of stable and dynamic soil properties. The pure branch 
effect explained 3% of the variation and the pure pedogenon/pedo
phenon effect 7% of the total variation. The shared effect was 12 with 

Fig. 7. (a) Location of SCaRP samples (black circles) and pedogenon classes. The subset of data selected the pedogenon and pedogenon/pedophenon subclasses with 
at least 5 observations per combination (N = 599) from 69 different pedogenon classes. The colours follow the dendrogram from Fig. 3, (b) RDA distance triplot 
(scaling 1) on SCaRP (0–10 cm) samples with pedogenon and pedogenon/pedophenon classes as explanatory variables and six soil properties (clay, total Si, total Al, 
POC, pH and bulk density) as response variables. 

Fig. 8. RDA site conditional triplot (scaling 1) with soil order and pedogenon/pedophenon as explanatory variables and six soil properties (clay, total Si, total Al, 
POC, pH and bulk density) as response variables. 
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78% of residual variance. Similarly, when only dynamic soil properties 
were included as response variables, the RDA with pedogenon branch 
had an adjusted R2 of 26%. In this case, the shared effect explained 14% 
of the variance, the pure pedogenon/pedophenon effect 9% and the pure 
branch effect explained just 2% of the variation. 

The RDA with land use history variables (vegetation extent, status, 
land use) had an adjusted R2 of 22% on stable and dynamic soil prop
erties and 27% on dynamic soil properties. When the pedogenon/ 
pedophenon classification was the only explanatory variable the 
adjusted R2 was 19% for stable and dynamic soil properties and 24% for 
dynamic soil properties. 

3.3.2. Permanova on stable and dynamic soil properties 
The PERMANOVA test was applied to the same SCaRP subset as in 

Section 3.3.1. The centroids of the pedogenon classes (n = 69) differed in 
location according to the PERMANOVA test (p = 0.001) (Table 11). The 
pedogenon/pedophenon classes and their interaction with pedogenon 
class did not have a significant effect on the location of the class cen
troids. Pairwise comparisons found statistically significant differences 
between the pedophenon grazing (n = 11) and pedophenon cropping (n 
= 7) of one pedogenon class. The permutation test for homogeneity of 
multivariate dispersions indicated that the pedogenon classes and the 

pedogenon/pedophenon groups had non-homogeneous dispersions. 
Soil order, pedogenon/pedophenon class and their interaction had a 

significant effect on the location of the class centroids (p = 0.0001). The 
differences in the dispersion of observation to the class centroids by soil 
order were statistically significant. The dispersion was higher in Ferro
sols, Dermosols and Tenosols, and smaller for Vertosols, Kurosols, 
Kandosols and Sodosols. These differences in the dispersion may be 
related with the choice of response variables and the characteristics of 
the soil orders (e.g., high clay content in Vertosols) or the higher di
versity within some soil orders (e.g., Dermosols, Tenosols) (ASC, Isbell 
et al., 1997). The differences among centroids by pedogenon branch and 
pedogenon/pedophenon class were statistically significant, but they 
showed non-homogeneous dispersion (p = 0.04). 

3.3.3. Permanova on dynamic soil properties 
Pedogenon and pedogenon/pedophenon classes (land use history) 

had significant effects on the location of group centroids when the 
PERMANOVA test was applied only to dynamic soil properties 
(Table 10). Pairwise comparisons between pedogenons/pedophenons 
within the same pedogenon class (7 pedogenons) indicated differences 
in group centroids for five pedogenon classes. The effects of soil order, 
land use history and their interaction on centroid location were statis
tically significant (p = 0.0001). Similarly, the effects of pedogenon 
branch, land use history, and interaction were statistically significant 
although the amount of variance explained was very small. The 
PERMDISP test indicated non-homogeneous dispersion among pedoge
non, pedogenon/pedophenon classes, soil order and pedogenon branch 
(p = 0.0001). 

