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Abstract. Malone and Searle (2021) described a new approach to convert field measured soil texture categories into
quantitative estimates of the proportion of clay, silt and sand fractions. Converted data can seamlessly integrate with
laboratory measured data into digital soil mapping workflow. Here, we describe updating the Australian national
coverages of clay, sand and silt content. The approach, based on machine learning, predicts each soil texture fraction at
90 m grid cell resolution, at depths 0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm and 100–200 cm. The approach
accommodates uncertainty in converting field measurements to quantitative estimates of texture fractions. Existing
methods of bootstrap resampling were exploited to predict uncertainties, which are expressed as 90% prediction intervals
about the mean prediction at each grid cell. The models and the prediction uncertainties were assessed by an external
validation dataset. Results were compared with Version 1 Soil and Landscape Grid of Australia (v1.SLGA) (Viscarra
Rossel et al. 2015). All predictive and functional accuracy diagnostics demonstrate improvements compared with v1.
SLGA. Improvements were noted for the sand and clay fraction mapping with average improvement of 3% and 2%,
respectively, in the RMSE estimates. Marginal improvements were made for the silt fraction mapping, which was
relatively difficult to predict. We also made comparisons with recently released World Soil Grid products (v2.WSG) and
made similar conclusions. This work demonstrates the need to continually revisit and if necessary, update existing
versions of digital soils maps when new methods and efficiencies evolve. This agility is a key feature of digital soil
mapping. However, without a companion program of new data acquisition through strategic field campaigns, continued
re-modelling of existing data does have its limits and an eventual model skill ceiling will be reached which may not meet
expectations for delivery of accurate national scale digital soils information.
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Introduction

Australia first delivered national scale GlobalSoilMap (GSM;
Arrouays et al. 2014) compliant products in late 2014 as the
Soil and Landscape Grid of Australia (v1.SLGA; Grundy et al.
2015). The development of this first version of soil attribute
surfaces was a collaborative effort between Federal, State and
Territory governments and key contributors including
universities. The initial project developed and fostered a
vibrant community of digital soil mapping (DSM)
practitioners that now forms the core of operational DSM
activities throughout Australia. In 2018, the Australian DSM
community secured a new funding commitment through the
Terrestrial Ecosystem Research Network (TERN), which
through collaboration with the remote sensing community,
will further evolve and improve the nationally consistent
DSM products, hereafter referred to as v2.SLGA.

Besides the imperative to create consistent, reliable,
functional and comprehensive digital soil maps at the
national scale, Searle et al. (2019) also stipulated the need to
make the workflow for doing DSM repeatable and updatable.
Now that much of the work these days is done via computer
coded workflows, these key features are relatively easy to
manage by way of releasing not only the mapping, but the
code that went into creating these products. This is done through
popular version control systems such as Git and SVN and
delivers to end-users and other soil mapping practitioners,
the transparency needed to properly assess and scrutinise the
products that are created.

In Australia, a website resource has been set up (https://
aussoilsdsm.esoil.io/home) and an associated git repository
(https://github.com/AusSoilsDSM) to facilitate this
transparency, and to provide a platform for the multiple
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actors across the Australian DSM community to contribute
knowledge, provide feedback and even upskill. Moreover,
being public facing, these tools and the materials and
workflows are not exclusive and are available to all.

In this present study, the digital soil mapping of soil texture
fractions is a case-in-point about the need to re-visit and where
feasible, to update and improve upon the existing products.
The existing product is v1.SLGA where the technical details of
the general work method for all products is described in
Viscarra Rossel et al. (2015). Focusing specifically on soil
texture fractions, in that study, ~15 000 site observations were
used to fit models and produce the maps. The maps were
created in compliance with the specifications of the GSM in
terms of depth support and quantification of uncertainties. The
v1.SLGA products showed demonstrable improvement over
historically created ones, including those derived from
attribution of the polygons in the Atlas of Australian Soils
(Northcote et al. 1960–1968; McKenzie et al. 2000), and from
area-weighted averages of a compilation of survey data in the
Australian Soil Resource Information System (ASRIS;
Johnston et al. 2003).

Five years since the creation of v1.SLGA, end-users have
provided helpful feedback and critique about each of the
products, and in the case of the soil texture mapping, issues
identified included spatial artefacts due to use of categorial
predictive covariates or otherwise. This has made using these
base products, for example, to develop derived products such
as plant available water capacity, somewhat challenging
(Stockmann et al. 2020). Another issue has been the
identification of data or simplex closure issues (i.e. the
components of clay, sand and silt fractions do not sum to 1
exactly) because the v1.SLGA modelling was implemented
without consideration of the compositional properties of the
data. These issues are relatively easy to address in later
updating and improvement efforts. In addition to these,
there has been some new soil survey activity around the
country, together with discovery of historical data from
existing sources, leading to an incremental increase in the
total numbers of available data.

The ability to access these data now and into the foreseeable
future is facilitated though the newly created soil data federator
(Searle et al. 2021b). As the name suggests, this is a federation
approach to data unification, where data is managed by
individual custodians, but is federated on the fly into a
consistent form that is readily analysed for DSM work. An
application programming interface (API) is built into the
federator making it relatively simple and efficient to
develop programmatic workflows to interrogate and retrieve
data from disparate data sources as needed.

The other development since v1.SLGA is rethinking around
incorporating field observed data into spatial modelling. These
largely underutilised data across Australia can potentially
contribute more than 150 000 additional sites into a spatial
modelling framework (Searle 2014). The efforts previously
undertaken to incorporate these types of data into a DSM
exercise have been largely constructed around defining or
utilising existing texture class centroids and then adopting a
spatialisation technique to generate maps of the soil texture
fractions.

For example, once the centroids were defined, they were
used to estimate via weighted averaging (guided by
information recorded in soil mapping unit metadata) the
spatial patterns of the soil texture fractions across Australia
(Carlile et al. 2001). In another example, Taylor and Minasny
(2006) used soil texture class centroids derived by Minasny
and McBratney (2001) and attributed the soil texture class
allocations of numerous soil profile descriptions in order to
apply ordinary kriging across two different vineyards and two
depths (0–30 cm and 30–90 cm).

As illustrated by Malone and Searle (2021), there exists a
substantial amount of within texture class variation when
comparing field classifications and corresponding laboratory
measured values. With this knowledge, it would seem focusing
just on the centroid value is potentially inappropriate in order
to yield maps of soil texture fractions from field texture class
data. Consequently, we developed an algorithm that could
produce plausible values of soil texture fractions given
information about the centroids, the within class variation
and covariance between texture fractions.

Plausibility here has two meanings. The first is that the
simulated simplex (compositional data term to describe the
vector of the proportions of clay, sand and silt) is known to
exist in the empirical data space of the given soil texture class.
The second is the accommodation of soil contextual
information to ensure there is some coherence between field
observation and simulated data. The contextual information
here is other soil texture information recorded at different
depths of a soil profile, an awareness of gradational and other
pedological texture changes within a soil profile and
incorporation of pedological functions to cater for features
like soil texture class modifiers and sub-plastic texture
consistencies.

