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A B S T R A C T   

Machine learning approaches have been widely used for crop yield modelling and yield forecasting but there has 
been limited application to understanding site-specific yield constraints. Crop yield is driven by a complex 
interaction of spatial and temporal variables, which makes it challenging to define the exact cause of observed 
spatial yield variability explicitly. This makes it difficult to design efficient management strategies to address 
production constraints. There is a need for a more quantitative and systematic approach to identify and un-
derstand the causes of variation in crop yield in order to implement appropriate management responses. This 
study investigated the use of interpretive machine learning (IML) to address this need. The developed meth-
odology was demonstrated on furrow-irrigated cotton fields totalling ~2000 ha in the Condamine-Balonne River 
catchment, Australia. Digital soil maps of important soil constraints were created at 20 m spatial resolution using 
70 soil cores extracted to 1.4 m depth and a combination of on-farm and off-farm spatial data layers. Specifically, 
the soil constraints represented were exchangeable sodium percentage (ESP – sodicity), pH (alkalinity), and 
electrical conductivity (ECe – salinity). Terrain infrastructure variable maps of closed depressions, distance down 
furrow, and cut and fill (from landforming practices) were also developed. Empirical models of cotton lint yield 
were created with gradient boosted decision trees (XGBoost) using the digital soil maps and terrain infrastructure 
data as predictor variables. The models could describe the spatial variation in yield well, with a median Lin’s 
concordance correlation coefficient of 0.67 and root-mean-square error of 0.75b ha− 1. SHapley Additive ex-
Planations (SHAP), an IML approach based on game theory, was then used to identify the contribution of each 
variable to the modelled yield across the study area. The variable most decreasing yield at each point was 
identified and mapped across the study area, and the spatial extent represented by each variable quantified. The 
SHAP values for each predictor variable were also extracted and mapped for a case study field, which demon-
strated the magnitude of the impact of each variable on yield with spatial context in easily interpretable units (b 
ha− 1). The presented methodology is promising for cost-benefit analysis of implementing remediation strategies, 
or where not economically feasible, altering management inputs according to a constrained yield potential.   

1. Introduction 

Global food, fuel and fibre demand is projected to increase to 11.6 
billion tonnes by the year 2050 (Pardey et al., 2014). Current trends in 
yield produced by innovation in crop breeding and management prac-
tices are insufficient to meet this projected demand (Ray et al., 2013). 
This increased demand must be met by optimising production on 
existing cropland, as further expansion of arable land by clearing natural 

systems comes with externalities of increased carbon emissions and loss 
of biodiversity and ecosystem services (Tilman et al., 2011). Global yield 
gap analysis has identified that production could be increased by 30% 
through improved management of soil constraints and fertilizer appli-
cation (Pradhan et al., 2015). Remedial agronomic practices are often 
available to mitigate the negative effects of soil constraints on crop yield 
potential (Page et al., 2018), but such practices should only be imple-
mented when a positive economic outcome is expected. Crop yields are 
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affected by diverse spatial and temporal variables, and their complex 
interactions (Jaynes & Colvin, 1997). While the impact of temporal 
weather variables, such as precipitation, on crop yield are often clear 
(French & Schultz, 1984), the impact of spatial factors such as soil and 
terrain variability are often harder to identify and quantify (Kravchenko 
& Bullock, 2000). To optimally manage a cropping system both the 
magnitude of the yield constraint and the lost yield potential must be 
quantified. Work on estimating yield potential for benchmarking has 
mainly focused on water-limitations and been assessed at large scales 
using statistical or crop growth simulation models (e.g. Hochman & 
Horan, 2018). Finer scale estimates using yield monitor data and/or 
remote sensing methodologies to quantify local yield potential, accom-
panied with assessment of local drivers in actual yield variability is 
required. Developing this knowledge has the potential to inform agro-
nomic decision-making processes and facilitate a determination as to 
which site-specific remedial activities may be warranted. 

There is a growing diversity and availability of on-farm and off-farm 
spatial and temporal data that can be used to model crop yield. This has 
led to an increased focus on using empirical models to model crop yield 
utilising data such as satellite imagery, weather observations, manage-
ment information, and soil maps as input variables (Chlingaryan et al., 
2018; van Klompenburg et al., 2020). Due to the increasingly large 
volume of data available, and the complex and nonlinear nature of the 
interactions between variables, there has been a growing trend to use 
machine learning approaches in crop yield modelling (Liakos et al., 
2018). Such yield models have been built for various purposes, including 
forecasting future crop yields (Filippi et al., 2020), and hindcasting or 
extrapolating yield historically (Donohue et al., 2018). These models 
provide management insight into optimising the allocation of agronomic 
resources, and forecast models may be used for a variety of socio- 
economic purposes (Müller et al., 2014). However, there is also an op-
portunity to create empirical yield models for the explicit purpose of 
understanding the drivers of yield variation. 