4. Discussion 

4.1. Identification of reference state, current limitations and potential 
applications 

The main goal of this paper was to design a DSM framework for 
identifying areas that can serve as a reference state for assessing changes 
in soil condition and capability. The DSM framework was inspired by the 
concepts of genoform and phenoform (Rossiter and Bouma, 2018) and 
the conceptual model of soil change developed by Yaalon and Yaron 
(1966) and Richter (2007). For each pedogenon class, there was at least 
one grid cell (≈ 0.007 km2) classified as remnant pedogenon, with a 
median contribution to the area of their respective pedogenon of 5.3%. 
These results may suggest that every pedophenon could be compared 
with its correspondent remnant pedogenon. However, the reference 
state for some classes should be quasi-remnant pedogenon or cleared 
pedophenon subclass, to have a sufficiently large area for taking a 
representative sample and incorporate the spatial variability of soil 
properties within the pedogenon subclass. Small patches of native 
remnant vegetation, including isolated trees, were classified as remnant 
or quasi-remnant pedogenons. Isolated trees have suffered a decline in 
abundance and density since the 1960s (Ozolins et al., 2001), which 
likely has affected soil condition due to differences in soil microclimate 
and biogeochemical cycling linked to a decrease in organic matter input 
(Eldridge and Wong, 2005). Hence, using these native vegetation 
patches as reference state for studying soil change should be done with 
caution, although in some areas they constitute the last fragments of 
native vegetation. 

Digital pedogenon mapping was designed as a first-order method for 
mapping soil classes with similar long-term pedogenesis and historic 
anthropedogenesis. Subsequently, we expanded the approach for 
dividing them into subclasses with different land use history. Pedogenon 
classes are produced under the assumption that groups with homoge
neous state variables representing the soil-forming factors for a given 
reference time, undergo similar dominant soil-forming processes over 
pedogenetic time, and thus have similar soil properties (Román Dobarco 
et al., 2021). The viability of the derived pedogenon and pedophenon 

Table 11 
PERMANOVA on three dynamic soil properties (POC, pH, bulk density) of the 
SCaRP subset with at least 5 observations per subclass (9999 permutations). For 
clarity, we refer to the factor pedogenon/pedophenon subclass as land use 
history.  

Factor Df SS R2 F p-value 

Pedogenon (k = 1000) 68 948.11 0.53 8.87 0.0001 
Land use history 3 17.99 0.01 3.81 0.0002 
Pedogenon: Land use history 4 5.34 0.003 0.85 0.6 
Residual 523 822.55 0.46   
Total 598 1794.00 1   
Soil order 8 413.11 0.23 26.10 0.0001 
Land use history 3 171.97 0.10 28.97 0.0001 
Soil order: Land use history 14 75.21 0.04 2.72 0.0001 
Residual 523 1133.71 0.63   
Total 598 1794.00 1   
Pedogenon branch 5 204.39 0.11 16.74 0.0001 
Land use history 3 123.43 0.07 16.86 0.0001 
Pedogenon branch: Land use history 3 33.37 0.02 4.56 0.0001 
Residual 587 1432.81 0.80   
Total 598 1794.00 1    

Table 10 
PERMANOVA on six soil properties (clay, total Si, total Al, POC, pH, bulk den
sity) of the SCaRP subset with at least 5 observations per subclass (9999 per
mutations). For clarity, we refer to the factor pedogenon/pedophenon subclass 
as land use history.  