The useful outcome of the soil texture algorithm (STA)
from Malone and Searle (2021) is that one can derive a
numerical (and sensible) characterisation of soil texture
fractions for multi-layered or horizonal soil profiles where
soil texture classes have been recorded only. This permits the
opportunity to incorporate laboratory measured data with
converted field texture data into a spatial modelling
workflow. More importantly, repeating the simulations
many times over for a single profile or for a collection of
profiles realises a second benefit, which is the ability to
accommodate in any subsequent spatial statistical modelling
workflows, the subjectivity that is inherent when allocating a
field observation to a given soil texture class. For clarity, this
subjectivity henceforth will be described as measurement error
in the same sense that even laboratory measured data has a
quantifiable, albeit rarely reported amount of measurement
error.

If it is known that different types of data are on hand and
each have varying levels of quality, then it is appropriate, if
not expected, to use statistical models and methods that
accommodate these differences. However, one could
surmise that by utilising a very large amount of data with
not insignificant measurement errors, correspondingly poor
digital soil maps (based on prediction accuracy, and the extent
of the prediction uncertainties) would be produced. This
summation warrants testing in the case of soil texture
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mapping across Australia. We propose that despite the higher
uncertainty of using field characterisations (converted to
numerical form), the collective weight of these data is
invaluable in terms of expected modelling benefits brought
about by improved spatial coverage and density both
geographically and within the environmental covariate data
space. The question that remains to be tested via comparative
analysis against v1.SLGA and other publicly available
products is what improvements there are in terms of
producing useful and potentially improved digital soil maps.

Measurement uncertainty is generally accommodated
through inclusion of measurement error variance in the
variogram or covariance structure of the spatial model
(Cressie 1991). This is also known as kriging with uncertain
data, where in the simplest terms, while acknowledging
the diversity of contexts and approaches, the error variance
is added to the diagonal of the spatial covariance matrix
(Delhomme, 1978; Christensen 2011). This filters the
measurement error variance from the nugget component of
the experimental variogram, which leads to smoother
mapped representations of the data, albeit with a lower
amount of prediction uncertainty of spatial predictions.
Somarathna et al. (2018), using this geostatistical tool
together with multi-variate calibration, regressed upon a suite
of predictive covariates. They demonstrated this approach for
integrating laboratory measured and spectral inferred soil
carbon data for DSM with good results. These sorts of
geostatistical tools are suited to relatively small datasets and
medium levels of granularity (for interpolation) where
performing the required matrix inversions to do the kriging
is not too much of a computational burden.

Most DSM outputs in recent times have been largely
derived using machine learning algorithms (Wadoux et al.
2020), which have been found to be a powerful tool for
discerning complex relationships between target variables
and predictor variables compared to what the relatively
simpler regression and kriging tools can provide separately.
However, estimating prediction uncertainties with these
models is not done analytically as is done with linear
regression and kriging, but via some form of repeated
cross-validation or bootstrapping process in order to derive
empirical probability density functions for each prediction
case (Viscarra Rossel et al. 2015).

There appears to be less literature describing how the
measurement errors of the target variables can be
incorporated into these models. In general, the methods are
based around iterative resampling of the sample space that
exists for each uncertain case in the model calibration data
(Czarnecki and Podolak, 2013). For example, when mapping
soil thickness across Australia, Malone and Searle (2020)
treated censored data (observed soil thickness does not
correspond to the actual soil thickness) as uncertain cases.
Here, a repeated-cross validation (using sampling with
replacement) was used, whereupon each iteration, a new
calibration set was derived by simulating an estimated soil
thickness (underpinned by a b distribution function) for all the
censored data cases. This procedure was largely used because
the size of the dataset was very large, making other candidate
models such as survival models (e.g. Chen et al. 2019)

computationally unfeasible. The benefit of the described
approach is the simplicity of implementation and scalability,
and the assurance, provided enough iterations are performed,
that the full data and sample space is characterised in the
modelling.

The modelling framework used in Malone and Searle
(2020) seems an appropriate approach to integrate both
laboratory measured and transformed field measurements.
Here, the measurement error of the field description data
would be akin to the sample space from which to draw
plausible outcomes. As has been established already, the
STA described in Malone and Searle (2021) is quite
capable in establishing these plausible outcomes that can
subsequently be used in the above-described iterative
machine learning framework.

In summary, this study will investigate the digital soil
mapping of soil texture clay, sand and silt fractions across
Australia via a machine learning approach that is cognisant of
the measurement uncertainties of the data pertaining to field
observations. This approach utilises the STA described in
Malone and Searle (2021) for generating plausible outcomes
of soil texture fractions within a whole soil profile. In the
following sections, we first describe the available data and
predictive covariates, their acquisition and pre-processing. We
then describe the machine learning modelling framework
inclusive of uncertainty quantification used to derive the
digital soil maps of clay, sand and silt fraction across
Australia. These derived products are compared to
corresponding v1.SLGA products, and recently released
Version 2 World Soil Grid (v2.WSG) products. Further
work and future considerations for ongoing programs to
update and improve digital soil maps are also discussed.

Materials and methods

This study encompasses the continent of Australia including
Tasmania and near-shore small islands. As in Viscarra Rossel
et al. (2015), the specific motivation in this study is the
creation of GSM compliant digital soil maps of soil texture
fractions: clay, silt and sand. The rationale for doing this is to
update and potentially improve upon the existing mapping. We
used publicly available datasets and applied integrated
modelling and bespoke computational workflows to
generate the final outputs.

Datasets
Observational data
The Australian soil data federator (Searle et al. 2021b)

publishes API endpoints that allows one to retrieve and
integrate soils data from around Australia. The federator is
supported by numerous data custodians that currently include
the CSIRO, which manages the Australian National Soil
Archive and associated NATSOIL database, and the various
State and Territory government soil survey agencies.
Programmatic workflows developed in R (R Core Team,
2018) were written to compile all available data regarding
measured soil texture fractions. Soil texture fractions are
represented as percentage mass of coarse sand
(200–2000 mm), fine sand (20–200 mm), silt (2–20 mm) and
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clay (<2 mm) particles. Two main search queries were
developed. The first was the extraction of laboratory
measured data, and the second was the extraction of
morphological descriptions of soil texture classes. For the
laboratory measured data, additional information regarding
site IDs, locational information and depth increments and
laboratory method were also retrieved.

Across Australia, particle size analyses have primarily been
done by either the hydrometer method (Gee and Bauder 1986)
or pipette methods from either Coventry and Fett (1979) or
Bowman and Hutka (2002). Relatively fewer samples were
measured with the Plummet Balance method (Marshall 1956).
We noted virtually no cases where multiple methods were
used for the same sample, so all data were compiled as is,
irrespective of laboratory method.

For the morphological data, in addition to retrieving the soil
texture class information, we also extracted the locational and
identifying metadata, depth increments, and where available,
the observed soil class and texture class modifiers. These latter
two extractions were for the purposes of running the STA as
described in Malone and Searle (2021).