A common criticism of machine learning models is their ‘black box’ 
nature (Rudin, 2019). Interpretive machine learning (IML) describes the 
collection of techniques developed to identify the importance of indi-
vidual predictors in the model to discern how a prediction was derived. 
While many machine learning models have in-built methods for 
assessing the relative importance of predictor variables, such as feature 
importance plots, these are quite general and still have many limitations 
(Strobl et al., 2008; Altmann et al., 2010; Filippi et al., 2020). These 
methods typically assess variable importance at a global scale, which is a 
limitation as a variable may not impact yield across most of the dataset, 
but it is an important factor for a subset of the data. Additionally, no 
insight is given as to what is driving the prediction for a given obser-
vation point. SHapley Additive exPlanations (SHAP) are an opportunity 
to overcome these limitations and provide interpretation that is more 
closely aligned to human intuition. SHAP values are derived from 
Shapley values, which were first utilised in game theory to describe the 
marginal contribution of a player across all combinations of games 
(Shapley, 1953). When applied to machine learning, the “game” is 
reproducing the outcome of the model and the “players” are the pre-
dictor variables included in the model. As the number of predictor 
variables increase the number of combinations of predictor variables 
increases exponentially and the marginal contribution of predictors 
becomes computationally intensive to compute. SHAP values overcome 
this limitation with more efficient computation through the use of 
sample approximations while conserving the properties of Shapley 
values (Lundberg & Lee, 2017). 

SHAP values have been successfully utilised to understand machine 
learning models in a diverse variety of fields including medicine 
(Lundberg et al., 2018), finance (Mokhtari et al., 2019), and digital soil 
mapping (DSM) (Padarian et al., 2020). SHAP values have also been 
used to interpret crop forecast models (e.g. Srivastava et al., 2021, 
Shendryk et al., 2021; Zhu et al., 2021), however these analyses are 
mostly focussed on meteorological phenomena to explain inter-year 

crop yield variability, they did not incorporate high-quality, site-spe-
cific soil information and there is limited evidence of the application of 
SHAP values to the interpretation of soil constraints. When applied to 
yield models, SHAP values have the ability to identify which variables 
contribute to increasing, or decreasing yield at discrete locations, and 
quantify their relative contribution. This has the potential to identify the 
underlying cause of low yielding areas, and can inform decisions on 
what management interventions are required to overcome these yield 
constraints. 

Another limitation to translating empirical yield models into agro-
nomic decisions is the use of data that are not directly interpretable or 
actionable as input variables. For example, many studies have modelled 
crop yield using apparent electrical conductivity (ECa) data from an 
electromagnetic induction (EMI) survey and crop or bare soil satellite 
indices (e.g. Robinson et al., 2009; Stadler et al., 2015; Guo, 2018; Fil-
ippi et al., 2019a). While such analyses are useful at identifying that a 
coherent spatial driver of yield variability exists, they provide limited 
understanding of the underlying cause of yield variability. This is 
because the input data can be affected by multiple properties simulta-
neously. For example, ECa readings are affected by multiple soil prop-
erties, including moisture and clay content, organic matter, and salinity 
(Friedman 2005). As such, it is difficult to make a management decision 
based on observed relationships between ECa readings and crop yield 
without first performing additional investigation into the underlying 
cause of the observed variation in the ECa readings. To make the outputs 
of yield models directly actionable for remediation purposes, the inputs 
of the yield model must adequately represent the physical and chemical 
agronomic constraints of the study site and include properties that may 
be modified through management. This may be achieved by first 
transforming ECa, remote sensing data and other observations into maps 
of soil properties using DSM techniques (McBratney et al., 2003; Tri-
antafilis & Lesch, 2005), and then using these maps representing soil 
properties as input variables to the yield model. 