Factor Df SS R2 F p-value 

Pedogenon (k = 1000) 68 337.76 0.56 10.12 0.0001 
Land use history 3 2.65 0.004 1.08 0.1416 
Pedogenon: Land use history 4 0.98 0.002 0.50 0.7373 
Residual 523 256.61 0.43   
Total 598 598 1   
Soil order 8 114.86 0.19 19.19 0.0001 
Land use history 3 19.57 0.03 8.72 0.0001 
Soil order: Land use history 14 34.94 0.06 3.34 0.0001 
Residual 523 428.63 0.72   
Total 598 598.00 1   
Pedogenon branch 5 69.04 0.12 16.19 0.0001 
Land use history 3 22.83 0.03 8.92 0.0001 
Pedogenon branch: Land use history 3 5.50 0.01 2.15 0.0973 
Residual 587 500.64 0.84   
Total 598 598.00 1    
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maps for assessing changes in soil condition and capability relies on this 
hypothesis. The RDA and PERMANOVA analyses attributed most of the 
explained variance to the pedogenon classes, supporting the hypothesis 
that classes defined by homogeneous state variables present differences 
in stable and dynamic soil properties. However, the set of soil properties 
analysed in this study and previously (Román Dobarco et al., 2021) are 
not sufficient for proving links between pedogenon classes and 
long-term pedogenesis. Thus, this hypothesis cannot be accepted yet. 
Secondly, the results of the statistical analyses indicate that the strati
fication into pedogenon and pedophenon subclasses was not able to 
detect changes in soil properties caused by contemporary management. 
Since the effects of management and land use history have been 
confirmed across different areas of New South Wales, this suggests that 
the stratification with the rule-based algorithm is incorrect (see Section 
4.2). Another possible explanation is that the legacy soil data may not be 
representative of pedogenon and pedophenon subclasses within a study 
area. Errors in the pre-European vegetation mapping, land use (history) 
allocation, and space and time biases in the sampling negatively 
impacted the analysis and that is why we might not detect differences 
even though these might exist. A way to remediate these limitations 
would be to use the mapping in local areas: the first step would be a local 
recalibration/updating  to improve the mapping followed by new 
dedicated (stratified random) sampling to test change hypotheses and 
estimate the amount of change. 

The environmental factors (pedogenon class) and the interaction 
with land use history (e.g., shared effect of the interaction in RDA an
alyses) explained between 50 and 60% of the variation of soil properties 
whereas land use history (pedogenon and pedophenon subclasses) alone 
explained a minimal proportion of the variance (< 10%). However, land 
use history categories (pedogenons and pedophenons) aggregated across 
pedogenon classes showed differences in mean pH (Table 6). This may 
be an example of the Simpson’s paradox (Sprenger and Weinberger, 
2021) or be linked to the predominance of land uses in the biophysical 
settings more suitable for their purpose (e.g., cropping at low slopes, 
more fertile soils, and suitable climatic conditions). Finally, the aggre
gation of pedogenon classes into higher-level taxa with hierarchical 
clustering did not successfully define groups that explained the variation 
of soil properties. This suggests that the aggregation into higher-level 
taxa should be done with a different method (e.g., weighing the cen
troids with the number of observations belonging to each class, clus
tering method, distance), or if we are interested in a smaller number of 
pedogenon classes a smaller k should be directly set. Hence, future work 
should develop methods for evaluating the correspondence between 
pedogenon classes and long-term pedogenesis, refine the selection of 
covariates and the optimal number of classes for a study area, and 
investigate how different clustering methods and objective functions 
influence the resulting maps. 

Pedogenon mapping is appropriate for large extents with limited soil 
observations or when soil classification systems do not explicitly regard 
genetic criteria. At smaller spatial scales (landscape, catchment) where 
detailed soil maps consider genetic pathways in the classification, or for 
soil classification systems that account for recent disturbances, the 
genoform and phenoform approach (Rossiter and Bouma, 2018) may be 
more appropriate. The results of the PERMANOVA and RDA analyses 
with soil order as explanatory variable (Tables 9 and 10, Fig. 7) suggest 
that mapping soil great groups at a reference time (Huang et al., 2018) 
are valid for detecting the effect of contemporary management on stable 
and dynamic soil properties. These approaches, however, are chal
lenging to implement at a larger extent. 

This framework has the potential to be integrated into a holistic soil 
security assessment (McBratney et al., 2014; Field, 2020). This requires 
to translate the indicators of soil condition and capability (e.g., SOC, 
particle size distribution, pH) into soil functions and ecosystem services 
(e.g., carbon sequestration, food production, water and nutrient cycling, 
and storage) (Schulte et al., 2014; Greiner et al., 2017; Bouma et al., 
2019; Ellili-Bargaoui et al., 2021). Another potential application of this 

framework is the design of sampling strategies and monitoring soil 
change. The pedogenons and their subclasses can be used as strata for 
distributing soil sampling points. The number of pedogenon classes and 
stratification into pedogenons/pedophenons can be modified to meet 
the available resources, e.g., creating maps with a smaller k or merging 
pedogenon classes into higher-level taxa with the hierarchical 
dendrogram. 