After the initial data compilation, pre-processing steps were
undertaken to remove entries such as missing or clearly
erroneous locational data, clearly spurious data entries and
repeated observations. As noted in Malone and Searle (2021),
several sites have both laboratory measured and field measured
soil texture estimates. In these instances, we removed the
repeated site that had the morphological data in order to
preference the laboratory data as it is comparatively more
certain.

Where applicable for the laboratory data, we summed the
coarse sand and fine sand fractions to generate a complete
dataset of samples with clay, silt, and sand fractions. Some
screening of the data entailed removing samples where the sum
of the texture fractions was less than 90%. For samples where
the sum of fractions was between 90% and 100% (non-
inclusive), each fraction was normalised to sum to 100%.

For the morphological data, the soil texture classes were
cross-checked with the 46 texture classes that were studied
in Malone and Searle (2021). Spurious data entries or classes
not part of the 46 classes were removed from the dataset. After
pre-processing, there were 17 367 sites with laboratory
measurements and 180 498 sites with soil texture class
descriptions to work with in this study. Fig. 1 shows the
spatial distribution of these data across Australia
distinguished in terms of measurement approach.

Environmental covariates
This study used the same suite of covariates that were

described in Malone and Searle (2020). The 35 covariates,
each had the same extent (112.999588E–153.999588E;
10.00048S–44.000428S) coordinate reference system (WGS84
(EPSG:4326) projection) and resolution (three arc second grid
cell). As described in Malone and Searle (2020), these raster
layers are grouped into scorpan-themed principal component
analysis (PCA) stacks (McBratney et al. 2003). Specifically,
there were 12, 4, 9 and 10 PCA layers for the climate,
organism, relief and parent material + soil scorpan variables.

As mentioned, this was to aid in balancing the number of
covariates for each scorpan factor, and to reduce the burden of
handling more than 100 continental coverages of spatial data.

The data sources included those from processed SRTM
elevation data (Gallant et al. 2012), long-term climatic data
summaries (Harwood et al. 2014), gamma radiometric and
related data (Viscarra Rossel 2011; Wilford 2012) and some
remote sensing derived products and spatial contextual derived
products (Viscarra Rossel et al. 2015). For more complete
summaries of the source covariate data, see supplementary
table provided in Malone and Searle (2020).

Spatial modelling framework
A schematic of the general workflow is illustrated in Fig. 2.

There are four main stages involved. The first is the suite of
approaches to prepare the data for spatial modelling. Then

(a) Laboratory measured data

(b) Field measured data

0 750 1500 km

0 750 1500 km

Fig. 1. Spatial distribution of measured soil texture data across Australia.
(a) Data measured in the laboratory with established methods. (b) Field
observations of soil texture.
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methods for model fitting and uncertainty quantification are
implemented. These models are then used to generate maps of
clay, silt and sand percentages at specified depth intervals,
together with associated prediction intervals. The models and
maps are then validated with an external dataset. The following
describes in more detail the individual components of this
spatial modelling framework.

Preparation of data for digital soil mapping
Focussing first on the morphological data, each soil profile was
processed with the STA described in Malone and Searle (2021)
to generate whole profile soil characterisations of clay, silt and
sand fractions. A total of 50 realisations were derived for each
site profile for the purposes of uncertainty propagation in the
modelling step. Fifty seemed a plausible number given the
substantial computation required to derive the final outputs,
which is discussed further on, and this is the same number of
iterations used to create v1.SLGA products.

The combination of laboratory and morphological data
(197 865 sites) was then processed with a mass-preserving
spline soil depth function (Bishop et al. 1999) to harmonise the
depth support across all sites. The harmonised depths are
those detailed in the GSM specification: 0–5 cm, 5–15 cm,
15–30 cm, 30–60 cm, 60–100 cm, and 100–200 cm. The mass-
preserving or pycnophylactic properties of the spline make
this an ideal tool to process soil profile data because the

harmonised data ultimately become parameters of the
spline, which can be used to reproduce the original data.
The mechanism that controls the fidelity of spline fit to the
original data is determined by a lambda parameter, which in
this study was set to 0.01 based on optimisation using
numerous candidate values. Here, the intention was not to
find an optimal lambda for each soil profile but to find the
optimum for the collection of all soil profiles. This was done
by averaging of the fitting error across all soil profiles for a
specified lambda value and selecting the value where the
averaged error criteria were minimised. The underlying
math of the spline function is described in Bishop et al.
(1999) with further description in Malone et al. (2009).

For the purposes of model fitting, all the soil profile data
were then intersected with each of the 35 raster PCA covariates
to extract the corresponding vector of data covariate at each
site. A nearest neighbour extraction was used for this process.

In Malone and Searle (2021), some discussion was made
about compositional data analysis given that the tools for this
sort of analysis are embedded into the STA. Because soil
texture fractions are an example of compositional (the
fractions sum to 1 or 100 depending on whether they are
expressed as a proportion or percentage), it should naturally
follow that compositional data analysis be performed on these
data. Aitchison (1986) introduced tools for appropriate
treatment of compositional variables namely in the form
of additive-log-ratio (alr) and centred-log-ratio (clr)
transformations. Paraphrasing from Malone and Searle
(2021), these transformations from the simplex to an
n-dimensional Euclidean vector exhibit important properties
that enable the data to be analysed in the same way as standard
data. A soil texture composition (clay, silt and sand fractions)
would be considered as a three-part Aitchison-simplex and the
alr-transform would map the composition non-isometrically to
a 2-dimensional Euclidean vector, treating the last part as
common denominator of the others. The isometry (or lack
thereof with respect to alr-transformation) is a geometric
concept about the association of angles and distances in the
simplex (following the Aitchison geometry) to angles and
distances in the Euclidean space. Because the mapping is
done non-isometrically, this precludes using alr-transforms
in the distance-based data analytics which are commonly
used in pedometric applications such as soil entity
allocations (Odgers et al. 2011). The other drawback of
using alr-transforms is that by changing the part in the
denominator, we obtain different alr transformations, which
is likely to result in different analysis outcomes. The clr-
transform maps a composition in the D-part Aitchison-
simplex isometrically to a D-dimensional Euclidean vector
subspace. This imparts an advantage over alr-transformation;
however, the transformation is not injective, resulting in the
covariance matrices of the Euclidean variables to be always
singular. Egozcue et al. (2003) identified the few shortcomings
of both alr and clr transformations and proposed the isometric
log-ratio transformation (ilr) to address these. The data in the
D-1-dimensional Euclidean vector generated by ilr-
transformation can be analysed in this space by classical
multivariate analysis tools. However, the interpretation of
the results may be difficult since there is no one-to-one

Lab Data Morphological
data

Soil texture
algorithmHarmonisation of

depth support

Intersection with
covariates

Transform data to
Isometric log-ratios

Data Splitting

Spatial
Prediction

Mean
estimates

Quantified
uncertainties

Data back-
transformation

External
validation

Repeated
machine
learning
model

simulations

Fig. 2. Schematic workflow of the tasks involved in the digital soil
mapping of soil texture fractions.
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relation between the original parts and the transformed
variables.