Digital soil mapping is the process of building statistical relationships 
between point-based soil observations and covariate data to infer soil 
phenomena in a spatially consistent and explicit manner. The resulting 
product is usually a gridded or raster-based map for the defined spatial 
extent. This procedure may be used to create a three-dimensional (i.e. 
lateral and vertical) representations of the soil environment. Digital soil 
mapping provides a cost-efficient solution to providing soil data across 
an entire study area using a limited number of soil observation points. 
Digital soil mapping has been implemented at local (Filippi et al., 
2019b), national (Grundy et al., 2015) and global scale (Poggio et al., 
2021), and provides an objective and statistically rigorous framework 
that may be updated as additional observations are made available. 
Digital soil mapping products have great potential to provide soil in-
formation for agricultural purposes (Searle et al., 2021). Orton et al. 
(2018) used DSM products to quantify the yield loss incurred by soil 
constraints for the entire cropping region of Australia, identifying an 
annual loss of wheat production equivalent to $1.9 billion (AUD). This 
analysis is commendable for quantifying the impact of soil constraint on 
crop production at a high level but the low accuracy of the underlying 
maps means the analysis is not appropriate for within field management 
(Kidd et al., 2020). For precision agriculture purposes the only current 
solution to provide soil maps of utilisable accuracy is the incorporation 
of on-farm observations during downscaling of existing coarse-scale 
maps (Malone et al., 2017), or creating new independent farm-scale 
maps. Digital soil mapping can produce a large number of data layers 
when multiple soil properties and multiple depths are investigated, 
which can lead to difficulty in interpretation. A method to reduce the 
dimensionality of DSM data, while retaining agronomically relevant 
information, is depth to constraint analysis (Filippi et al., 2019b). Depth 
to constraint analysis can transform multiple soil property maps into one 
map by identifying the depth at which an agronomically relevant 
threshold value has been reached. Such constraints represent physically 
or chemically hostile environments for crop root growth, such as 
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extreme pH, salinity or sodicity. When constraints are present the 
exploitable depth of plant roots in the soil is reduced. Depth to constraint 
maps are usually based on a threshold at which a yield cost start to be 
incurred or yield potential decreases by a given percentage of its un-
constrained value. Yield models developed using depth to constraint 
products combined with IML has potential to directly translate into 
agronomic decisions as yield constraints are identified, the yield loss 
quantified, and targeted amelioration strategies can be readily imple-
mented as the products are agronomically interpretable. 

The utility of using IML techniques to describe crop yield, map the 
primary yield constraints and quantify their impact appears promising 
but it has not yet been attempted. The current study investigated a 
workflow incorporating DSM techniques, machine learning based yield 
modelling, and IML to describe irrigated cotton yield on a commercial 
property, and quantify and map the yield limiting factors. 

2. Methods 

The methodology used in this investigation followed a process that 
included: collation and processing of proximal and remotely sensed 
data; identification of soil sampling sites; soil sampling and laboratory 
analysis; production of digital soil maps and depth to constraint analysis; 
collation, cleaning and processing of cotton yield data; cotton yield 
modelling using machine learning; and the interpretation of cotton lint 
yield and identification of limiting factors using IML. All data processing 
and analysis was performed in the R platform for statistical computing 
(R Core Team, 2020). 

2.1. Study area 

The study area comprised eight irrigated cotton fields (~2000 ha) 
from a farm within the Condamine-Balonne River Catchment, Queens-
land, Australia (28◦42′21′′ S, 147◦52′28′′ E). Climate at the site is clas-
sified as hot semi-arid (BSh) under the Köppen–Geiger system (Peel 
et al., 2007), and is characterised by hot summers and warm to cool 
winters. The long-term average annual precipitation observed at the 
nearby Yamburgan weather station was 448 mm between the years 1898 
to 2020, and is summer-dominant (BOM, 2021). Native vegetation at the 
site was comprised of Eucalyptus coolabah open woodland with grass and 
forb understorey. This vegetation was cleared when the site was land-
formed for furrow irrigation in 2007. The site experiences an ustic to 
aridic soil moisture regime and a thermic soil temperature regime (Soil 
Survey Staff, 2014). The soils are primarily cracking clays, i.e. Vertisols 
according to Soil Taxonomy (Soil Survey Staff, 2014), which are well 
suited to irrigated cotton production. 

2.2. Environmental covariates 

A suite of environmental covariates were used to identify soil sam-
pling locations and map soil properties across the study area. A proximal 
sensing survey was conducted to collect on-farm data across the study 
area on a 48 m swathe width. As part of this survey, apparent electrical 
conductivity (ECa) was obtained using a DUALEM-21S (Dualem Inc., 
Milton, Canada), gamma radiometric data was obtained using an RSX-1 
gamma-ray spectrometer (Radiation Solutions Inc., Mississauga, Can-
ada), and elevation data was recorded using a NovAtel Smart6L differ-
ential GPS (DGPS) (NovAtel Inc., Alberta, Canada) with TerraStar-C 
precise point positioning. Observations were smoothed and interpolated 
using local block-kriging on a 20 m standard grid to which all future 
observations were referenced. The local block kriging was implemented 
using the Vesper Software (Minasny et al., 2005). The block size was set 
equivalent to the grid size, and variograms were fitted (automatically) 
for each prediction block from proximally sensed data within a 250 m 
radius of the block location. A cut and fill map was constructed based on 
elevation maps produced prior to landforming. Cut and fill values 
ranged from − 0.62 to 0.94 m, representing the depth of soil that was 

removed (negative values) or deposited (positive values) as the site was 
landformed to produce a uniform gradient for furrow irrigation pur-
poses. A bare soil redness index was constructed from Landsat 5 Tier 1 
surface reflectance satellite imagery using Google Earth Engine (Gor-
elick et al., 2017). This index represented the 95th percentile of the red 
band after cloud masking and stacking images from the period January 
2008 to April 2012. The 95th percentile is used to represent the soil 
surface under fallow conditions and contains information related to 
topsoil variability. 