4.2. Stratification of pedogenons into subclasses by land use history 

In this study, we used a simple classification of pedogenons/pedo
phenons based on three sources of information (native vegetation 
extent, status, and current land use). These classes had a significant ef
fect on the centroids of groups of dynamic soil properties although they 
explained a very small fraction of the variation of soil stable and dy
namic properties. Hence, this suggests that the rule-based algorithm 
failed to identify meaningful classes in terms of soil change. However, it 
is also likely that the data sources did not provide enough information 
on land use history, because the difference in adjusted R2 of RDA ana
lyses performed with the three layers separately or reclassified into 
pedogenon/pedophenon classes was < 4%. This top-down approach did 
not include detailed site information on management practices and in
tensity (e.g., livestock density), time since land use change, time since 
clearing, etc. For example, we assumed that grazing in relatively natural 
environments could be considered a low-intensity pressure, but there 
were no significant differences between quasi-remnant pedogenons and 
pedophenon grazing. Detailed information on land use history and 
management practices, aggregated into classes or used as independent 
variables, could improve the classification of pedogenons and pedo
phenons. Long-term time series of satellite imagery should be used to 
inform on the changes in land cover/land use for as long as there are 
available images. A possible improvement of the classification of 
pedophenons would be to create a composite index of cumulative soil 
anthropogenic pressures, similar to the index of cumulative human 
modification developed by Kennedy et al. (2019) for terrestrial lands or 
the index on threats for soil biodiversity developed by Gardi et al. 
(2013). However, this index should describe the degree of intensity of 
anthropogenic activities by the main type of activity (e.g., varying de
gree of pressure for cropping), because the type of activity greatly affects 
the trajectory of soil change. 

4.3. Trajectories of soil properties 

Kuzyakov and Zamanian (2019) proposed that whereas natural 
pedogenesis causes the diversification of soils, agropedogenesis (i.e., 
agricultural practices are the dominant factor of soil formation) leads to 
narrowing and convergence of soil properties. The reduction in the 
ranges of soil properties and their final convergence is driven by 
fostering a single ecosystem function (crop production) while other soil 
functions (e.g., biodiversity pool, climate regulation) are reduced. The 
rates of change would differ for different soil properties, as a function of 
climate, biophysical conditions and land use intensity (Kuzyakov and 
Zamanian 2019; Richter 2007). The interactions between the type of 
management and pedogenon on topsoil pH partly support this hypoth
esis. Topsoil pH followed the trend remnant pedogenon ≈

quasi-remnant pedogenon ≤ pedophenon cleared ≈ pedophenon graz
ing ≤ pedophenon cropping, but it is not possible to ascribe it only to the 
effect of management (e.g., liming). Rather, the data suggests that dif
ferences in pH between pedophenons may be linked to the occurrence of 
different land uses in soils with different soil properties and suitability. 
Across the agricultural belt of NSW, cropping is generally located in 
areas with lower precipitation and more alkaline soils. In contrast, 
grazing is located in a broader range of environments, including areas 
with higher precipitation. Vast areas of remnant pedogenons were 
located in the Great Dividing Range and towards the coast, with higher 
humidity. However, pairwise comparisons by pedogenon class also 
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suggested that pH increased from remnant pedogenons to pedophenons, 
while pedophenon grazing may have lower pH than pedophenon cleared 
and cropping (Table 7). Wilson et al. (2011) observed lower pH of sur
face soil layers in managed pastures from northwest NSW compared to 
woodlands, native grasslands, and croplands despite periodic liming. 
The acidification was associated with nitrogen leaching from legume 
roots (Slattery et al., 1999; Lockwood et al., 2003; Wilson et al., 2011). 
The pH data in the SCaRP dataset contradict in part this trend (Table 8). 
Pedophenon grazing had lower pH than pedophenon cleared and crop
ping. However, the pH at quasi-remnant pedogenons was higher than 
among the rest of subclasses. A possible explanation is the lower sample 
number compared to pedophenon subclasses, or that the quasi-remnant 
pedogenons sampled during the SCaRP may have been located in more 
alkaline, drier rangeland areas. 