In this study, all the spline processed soil profile data were ilr-
transformed. We note prior DSM investigations of soil texture
mapping including Odeh et al. (2003), Lark and Bishop (2007)
andMuzzamal etal. (2018) amongothers.BesideMuzzamal etal.
(2018), who explored irl-transforms of compositional soil texture
data, most research has been done with alr-transformed data.
Noting some of the caveats of using ilr-transforms mentioned
above, besides the method integration reasons (with the STA
described inMalone and Searle 2021), this data transformation is
merely used as an instrument for data analysis and not
interpretation. Subsequently, any interpretation of the results
and efficacy of the modelling is done based on the back-
transformed data. As mentioned above, the result of doing an
ilr-transformona three-partAitchison-simplex is a2-dimensional
Euclidean, which we will refer to hereafter as components of the
ilr-transformation 1 and 2, respectively.

Model calibration and quantification of uncertainties
Spatial modelling in this work utilised individual machine
learning models for components of the ilr-transformation at
each of the six harmonised depth intervals. Effectively, 12
main model systems were created. Before constructing these
model systems, 10% of the available data from each depth
interval was removed for the purposes of ensuring an external
validation set. These were selected at random and a summary
of the data configurations are given in Table 1. Note that the
number of sites and mix of laboratory and morphological data
remain fixed for the external data, while for the model
calibrations and cross-validation, the exact numbers and
mix of data types will change from iteration to iteration due
to the random sampling (with replacement) that underpins the
modelling approach.

This study uses the random forest (RF) data modelling
algorithm (Breiman 2001), specifically the ‘Ranger’
implementation (Wright and Ziegler 2017), which is
computationally more efficient and particularly suited to
high dimensional data. For each model system, we
optimised the RF hyperparameter ‘mtry’ (number of
variables to possibly split at in each node of the random
forest model) using a purpose built cross-validation scheme
that is facilitated in the caret R package (Kuhn et al. 2019). The
number of trees to grow was not optimised and set to 500 as
this was computationally efficient for our computer system.
After the model hyperparameter optimisation, 50 iterations of
model fitting were performed whereupon each iteration the
target variable included the laboratory data plus a simulation

instance from the STA that was performed in the sample data
preparation step described above. Data used for model
calibration on each iteration was selected using random
sampling with replacement, with sample size equal to the
number of cases in the available dataset. For example, in
the case of modelling ilr-transformation 1 as a function
of the 35 predictive covariates for the 0–5 cm depth
interval, the total number of data available was 178 079.
For implementation of sampling with replacement, this is
the size of the sample selected. But when looking at the
unique cases in the selected data, this on average will
equate to 63% of the data for model calibration leaving the
remaining 37% for cross validation (Efron and Tibshirani
1997). A typical data splitting configuration is shown in
Table 1. While we are aware that a similar bootstrap
routine is central to the random forest algorithm, it is
unable to account for the target variable uncertainty
explicitly, thus necessitating a customised approach.

Ultimately, 50 models for each of the 12 model systems
were developed and saved for later use in the spatial prediction
step. Other information captured included modelled predictions
for the out-of-bag data points from each iteration, as thesewere to
be used to assist in deriving the uncertainty quantifications.

The resampling approach described above lends itself to
quantification of the prediction uncertainties at each prediction
location. Whether it be a data point or pixel, there are 50
contributing predictions, which collectively constitute an
empirical probability distribution (EPD).

The variance of the EPD is the quantity we use to express
uncertainties; however, the EPD variance contributes only one
part of the overall variance, VARtot (Eqn 1). The additional
source of prediction variance in the modelling framework is
what Viscarra Rossel et al. (2015) describe as the
discrepancies brought about through systematic (bias) and
random (imprecision) errors in the modelling. This is
expressed as MSEcv and in this study it is calculated as the
average of the mean squared error values from each model
iteration on out-of-bag data. The variance of the EPD (right-
hand side of Eqn 1) accounts for errors in the deterministic
component of the models. The other terms in Eqn 1 include n,
the number of iterations which is equal to 50; xi, the prediction
at a data point or pixel with a given model i; and m, the mean
prediction at a data point or pixel over all 50 iterations.

VARtot ¼ MSEcv þ 1
1� n

Xn

i¼1

xi � mð Þ2 ð1Þ

Note that the EPD and associated variance of the EPD,
in addition to the MSEcv, were defined based on

Table 1. Data splitting summary for model calibration, cross-validation and external validation

Model calibration Cross-validation External validation
Depth (cm) Lab Morph Lab Morph Lab Morph

0–5 9768 102 834 5919 59 558 1680 18 106
5–15 9855 101 949 5672 59 532 1747 17 920
15–30 7991 99 064 4642 57 698 1390 17 431
30–60 7468 93 564 4359 54 478 1301 16 462
60–100 6524 75 509 3840 44 111 1171 13 271
100–200 3637 46 379 2020 27 137 620 8177
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back-transformed data from ilr components using the inverse
equations (Malone and Searle 2021). For clarity, each back-
transformed variable; i.e. clay, silt and sand for each standard
depth had an estimate of theMSEcv. Similarly, every data point
and pixel had an individually defined EPD and ultimately an
estimated VARtot for each variable and standard depth.

With VARtot defined, it is then a relatively straightforward
approach to define prediction intervals for any defined
confidence level. This is done by taking the square root of
VARtot then multiplying it by 1 – a, where a is the quantile
function of a normal distribution (upper tail) for a defined
confidence level. For example, for a 90% prediction interval,
the quantile function is ~1.64 (a = 0.95). The multiplication of
the square root of VARtot and the specified quantile function
equates to a standard error, which is added to and subtracted
from the mean estimate of the EPD to derive the upper and
lower prediction intervals respectively. In this study, for the
purposes of DSM, we derive prediction intervals with 90%
level of confidence about the mean estimates of the EPD.

From a validation perspective (of the uncertainties), we also
derive prediction intervals at a series of confidence levels in
order to assess the sensitivity and quality of the quantified
uncertainties, for example, via the prediction interval coverage
probability (PICP; Shrestha and Solomatine 2006) criterion as
described below.

External validation
The model predictions and their derived uncertainty estimates
were validated using the dataset that was removed from
the overall dataset before any calibrations and cross-
validations were performed. We report the root mean square
error (RMSE) and Lin’s concordance coefficient (CCC) to
quantify the prediction accuracy and fidelity about the 1:1 line
when comparing predictions with associated observations,
respectively. The predictions here are the averaged value of
the EPD at each data point. For laboratory measured data, the
comparison was a simple observed data vs measured data
comparison. However, for the morphological data, we took the
observed data as the mean value of the 50 simulations derived
from the soil texture algorithm.

For assessment of the prediction uncertainties, we used the
PICP criterion, which entails estimation of the proportion of
observations in the total dataset that are encapsulated between
the estimated prediction interval at a given confidence level for
that data point. The confidence levels used in this study
included: 99%, 97.5%, 95%, 90%, 80%, 60%, 40%, 20%,
10% and 5%. One should expect the PICP value or proportion
to be close to the corresponding confidence level in order to
determine whether the quantified uncertainties have been
satisfactorily estimated (Solomatine and Shrestha 2009).