2.3. Digital soil mapping (DSM) 

Conditioned Latin hypercube sampling (Minasny & McBratney, 
2006) was utilised to identify 70 physical soil sampling locations using 
the 3.2 m ECa reading, total count from gamma radiometrics, elevation, 
cut and fill, and bare soil redness index as input variables. At each 
sampling location, soil cores to a depth of 1.4 m were extracted in 
triplicate with 5 m spacing between each core (Fig. 1). Composite 
samples of the three triplicates were taken at depths of 0–30, 30–60, 
60–100 and 100–140 cm. Particle size analysis was performed on each 
sample using the hydrometer method (Gee & Bauder, 1986). Electrical 
conductivity was measured in 1:5 soil:water solution (Rayment & Lyons, 
2010, p. 20) and used in conjunction with the particle size analysis data 
to estimate the electrical conductivity of saturated extract (ECe) (Slavich 
& Petterson, 1993). pH was measured in 1:5 soil:CaCl2 solution (Ray-
ment & Lyons, 2012, p. 40). Exchangeable cations were quantified 
following extraction with 1 M ammonium acetate at pH 7.0 (Rayment & 
Lyons, 2010, p. 520). Laboratory observations were co-located with 
environmental variables and used to map the soil properties across the 
study area utilising a regression kriging approach (Odeh et al., 1995). 
The regression component was provided by fitting a Cubist model to the 
observed laboratory data and environmental covariates (Quinlan, 
1992). Residuals at observation points were calculated, followed by 
automatic variogram fitting (Hiemstra et al., 2009) to parameterise their 
spatial properties. The fitted variogram facilitated ordinary kriging to 
interpolate the residuals across the study area, which was added to the 
regression output to produce the final prediction. The regression kriging 
procedure was repeated 100 times using a subset of 80% (repeated cross- 
validation) of the available data in each iteration to quantify the pre-
diction uncertainty. This provided a better representation of prediction 
quality as compared to doing the split one time only. Mean predictions 

Fig. 1. Satellite image of the study area and its surrounds overlayed with a map 
of apparent electrical conductivity (ECa 3.0 m) and soil sampling points (n 
= 70). 

E.J. Jones et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 192 (2022) 106632

4

for each property at each depth were used for further analysis. 

2.4. Depth to constraint analysis 

Three soil constraints representing alkaline, saline and sodic soil 
conditions were utilised for depth to constraint analysis. Critical values 
were selected heuristically based on their negative effects on cotton 
yield. The critical values utilised were pH(1:5 CaCl2) of 8, ECe of 10 dS 
m− 1, and ESP of 10%, which individually represent moderate to severe 
constraints to cotton production (McKenzie, 1998; Chinnusamy & Zhu, 
2005). 

For each property, the modelled value of a map layer was assigned to 
the mid-depth represented by that layer (i.e. 15, 45, 80 or 120 cm) and 
values for intermediate depths were obtained by interpolating between 
the mid-depths at 1 cm increments. The depth at which a critical value 
was first reached was identified from the interpolated data and recorded 
(Fig. 2). If the critical value was reached in the topsoil layer, a depth to 
constraint of 15 cm was recorded which is the mid-depth of the 0–30 cm 
layer. If the critical value was not reached at any depth a value of 141 cm 
was recorded. The subscript “crit” has been used to denote the depth at 
which the critical value was first reached, e.g. ESPcrit = 50 indicates that 
the modelled ESP first exceeded 10% at 50 cm depth. 