The convergence of dynamic soil properties from different soil orders 
(interpreted as genoforms) driven by land use history was observed for 
several land uses (i.e., phenoforms: native forests, pastures, crops) in 
New Zealand (Stevenson et al., 2015). Conversely, different land use 
management led to distinct functional soil classes within a soil order 
(Stevenson et al., 2015). The strong influence of land use management 
on soil condition was reflected in the correlation between soil functional 
classes (defined with cluster analysis on soil physicochemical proper
ties) and different habitats rather than with historic pedogenetic classes 
(Seaton et al., 2020). We hypothesized that the response of a historic soil 
system to different anthropogenic activities, in magnitude and direction, 
would differ among pedogenon classes depending on their intrinsic 
resistance and resilience. The trajectory of dynamic soil properties 
would also vary depending on the type of land management practice, its 
intensity and duration. The results could neither support nor reject this 
hypothesis. The effect of management was pertinent when we consid
ered dynamic soil properties only, as indicated by the RDA and the 
PERMANOVA analyses on the SCaRP dataset. Differences in group 
location between remnant pedogenon/pedophenons of the same pedo
genon class suggest that it was possible to detect the effect of manage
ment and land use history on indicators of soil condition. However, there 
were almost no changes in stable and dynamic soil properties, indicators 
of soil capability, among pedophenons of the same pedogenon. We did 
not observe clear patterns in trajectories of dynamic soil properties, or 
their centroids in the multivariate space, by pedogenon classes (data not 
shown). The shared effect of pedogenon and remnant pedogenon/pe
dophenon explaining the variation of soil properties again indicates the 
occurrence of land uses in pedogenons that are more suitable due to 
environmental and soil characteristics. Rabbi et al. (2014) analysed the 
SCaRP dataset and found that environmental variables and soil prop
erties explained 42% of the variation of SOC fractions in NSW while land 
use and management practices explained 9.2% of the variation. Higher 
POC stock under pasture than under cropping was likely caused by 
disruption of aggregates and enhanced decomposition of POC under 
cropping and higher carbon inputs (shoot residues, rhizodeposition) 
under pastures (Rabbi et al., 2014). The negative correlation between 
soil pH and POC stocks was linked to lower pH under pastures than 
under cropping. 

Thresholds of soil degradation specific to different soil classes can be 
identified with phase diagrams (Kuzyakov and Zamanian, 2019) or ra
tios of key soil properties (Prout et al., 2020). Alternatively, we can 
calculate distance metrics with multivariate indicators of soil condition 
and capability and compare between- and within-group distances along 
the gradient from remnant to cropping pedogenon subclasses. For 
example, the only pedogenon class that had statistically significant 
differences between the centroids (defined with stable and dynamic soil 
properties) of subclasses grazing and cropping had average within-group 
Mahalanobis distances of 1.14 and 0.68 and an average between-group 
Mahalanobis distance of 1.22. We could not illustrate this application 
across the whole sequence of anthropogenic pressure because no 
pedogenon class had SCaRP data in more than two subclasses. In addi
tion, the datasets used here were targeted for agricultural soils or 

composed of legacy soil data, not intended to characterize soil change. 
Future studies will apply this method at local scale and collect soil 
samples with the aim of assessing soil change and investigate trajectories 
of soil properties as a response to management. 

5. Conclusions  

• We developed a top-down framework for detecting soil change that 
can be applied to large areas.  

• This framework gives a new and valuable stratification of the 
landscape.  

• It integrates a theoretical model of soil change with a digital soil 
mapping approach.  

• Detailed land use history is an essential factor for detecting soil 
change. 

5.1. Future work  

• The methodology for defining pedogenon classes needs to be 
improved for including the past conditions in soil formation (e.g., 
paleoclimates, paleosols, etc.), optimizing the selection of covariates 
and the number of classes.  

• Integrate the indicators of soil capability and condition into a holistic 
soil security assessment.  

• Adapt this framework to human-natural systems with a long history 
(millennial) of agricultural use and extensive anthropogenic 
pressure. 
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