A measure of functional accuracy (Ruddell et al. 2019) is
defined in this study in terms of soil texture class allocation
discrepancies. This measure was included because of the vast
amount of morphological data used in this study. It is based on
the comparison (Euclidean Distance) of an observed texture
class (centroids) and the associated texture class derived
through allocation to the nearest texture class centroid
based on the predicted clay, sand and silt fractions

(note these distance comparisons were done with the
ilr-transformed data).

For each data point, the predicted texture class was
compared to its 1st, 2nd, 3rd and right up to 10th nearest
texture class neighbour groupings in order to determine at
what grouping size the observed soil texture class is found.
For perfect correspondence, the prediction and associated
observed class would match when just the prediction its
nearest neighbour are compared. Conversely, if the
predicted soil texture class did not make a match of its
nearest 10 texture classes, the quality of the prediction
would be deemed very poor. In our analysis, we estimated
the proportion of cases where there was a positive match
between prediction and observation for a given nearest
neighbour grouping size. For large groupings it is expected
to have a high to perfect proportion of matches, and this will
almost always decrease with smaller and smaller groupings.

The reason for determining these proportions is an attempt
to replicate the natural variation experienced when more than
one person is in the field, with each independently analysing
the same soil sample by hand bolus method and then allocating
this sample to a soil texture class. We would expect there to be
some discrepancy between each person’s allocation, but one
would expect the allocation to cluster across a given number of
classes. The smaller the number of classes of coverage means a
good agreement and presumably a good allocation. Allocations
spread across a high number of classes means poor agreement
and allocation.

The discrepancy measure we have defined attempts to
mirror this idea where a high proportion of matches in
small groupings is an indication of good allocation, which
is potentially a useful measure of the functional utility of the
map in terms of how the predictions of clay, sand and silt
fraction translate to what might be observed from a field
survey context.

Spatial predictions
The scorpan variable themed raster PCA covariate stacks were
used to inform the predictions across all grid cells and at each
depth. The prediction process was the same as that described
for external validation, except the predictions were made at
grid cells. Specifically, this entailed at each standard soil depth
for each model iteration, predicting both ilr-transformation
components and then using the inverse of the ilr transform to
derive individual maps of clay, silt and sand %. The outputs
from each iteration were then combined and the EPD was
estimated at each pixel, followed by the estimation of the
VARtot as defined in Eqn 1 using the specific MSEcv for the
selected target variable and depth interval. From this, the
spatial prediction of uncertainty was expressed as 90%
prediction intervals using the method described earlier.

Comparison between v1.SLGA and v2.WSG
The final maps for each soil texture fraction at each depth
interval were benchmarked against two publicly available
products. The first were those derived for v1.SLGA
(Viscarra Rossel et al. 2015). The second set of products
were v2.WSG (https://maps.isric.org/) where we used OGC
web-services to pull soil data directly from ISRIC servers.
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The R programmatic workflow for doing this is available
at https://git.wur.nl/isric/soilgrids/soilgrids.notebooks/-/blob/
master/markdown/wcs_from_R.md.

The v2.WSG is a 250 m resolution product with a depth
support the same as used in this current study. In order to
harmonise products, the v2.WSG products were re-projected
to the same resolution and extent as both the v1.SLGA and v2.
SLGA products. Here, a bilinear interpolation was used. Once
all the raster datasets were organised, the same external
validation dataset was used to check their quality in terms
of the RMSE and CCC metrics. To give a visual comparison of
similarities and difference amongst the three products, we
subtracted both v1.SLGA or v2.WSC from v2.SLGA. In the
context of uncertainty assessment, v1.SLGA uncertainty
products (the 90% prediction intervals) were compared with
those from v2.SLGA in a simple way that entailed comparison
of the prediction interval widths. This was to visually
determine whether v2.SLGA uncertainty estimates are
larger, smaller or equivalent to those derived for v1.SLGA.

Implementation of methods
To carry out the work in this study, numerous bespoke R code
scripts were developed, which are available at from Github
(https://github.com/AusSoilsDSM/SLGA/tree/master/SLGA/
Development/soiltexture). Some of the main R packages used
in this work include ‘ranger’ (Wright and Ziegler 2017) for
model fitting and both ‘raster’ (Hijmans 2019) and ‘sp’
(Bivand et al. 2013) for specific spatial data analysis tasks.
The ‘compositions’ R package (van den Boogaart et al. 2018)
was used by data transformations and inversions of the
compositional soil texture data. Many of the computations
were optimised to run in parallel compute mode, particularly
the spatialisation of the predictions step. CSIRO
supercomputer systems (https://www.csiro.au/en/Research/
Technology/Scientific-computing/Pearcey-cluster) were used
for all computational tasks in this study.

Results and discussion

Fitted models and external validation

Table 2 summarises the external validation outcomes for each
soil texture fraction and at each depth for v2.SLGA, v1.SLGA
and v2.WSG. While we know that the validation dataset for v2.
SLGA is completely external, it is possible, even likely, that
some of these data were used in the modelling to develop the
v1.SLGA and v2.WSG products. Consequently, there may be
some inflation and ultimately bias in the reporting of their
reliability. Nonetheless, the RMSE and concordance outcomes
for v2.SLGA are more skilful for each variable and depth in
comparison to the other products. The phenomenon of
relatively higher prediction skill on the upper soil layers
compared with the lower soil layers is apparent for all
products. Examining the clay RMSE results, the average
error is improved by ~3% (based on the simple difference
between estimated RMSE values) across all depths when
comparing v2.SLGA with v1.SLGA. The v2.WSG
predictions of clay are marginally better than v1.
SLGA. Taken together, these outcomes may not appear to
be much, but given the amount of data used for the external
validation, this represents a significant overall shift in
predictive skill. This improvement is more distinguishable
for the sand fraction predictions where the difference
between v2.SLGA and v1.SLGA is ~3% on average in
terms of RMSE. The v2.WSG sand predictions are less
accurate compared with v1.SLGA and are on average 5%
different in terms of the error attributed to v2.SLGA. The
predictions of silt content represent the poorest outcomes in
comparison to the other texture fractions for v2.SLGA, and
this is true for the other two products as well. In general,
however, there is about a 2% improvement in in RMSE for v2.
SLGA silt predictions compared with the other two products.