2.5. Terrain infrastructure variables 

Two additional terrain infrastructure variables were developed that 
describe the influence of irrigation flow and hydrology on observed 
cotton yield (Fig. 2). A distance down furrow metric was calculated as 

the distance in metres from the head ditch that supplied irrigation water. 
The distance down furrow can affect the run-on and run-off rate of 
irrigation water, with resulting implications for infiltration. The pres-
ence of closed depressions within each field was also investigated, and 
the depth to which standing water would pool was calculated. Closed 
depressions represent local areas of low relief, as opposed to the uniform 
gradient expected in a field landformed for furrow irrigation. Closed 
depressions may form due to settling of soil in areas of fill and also 
pedoturbation of the shrink-swell soils resulting in the natural refor-
mation of gilgai features (Edelman & Brinkman, 1962). In agronomic 
terms, closed depressions represent areas where water may pond 
following irrigation events, which may lead to root suffocation and 
reduced crop yield. The cut and fill map, as described in the Environ-
mental covariates section, was also included as a terrain infrastructure 
variable. While areas of deep cuts are often associated with exposing 
saline and sodic conditions at the soil surface, these variables are already 
represented in the depth to constraint analysis. The inclusion of cut and 
fill maps in the yield analysis acts as a surrogate for loss of organic 
matter, soil structure decline, reduced soil depth, and other implications 
incurred from the soil disturbance that may affect soil hydrology or 
furrow and seedbed preparation. 

2.6. Crop yield modelling 

Cotton lint yield monitor data for the 2016/17 season for the eight 
fields was cleaned using Yield Editor software (version 2.0; Sudduth 
et al., 2012) and interpolated using block-kriging to the existing 20 m 
grid. As the yield monitor data was derived from six individual pickers, 

Fig. 2. Predictor variables used in the yield modelling representing three terrain infrastructure variables (closed depressions, distance down furrow, and cut and fill) 
and three depth to constraint variables (pHcrit, ECe crit and ESPcrit). 

E.J. Jones et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 192 (2022) 106632

5

the observations were harmonised so that the average monitor observed 
yield for each field was within 5% of the field averaged observed ginned 
yield by applying a constant factor to the data from each of the indi-
vidual pickers across all fields. This yield data was then joined with the 
co-located soil and terrain variables to form a single dataset. An XGBoost 
model was then used to create predictive models of crop yield using the 
‘xgboost’ package (Chen et al., 2020). XGBoost models are an imple-
mentation of gradient boosted decision trees. Rather than creating one 
model across all fields, individual models were created on a per field 
basis. The reasoning for this was that the aim of the modelling was to 
understand the primary spatial drivers of historical yield locally and 
thus information from outside of fields would provide minimal value. In 
addition, each field had differences in management, notably differential 
allocation of irrigation resources and sowing date, which impacted 
observed yield and reduced correlations between yield and the cova-
riates used for modelling when assessing the whole study area simul-
taneously (Table 1). 

The ability of the XGBoost models to predict yield was assessed using 
10-fold cross-validation for each field. This approach involved randomly 
splitting the data for a field into ten equally sized groups, building a 
model with nine groups, applying that model to predict yield for the left- 
out group, and then repeating this sequence each of the ten groups. Lin’s 
concordance correlation coefficient (LCCC) (Lin, 1989), the coefficient 
of determination (R2) and the root-mean-square error (RMSE) were 
calculated using the observed and predicted data from the 10-fold cross- 
validation process. All three metrics are useful to assess the prediction 
quality of the models: the LCCC is a measure of the agreement between 
observed and predicted values in relation to the 1:1 line; R2 is a measure 
of the strength of the linear association between observed and predicted 
values, but does not indicate if predictions fall on the 1:1 line; and the 
RMSE is a measure of the differences between the observed and pre-
dicted values. The use of R2 for model validation has been debated, 
nonetheless, it has been included to facilitate comparison to previous 
studies, which have frequently utilised the metric. 

2.7. Interpretive machine learning (IML) 

After the yield models were created for each field, IML techniques 
were then used to identify the driving factors of yield variability for each 
observation point. More specifically, SHapley Additive exPlanations 
(SHAP) values were calculated using the ‘SHAPforxgboost’ package (Liu 
& Just, 2020) on a per field basis. SHAP values provide local model 
explanation and the contribution of each predictor variable for each data 
point. It is an advanced method of interpreting results from machine 
learning models and presents variable importance based on the marginal 
contribution to the model outcome. SHAP values are calculated for each 
observation in the training dataset, the sum of SHAP values provides the 
deviation of the modelled output at each observation point from the 
field average. For the model parameters, the maximum number of 
boosting iterations was set to be 500, and the learning rate (‘eta’) was set 
at 0.01. A low learning rate, such as the one selected, prevents over-
fitting and creates a more robust model (Liu & Just, 2020). The variable 
that contributed most to decreasing yield (lowest SHAP value) at each 
location was identified and then mapped across the study area to visu-
alise the distribution of each yield constraint. In addition, the SHAP 

value of each individual predictor variable was mapped for a case study 
field to visualise the contribution of each variable to the observed yield. 