The concordance measures, which tell a similar story to the
RMSE, are more easily compared through visualisation of
observed vs predicted plots. In Fig. 3, we show these plots for

Table 2. External validation diagnostics for each soil texture variable at each studies soil depth interval.
These diagnostics are provided for each of the three digital soil mapping products

Depth interval (cm) Variable v2.SLGA v1.SLGA v2.WSG
RMSE CCC RMSE CCC RMSE CCC

0–5 Clay 10.6 0.71 12.8 0.51 13.1 0.59
5–15 10.8 0.72 13.1 0.51 13.7 0.56
15–30 12.8 0.69 15.2 0.46 15.7 0.55
30–60 14.0 0.66 16.4 0.41 17.2 0.49
60–100 13.5 0.63 15.4 0.4 17.0 0.46
100–200 13.5 0.63 15.4 0.4 16.2 0.47
0–5 Sand 13.1 0.72 16.4 0.54 18.4 0.57
5–15 13.1 0.73 16.8 0.53 18.5 0.57
15–30 15.0 0.70 18.7 0.49 20.5 0.53
30–60 15.9 0.68 19.1 0.47 21.2 0.48
60–100 16.0 0.64 18.8 0.45 20.5 0.46
100–200 15.6 0.64 18.6 0.42 20.9 0.43
0–5 Silt 5.8 0.44 7.0 0.36 7.9 0.38
5–15 5.2 0.50 6.6 0.39 7.7 0.40
15–30 5.1 0.49 6.5 0.37 7.1 0.39
30–60 5.0 0.43 6.4 0.33 6.6 0.37
60–100 5.2 0.37 6.6 0.27 6.9 0.32
100–200 5.0 0.34 6.4 0.27 6.7 0.33
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the0–5cmdepth interval for clay, sandandsilt of eachof the three
products. Supplementary material (Figs S1, S2, S3) shows the
same plots for the other five depth intervals. Dispersion about the
1:1 line is to be expected, and this is probablymademore apparent
when looking at the plots pertaining to v2.WSG predictions. Clay
prediction, for example for v1.SLGA, appears to over-predict at
relatively lower clay contents and under-predicts at relatively
higher clay contents. Products from v2.WSG do not have these
differing biases. For clay content, v2.SLGA largely corrects these
biases. For sand content, the predictive skill of sandier textures is
clearly apparent. However, there does not appear to be much
greater improvement in predicting in the less sandy soils. The
plots for silt content for each of the three products just emphasises
the relative indifference between the predictive outcomes and
lower predictive skill in general.

Regarding which types of predictive covariates were
favourably selected in the fitted models, Table 3 provides a
summary for each of the ilr-transformed components used for
the modelling at each depth interval. Using the variable
importance measure provided as output from the ranger
models, we summarised these outputs across all 50 model
realisations and provide a top five ranking of the
scorpancovariate themes used for each model system.
Perhaps a little surprisingly, predictive covariates related to
long-term climate data summaries and topo-climatic
information feature strongly for each model system. This is
followed by variables pertaining to parent material
information, which are mainly made up of variables derived
from gamma radiometric data, magnetics and soil secondary
clay mineral data. The variables pertaining to the organism
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Fig. 3. Observed vs predicted plots for each of the three soil texture variables at the 0–5 cm depth interval for (a) v2.SLGA, (b) v1.SLGA and (c) v2.WSG.
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scorpan-theme feature minimally but do occur a few times in
the top five rankings. Relief variables did not feature in any of
the model system top five rankings. This is an interesting
finding overall but at the continental spatial extent, it would
generally be expected that climate and parent materials are the
dominating factors determining soil variability. This is also an
interrelatedness between climate and relief to consider where
there are broad relief/spatial position contributions to climate
variables (higher altitudes are cooler, orographic rainfall etc.),
which may explain why relief is not as strong a driver of soil
texture variability. Nevertheless, at smaller spatial extents, the
relief and organism variables may feature more strongly as
differences in hillslopes and vegetation patterns manifest. This
type of hierarchical determinism on soil variability has been
studied and identified for soil variables like soil carbon
(Wiesmeier et al. 2019; Adhikari et al. 2020;) and it is not
without question that these relationships also hold for other
variables too, particularly those that are coupled with soil
carbon variability including soil texture.

The importance of climatic variables in spatial modelling
at the continental scale has also been identified by Malone
et al. (2020) in Australia where they proved critical to
understanding to variability of soil thickness. In that study,
it became clearly apparent that the direct and indirect effects of
climate on biota and weathering of parental materials were
important to understanding soil thickness variation across the
country. We expect a similar biophysical relationship to be
apparent in the present study, but also coupled with parent
material variation and types, and the differential weathering
products each one of these produces; e.g. fine grain, coarse
grained and intermediate parent material types etc.

The results in Table 2 do not provide a clear indication
of whether the prediction outcomes are potentially useful
from a field surveying perspective. Therefore, we
introduced the assessment of functional accuracy that looks
at the dissimilarity between observed texture classes, and their
neighbours, with corresponding predictions allocated to their
nearest texture classes. The plot on Fig. 4 shows the maximum
class discrepancies and the associated number of cases

(expressed as a percentage) where the observed soil texture
class matched the predicted soil texture class. The example
here is for the 0–5 cm depth interval, with the plots for the
other depth intervals provided in the online supplementary
material (Fig S4).

In general, the interpretation for the 0–5 cm depth interval
extends also to the other soil layers. The black dots are the data
outputs for v2.SLGA while the red ones are for v1.SLGA. As
expected, increasing the class grouping size results in a higher
proportion of matches. What can be noted here though is that
when the grouping size is 1, v1.SLGA predictions are better,

Table 3. Variable importance summaries for each SCORPAN covariate theme for each ilr-transformed
componentmodel target variable at each studies depth interval. The top five ranking across all model realisations

for each model system is provided
Abbreviations: S, soil; C, climate; O, organism; P, parent material

Variable Depth interval (cm) Covariate theme importance ranking
1 2 3 4 5

ilr-transformed component 1 0–5 C C C P O
5–15 C C C P O
15–30 C P C C P
30–60 C P C C P
60–100 C P C P P
100–200 C P C P P

ilr-transformed component 2 0–5 C P P C O
5–15 C P C P C
15–30 P C C P C
30–60 C P P C P
60–100 C P P P P
100–200 C P P P O
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Fig. 4. Summary of soil texture class allocation discrepancies between
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grouping sizes of near neighbour soil texture classes. The y-axis
corresponds to the percentage of cases where the predicted allocation
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which we surmise is the result of using field measured data for
v2.SLGA, which will to some degree increase the amount of
uncertainty associated with the prediction. The other
possibility is that some of the data used in the external
validation were used in the model calibrations for v1.
SLGA, resulting in a possibly inflated estimate of precision.
Whatever the case, it is natural to expect that when using
uncertain data in a modelling framework, some precision
penalty is to be expected, and it just so happens that it
manifests when assessing the match between predictions
and associated observed soil texture class without
consideration of nearby texture classes (single class grouping).

More will be said later about the prediction uncertainties.
What is interesting to note however, is that with increasing
grouping size, v2.SLGA prediction converge towards 100%
faster than v1.SLGA, which is a manifestation of the overall
prediction skill differences between both products. A possible
benchmark set at a three-class discrepancy allocation indicates
that for v2.SLGA, over 75% of external validation data were
correctly matched to the observed soil texture class, while for
v1.SLGA, this was just over 60% of cases. Taken together,
what these outcomes mean is that despite a greater uncertainty
attributed to using field measured data (appearing as a
relatively smaller single class grouping match), these data
collectively confer an improved precision for prediction of
soil texture. We attribute this result basically to the size
differential of the datasets used in the modelling of the v1.
SLGA and v2.SLGA.