3. Results and discussion 

3.1. Yield model quality 

The XGBoost models described the observed variation in cotton yield 
well with 10-fold cross-validation producing an RMSE of 0.78b ha− 1, 
0.90 LCCC and 0.83 R2 when all fields in the study area were compiled 
(Fig. 3a). When considering individual fields, the distribution of RMSE 
values ranged from 0.65 to 0.90b ha− 1, LCCC values ranged from 0.50 to 
0.74, and R2 values ranged from 0.44 to 0.63 (Fig. 4). An RMSE of 0.83b 
ha− 1, 0.68 LCCC and 0.59 R2 were observed for the case study field 
(Fig. 3b). These validation statistics demonstrated that a machine 
learning approach could effectively describe the observed spatial cotton 
yield variability using the selected suite of terrain infrastructure and 
depth to constraint input variables. The validation statistics were com-
parable to Corwin et al. (2003) who found that ~60% of observed cotton 
yield variability could be accounted for when using soil properties from 
59 sites selected based on an ECa map in a 32.4 ha field in central Cal-
ifornia. This comparison is notable as Corwin et al. (2003) used point- 
based soil observations as input variables for their model, while DSM 
products were used for this study. The benefits of DSM are evident as the 
utilisation of DSM in this study produced a yield model with a similar 
level of accuracy from a sampling density of ~4 samples 100 ha− 1 

compared to ~182 samples 100 ha− 1 utilised by Corwin et al. (2003). 
Although this is inherent on the provision of high-quality soil data from 
on-farm sampling, similar levels of accuracy are not expected when 
using national-scale DSM products. 

3.2. SHAP summary plots 

The SHAP summary plots efficiently conveyed the feature impor-
tance, feature value and feature effects (Fig. 5). Features are ranked in 
descending importance based on mean absolute SHAP value. When 
considering the entire study area, the distance down furrow had the 
highest mean feature importance, followed by pHcrit, cut and fill, ESPcrit, 
closed depressions, and then ECe crit (Fig. 5a). Each point on the SHAP 
plot represents a data point in the model. In this case, a data point is a 20 
m point on the standard grid. The SHAP values on these plots are in bales 
per hectare, making it easy to interpret and understand the magnitude of 
the impact of each variable on yield. A benefit of SHAP plots is the 
richness of information conveyed, and that representation of the strong 
drivers at discrete locations is conserved. For example, closed de-
pressions were not ranked highly in terms of feature importance as it did 
not affect the majority of the field, but deep closed depressions produced 
the greatest modelled decrease in yield for a set of affected points. 
Global feature importance plots do not have the capability to represent 
such phenomena. This could result in overlooking the effect of some 
variables, as their mean feature importance is low, however, they are 
actually strong drivers of yield for a subset of the dataset. The SHAP plot 
for the case study field (Fig. 5b) demonstrated that the predictor vari-
ables and their values have a similar impact on driving yield variability 
as the whole study area. 

Table 1 
Spearman’s rank order correlation (ρ) between covariates used in crop yield modelling and cotton lint yield for the entire study area.  

Closed depressions − 0.09      
Distance down furrow − 0.04 − 0.04     
Cut and fill − 0.03 0.05 − 0.23    
pHcrit 0.02 0.09 0.01 0.05   
ECe crit 0.07 0.04 − 0.04 0.25 0.23  
ESPcrit 0.17 0.06 − 0.04 0.18 0.75 0.28  

Yield Closed depressions Distance down furrow Cut and fill pHcrit ECe crit  
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3.3. Mapping the feature most limiting yield 

To visualise the spatial distribution of yield constraints, the feature 
with the greatest negative effect for each data point was identified and 
mapped across the entire study area (Fig. 6). Visual assessment revealed 
distinct spatial patterns for each feature and demonstrated that no 
particular variable was dominant across the whole study area. The 
relative area where each feature had the dominant negative yield effect 
was quantified for the entire study area and the case study field 
(Table 2). Distance down furrow was the most frequent feature, repre-
senting 26% of the entire study area. Distance down furrow presented as 
wide bands at the mid-length of most fields. Cut and fill was the second 
most frequent feature, representing 24% of the study area. Areas where 
cut and fill was the most limiting feature presented as large, spatially 
coherent regions and it occupied more than 50% of the area for one field. 
Closed depressions represented 12% of the study area, with morphology 
characterised by clusters of small and distinct patches. ESPcrit and pHcrit 
represented 15% and 17% of the study area respectively, with 
morphology characterised by medium to large sized patches. ECe crit was 
the least frequent at 6%, with a low number of small patches present in 
some fields. Overall, the map demonstrated that drivers of yield were 
highly spatially variable within fields and that there is a changing 
importance of these influences on yield. 