External validation of quantified uncertainties

The PICP approach was our selected tool to assess how well
the estimated uncertainties perform under testing. This is
simply done by assessing the coverage of the prediction
intervals at different levels of confidence around an
observed value. Plots shown in Fig. 5 provide a good
indication of what to expect when there is a relatively close
tracking of the coverage probability with confidence level
along the 1:1 line. These plots are for the 0–5 cm depth
interval and the results are similar for the other depths,
which are provided in the online supplementary material
(Figs S5, S6, S7). Probabilities above the red line in the
plots of Fig. 5 indicate a mild overprediction of the
uncertainty range. This warrants some further investigation,
but it is probably an outcome of the uncertainty method itself
whereby a single value of the systematic model errors is
assigned to all uncertainty estimates. On average, this will
perform as intended but does not take into consideration
locally varying estimates of the errors in a way that other
methods, such as that described in Shrestha and Solomatine
(2006), where model errors are weighted based on membership
to fuzzy classes each of which has an underlying distribution
of the model errors.

Some comparative work has been done in Malone et al.
(2017, p. 150), which does show some merit to this locally
varying error approach compared to the approach used in the
present study, where a similar pattern in the coverage
probabilities was observed. Possibly the hurdle to overcome
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in advancing the approach made by Shrestha and Solomatine
(2006) is the implementation, in that it requires a more detailed
architecture and marginally more effort to compute.

Spatial predictions

The main objective of this work was the updating of the soil
texture mapping for Australia. Examples of some of the
outputs are provided in Fig. 6, which shows the spatial
distribution of the clay fraction for the 0–5 cm and 30–60 cm
depth intervals and their quantified uncertainties, which are
expressed as upper and lower prediction limits. The maps for
the other depth intervals can be found in the supplementary
material (Figs S8, S9, S10). We will not go into a deep
discussion interpreting the spatial pattern of the maps as at
a very general level, the overall patterns are about the same
compared with the equivalent products from v1.SLGA and v2.
WSG (maps are also provided in supplementarymaterial Figs S11,
S12, S13), and even those derived from the work by McKenzie
et al. (2000) and Johnston et al. (2003), which largely drew upon
conversion of polygon maps to thematic soil information maps of
soil texture. However, there are numerous subtle differences
between the products when they are compared in a quantitative
manner as has been done in this study.

The maps shown in Fig. 7 depict the v2.SLGA soil texture
fraction maps for the 0–5 cm depth interval and the associated
differences to products from both v1.SLGA and v2.WSG. The
side-by-side comparisons for the other depths and texture
fractions are provided in the supplementary material (Fig S14).
For clay and sand content maps shown in Fig. 7, there appears
a re-adjustment of the predictions where in both v1.SLGA and
v2.WSG, there are widespread areas estimated as relatively

higher clay content and lower sand content to what is estimated
for v2.SLGA. Note that these comparisons have been done
based on the mean estimates and do not presently assess the
relative uncertainties; these are discussed later in terms of
comparisons between v1.SLGA and v2.SLGA only. The
differences appear to be most dominant for v1.SLGA over
eastern Australia, in the Murray–Darling Basin region, and
across the top of end of Australia. For comparisons with the v2.
WSG, the differences are more widespread. In comparing the
silt content maps, while there are some notable corrections,
these are relatively small compared with the other two texture
fractions. For the other five depths, there are similarities and
differences compared with what is shown in Fig. 7, but
ultimately, these are attributed to the differences in model
types and data used to create the different mapping products.

We would expect both the v1.SLGA and v2.WSG product
to be based mostly on the same data (with some exceptions)
since the data is freely and publicly available. Therefore, the
differences will be mainly attributed to the model
implementation and different sets of environmental
covariates given that the v2.WSG products have a
resolution of 250 m. The differences associated with the
comparisons with v2.SLGA products would be mainly
attributed to the additional data used in the modelling that
has mostly been sourced from field measurements. As will be
discussed shortly, the use of such data brings expected
consequences of increasing the range of the uncertainty
estimates. However, what we have been able to show in
this study are that the predictions are demonstrably more
accurate in terms of the mean estimates than either v1.
SLGA or v2.WSG. The logical next step is to consider
ensemble approaches such as model averaging (Chen et al.
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MeanLower 5th percentile Upper 95th percentile

Clay %

100

0

Fig. 6. Maps of mean estimated clay content across Australia for the 0–5 cm and 30–60 cm depth intervals (central
column). The lower (5th percentile) and upper (95th percentile) prediction limits are also shown.
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2020) in order to leverage the good parts from each output to
derive a better or equally good output than the current best
estimate.

While variance weighted approaches have been
recommended as the best and perhaps the easiest approach
to do a model averaging workflow, one would also need to
propagate the associated uncertainties, which to date has not
been investigated with much fervour. Essentially, to do this
would involve the combination of empirical probability
density functions. Some methods to do this are discussed
in Malone et al. (2014) and perhaps they should be
investigated further as ongoing updating and improvements
to digital soil mapping products becomes more of a normal
procedure.

The uncertainties of the model outputs have been
determined and the PICP (Fig. 5) indicates that they have
been well quantified. Now we focus on whether there are any
differences in the uncertainties of v1.SLGA and v2.

SLGA. Side-by-side comparisons of the estimates of
uncertainty are done in a simple manner in this study to
examine the location and extent of similarities and
differences in terms of the 90% prediction interval ranges.
Fig. 8 shows some of these comparisons for each soil texture
fraction for the 0–5 cm and 30–60 cm depth interval. As with
other outputs, the difference maps for each of the other depth
intervals is provided in the supplementary material.

Maps in Fig. 8 use colour to show no change between
prediction interval ranges (we allowed a 5% margin of
difference to evaluate a difference), v2.SLGA prediction
ranges are wider than v1.SLGA prediction ranges, or v1.
SLGA prediction ranges are wider than v2.SLGA prediction
ranges. The maps clearly show that the prediction intervals for
clay content are measurably wider for v2.SLGA. There are a
few areas of exception, but this result is to be expected given
that much of the data used in the modelling had a measurable
amount of uncertainty given they were field derived estimates.
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Fig. 7. Differences between mean predictions of soil texture fractions for v2.SLGA, v1.SLGA and v2.WSG products.
Data shown corresponds to the 0–5 cm depth interval. The first panel or column represent v2.SLGA predictions and the
other subsequent columns are calculated difference between v1.SLGA and v2.WSG, respectively.
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It is encouraging from a modelling perspective that these
uncertainties are propagated through to the mapped
predictions, but the relatively wider prediction intervals
should not detract from the fact that on average, the mean
predictions associated with v2.SLGA are more accurate than v1.
SLGA.

The concept of the prediction interval should not be
interpreted as a uniform distribution of plausible values
within the ranges of the uncertainty bounds. Rather,
uncertainty is commonly expressed either as a normal
distribution (the case in this study) or some other empirical
distribution function where most of the prediction mass is
centred about the mean or median of the interval. What the
efforts in v2.SLGA have demonstrated is that there has been an
improvement in estimating the prediction average, but because
of the use of relatively less certain input data, the associated
prediction intervals are wider in a lot of cases. Encouragingly,
this is not always true because the corresponding comparisons
between sand and silt show quite distinct areas where v1.
SLGA prediction intervals are wider.