3.4. Mapping feature effect on yield 

It is important to assess into the magnitude of the modelled yield 
decrease imparted by each feature and whether this effect is logical. This 
can help inform decisions on managing the factors controlling yield and 
identify areas where remedial activities may be warranted. This analysis 
has been performed on the case study field to showcase what would be 
done realistically in the industry to understand causes of yield vari-
ability. Fig. 7 shows the maps of the predictor variables used in the 
modelling process for the case study field, and the SHAP value maps 
showing how each variable impacts on the yield prediction for that field 
in bales per hectare (b ha− 1) relative to the field average. The SHAP 
value maps are limited to − 1.5 (red areas) and +1.5 (blue areas) to 
improve the interpretation of the magnitude to which each variable is 
limiting yield. These maps allow the causes of spatial yield variation to 
be better understood, and help to identify the magnitude that each 
variable negatively influences yield at different locations within fields in 
units that are directly interpretable. 

Small pockets of the field were highly negatively impacted by closed 
depressions (Fig. 7a). The corresponding map of closed depression depth 
corroborates that yield affected areas occur where deeper closed de-
pressions were observed, whereas the majority of the field is largely 
unaffected by closed depressions. The map of SHAP value for distance to 
head ditch displayed a number of distinct banded features. Modelled 
yields were positively, or negligibly, affected in areas close to the head 

Fig. 3. Density plot of observed and predicted values for all fields, within: a) the whole study area; and b) the case study field. Predicted values for the whole study 
area represent a composite of predictions derived from individual models fitted separately to each field. Yield values have been anonymised at the request of the 
farm manager. 

Fig 4. Boxplot showing distribution of 10-fold cross-validated RMSE, LCCC and R2 of each field within the study area.  

E.J. Jones et al.                                                                                                                                                                                                                                 



Computers and Electronics in Agriculture 192 (2022) 106632

7

ditch and tail drain. These patterns are logical as these areas both have a 
high run-on and run-off rate that facilitates the provision of adequate 
soil moisture to the plant, followed by adequate drainage to prevent 
waterlogging. Two bands in the middle of the field displayed negative 
yield effects; this may be due to imperfect edge matching during land-
forming, although further investigation is required to definitively 
identify the causal factor. It is clear that there are interactions with other 
predictor variables, and this impacts the relative contribution for the 

distance to head ditch variable. The impact of the cut and fill terrain 
infrastructure variable on yield was complex to interpret. Areas of deep 
cuts were clearly associated with a negative yield effect, as well as areas 
of deep fill, most notably in the eastern corner of the field. Meanwhile, 
areas that were minimally disturbed during landforming and areas of 
shallow fill produced positive yield effects. 

The SHAP value map of ESPcrit revealed that it was a strong driver of 
yield in the case study field. Two large areas in the south and northeast 
edge of the field were negatively impacted by ESPcrit, which corre-
sponded to an ESP constraint being reached either in the topsoil layer or 
at a shallow depth in the soil profile. In contrast, a large area in the 
northwest of the field was positively impacted, which corresponded to 
ESPcrit being reached deeper in the soil profile. The pHcrit variable did not 
have a large impact on yield, however, when a pHcrit was reached deeper 
in the profile there was a small positive impact on yield, and when pHcrit 
was observed in the topsoil, there was a small negative impact on yield. 
This impact of depth to pH and ESP constraints on crop yield has also 
been found in other studies (Filippi et al., 2019b; Filippi et al., 2020). 
The subdued impact of the pHcrit variable on yield could be due its 
correlation with ESPcrit (Table 1), as the ESP map could be masking the 

Fig. 5. SHAP summary plots from the XGBoost yield model for: a) the whole study area; and b) the case study field. The position on the x-axis is determined by the 
SHAP value, which represents the feature effect on yield at the discrete location. The colour indicates the feature value from low to high. Position on the y-axis is 
ordered by decreasing mean absolute SHAP value for each feature. 

Fig. 6. The feature with the greatest negative yield effect for the whole study 
area. The boundary of the case study field is highlighted in red. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Table 2 
Variables most negatively contributing to yield and the proportion area that they 
cover for the whole study area and the case study field.  

Variable Study area Case study field 

Closed depressions 12% 11% 
Distance down furrow 26% 35% 
Cut and fill 24% 19% 
pHcrit 17% 11% 
ECe crit 5% 10% 
ESPcrit 15% 14%  
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importance of the pH map. Alternatively, the reduced range of pHcrit 
(15–48 cm) may limit the identification of yield effects. The analysis 
found minimal impact of ECe crit on yield. This may be due to critical ECe 
values only being reached for a small subset of the field, and when this 
did occur it was deeper in the subsoil, i.e. the shallowest ECe crit was 
observed at 68 cm compared to ESPcrit which was observed in the topsoil 
layer. 