Regarding the predictions of sand, at least for the 0–5 cm
depth interval, the prediction intervals either show wider
prediction intervals for v1.SLGA or no change. For the
deeper soil layers, a distinct east–west pattern is evident
whereby the prediction intervals for sand are wider in the
east for v2.SLGA but are relatively narrower in WA. For silt
content, much larger areas of no change are apparent, as well
as relatively large areas of wider prediction intervals for v1.
SLGA. Our interpretation of why prediction intervals for v2.
SLGA for clay are seemingly wider compared with sand or silt
content is due to the nature of the data and how the soil texture
values are drawn from the empirical distribution in the soil
texture algorithm described in Malone and Searle (2021).

Looking at the supplementary material of Malone and
Searle (2021), there are plots of the observed data for each
soil texture class displayed on a soil texture triangle. What is
notable about those plots is the nature of the variation of each

of the texture fractions. The variation of clay content is much
higher relative to sand and silt contents, which ultimately
manifests in the phenomenon clearly observed in Fig. 8 and
associated plots in the supplementary material regarding the
uncertainty mapping for clay content.

Ultimately, there is a trade-off that happens when uncertain
data gets used in a model. While it is encouraging and clearly
demonstrated in our case that such data improves the
prediction accuracy, a penalty is imposed by way of inflated
prediction ranges. One positive outcome from this is that the
additional input data uncertainty did not always manifest as
wider prediction intervals compared with v1.SLGA but were
in fact narrower in some areas, which points towards some
clear benefits for using this type of data on an ongoing basis.
Given that there is value in using the field data in a DSM
context, there is perhaps a need to investigate in detail the
veracity of data, which have corresponding field and
laboratory values to determine first, if any clear errors or
biases can be detected (and subsequently removed or
corrected), and second, whether there are some nuances in
the data that have been overlooked but could be exploited in
further studies.

General discussion

The operationalisation of DSM around the world is clearly
apparent (Arrouays et al. 2014) and across Australia,
numerous examples exist and continue to grow (Kidd et al.
2020). Now that there are many examples of national digital
soil mapping coverages, it is natural to begin thinking about
and performing updates when opportunity presents. DSM by
design, is largely a data driven framework, and therefore
dynamic in its implementations. Leveraging new and
additional data sources and the refinement and improvement
of model approaches, collectively permit a greater level of
efficiency in terms of the creation of maps compared with
traditional soil mapping approaches.

0−5 cm

30−60 cm

Clay Sand Silt

No Change

V2 >> V1

V1 >> V2

Fig. 8. Difference in prediction interval widths between v2.SLGA and v1.SLGA products. Data is presented for the
0–5 cm and 30–60 cm depth intervals. The data for the other depths is presented in the supplementary materials.
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Our arguments for updating Australia’s soil texture
mapping included addressing some shortcomings in terms
of data quality that have been found since the release of v1.
SLGA and exploiting additional data resources in the form of
field measured data. The latter instigated an exploration of
methods to deal with uncertain data. This effort has been
rewarded with demonstrable improvements in the overall
prediction accuracy compared with existing products.

Next steps for further refinement include those options
described earlier on model averaging, or a geostatistical
analysis of model residuals. Experience has demonstrated
that only incremental improvements are gained by doing this,
but nonetheless, it is important work.

A more pressing work plan to instigate would be a detailed
look at the soil data that goes into the modelling, because as
our method clearly shows, the uncertain data contributes
towards an increase in prediction uncertainty. This would
require a significant investment of expertise to check the
consistency of the data and refine accordingly. The
advancement and continual refinement of DSM products is not
solely the task of data modellers but extends also to other more
traditional areas of soil science and those expertswho can provide
the necessary oversight as updated soil maps are produced.

We expect that in the future the computational and
modelling efficiencies experienced currently will continue
to improve DSM performance. However, an important
consideration going forward is the sustainability of data and
model refinements as a mechanism to improve soil mapping
quality without implementing strategic and perhaps concurrent
programs to collect new field data to augment that work.

Operationally, new projects will begin and end, and in the
process, new data will be collected. Then through mechanisms
such as soil data federation systems, these new data will be
easily captured for use in future soil mapping projects despite
not being considered in the design of those projects. This project-
to-project patchwork of soil surveys is ultimately how most
countries have amassed their collections of legacy soil data.
Clearly, these have been valuable exercises, and DSM has
proven to be a useful tool to leverage these data and inform
our understanding of soil variability across vast landscapes.
However, the current research has provided another reason to
consider whether we survey and sample soils in the right places.

Obviously, a substantially larger amount of data was used
in the updating of soil texture maps in this study compared to
what was used in v1.SLGA, but the improvements in terms of
accuracy perhaps might have been expected to be higher. This
may just be the perception of authors who have completed a
very large amount of work; however, it is worth considering
that perhaps a model skill ceiling has been reached or is near
to being reached without a considerable new investment in
collecting soil data where there are clear data gaps, or where
prediction uncertainties persist. Searle et al. (2021a) provides
some practical options and examples of gap-filling that centre
upon efforts to examine the current suite of soil legacy data
with respect to environmental data coverage, in order to
identify which parts of the landscape have adequate
coverage of soil information and which parts do not.

In Australia, the logistics of implementing a strategic soil
surveying program need some deep thought given each Sate

and Territory has their own soil survey agency with their own
priorities, but clearly, an over-arching national plan is needed.
To date, DSM has been all about showcasing the very latest
and greatest in cutting edge models and data informatics but
could have reached their limits if a similar fervour is not
extended towards strategic and widespread data acquisition
and survey.

Conclusions

The intention of this study was to update v1.SLGA soil texture
maps for Australia, and in doing do, produce v2.SLGA
products. These updated maps are of the same spatial
resolution, support and extent as v1.SLGA products, but the
underlying data used to produce them are significantly
different. Most data used in the modelling of v2.SLGA soil
texture maps are sourced from field measured data, as opposed
to laboratory measured data. In work by Malone and Searle
(2021), an algorithm, Soil Texture Algorithm (STA), which
transforms field measured soil texture class data into
continuous vectors of clay, sand and silt fractions was
developed and subsequently used in this study. There is
uncertainty built into this transformation which is carried
over to the spatial modelling and ultimately propagated
through the final produced maps. Our models underpinned
by machine learning ultimately yielded:

* Measurable improvement relative to v1.SLGA and v2.WSG
products in the mean prediction for all texture fractions and
soil depth intervals

* There was a spatial component to whether the 90% prediction
intervals were wider for v1.SLGA or v2.SLGA, and this
varied for the different textures

* With some exceptions, the clay content uncertainties,
expressed as 90% prediction intervals, were measurably
wider than those derived for v1.SLGA.

Ultimately, despite using a significant amount of relatively less
precise data, v2.SLGA soil texture products are more accurate
and in a lot of cases, more certain than v1.SLGA products. In
future, we expect to perform and observemore research instances
inDSMthat investigate theutility of incorporatingfieldmeasured
data into the workflows. As in our case, these data are often
plentiful relative to laboratory data, but under-utilised. This study
has demonstrated their potential value for successfully updating
and improving digital soil maps.
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