3.5. General discussion 

The impact of spatial factors such as soil and terrain have a large 
impact on yield variability, but the interaction between all of these 
variables makes it difficult to pinpoint the primary constraint, as well as 
the magnitude of the impact on yield. This study demonstrated that 
creating empirical models of crop yield with important spatial drivers, 
and combining this with IML is a promising avenue to fill this gap in the 
agricultural sector. 

The IML approach used in this investigation extracted information 
from the XGBoost machine learning yield model that provided insight 
into the variables most limiting yield, which may prove useful for on- 
farm decision-making processes. Using the maps constructed, growers 
and agronomists can quantify the yield cost of constraints, and calculate 
the cost-benefit of an amelioration strategy. Additionally, they can 
identify areas of high chance of success to trial amelioration strategies 
before implementing a full strategy. In the event that a remediation 
procedure is not implemented, understanding of the limitation can still 
facilitate more efficient use of agricultural inputs, for example, reducing 
fertiliser applications in constrained areas to match the lower yield 
potential. 

Salinity was not observed to be a significant yield limitation across 
the study area, however, sodicity and alkalinity relatively shallow in the 
soil profile were widespread. Sodicity and alkalinity are a particularly 
common in the irrigated cropping soils of northern New South Wales 
and southern Queensland (Orton et al., 2018; Filippi et al., 2020). When 
considering remediation approaches, soil is expected to gradually 
acidify under agricultural production (Moody & Aitken, 1997), and this 

yield limitation will gradually decrease the alkalinity constraint over 
time without further intervention (Filippi et al., 2018). In contrast, 
sodicity will not improve and is likely to gradually worsen without 
intervention. High sodicity can be addressed through the application of 
gypsum (Roberton et al., 2020). The areas identified in this analysis 
where a shallow ESPcrit was associated with a negative SHAP value 
represent an ideal location where application of gypsum could be tri-
alled and monitored for improvements in crop production to better 
understand the cost-benefit of the amelioration strategy. 

The terrain infrastructure variables were useful to include in the 
study as they accounted for a large degree of the observed yield vari-
ability. The presence of closed depressions was revealed to have a large 
negative effect on yield, however, this effect was shown to only occur in 
small discrete patches. High-resolution elevation data is routinely 
captured during on-farm operations. This data could be used to monitor 
the evolution of closed depressions and their effect on yield through time 
to determine when the cost-benefit threshold of landforming to remove 
the closed depressions makes economic sense. Distance down furrow 
and cut and fill are difficult to translate into direct management de-
cisions for the existing study area. However, they may provide useful 
information for future developments. Negative yield effects were 
observed for deep cut and deep fill areas indicating that these should be 
avoided when landforming future sites. Additionally, areas of shallow 
ECe crit were correlated with deep cut areas, indicating that the land-
forming event may have brought these areas closer to the soil surface, 
further demonstrating that this should be avoided. Distance down 
furrow was found to positively affect cotton yield close to the head ditch 
and tail drain, and negatively affect yield in the middle of the field. 
Distance down furrow impacts soil moisture, and drainage, and it is 
likely that the importance of this on yield would fluctuate seasonally 
depending on precipitation events and irrigation management. This 
relationship could be investigated further to optimise irrigation devel-
opment or investigate the benefits of site-specific variety and seeding 
rates to efficiently utilise these different moisture environments (Mat-
cham et al., 2020). 

Feature extraction and the transformation of datasets into 

Fig. 7. Maps of predictor variables used for yield modelling of the case study field and corresponding maps of SHAP values, which represent the modelled impact of 
that variable on yield in b ha− 1. 
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agronomically interpretable variables is an important step in pinpoint-
ing the driving factors of yield variability in this study. For machine 
learning yield models and IML to be applied effectively, it is vital that 
the variables used in the yield model can be directly related to yield, and 
translated into management decisions. This study achieved this by tak-
ing proximally and remotely sensed spatial data, and combining them 
with point-based soil observations to create digital soil maps. The 
approach used in this study could be further improved and modified for 
other agricultural environments. The current study only looked at one 
season of yield data, but the impact of spatial variables on yield may also 
shift from season to season. This is due to interactions with temporal 
variables, most-notably the interaction between landscape position and 
precipitation (Kravchenko & Bullock, 2000; Kaspar et al., 2004). These 
interactions would be particularly import in rain-fed cropping systems 
that are not landformed. The approach implemented in this study could 
be expanded and up-scaled across years by including further informa-
tion on management (e.g. crop variety, sowing date, irrigation), abiotic 
variables (e.g. precipitation, temperature, cloud-cover), and biotic 
pressures (e.g. weed competition, presence of disease and animal pests). 

4. Conclusion 

This study modelled cotton lint yield using machine learning, yield 
monitor datasets, digital soil maps of important constraints (pH, ESP, 
ECe), and terrain infrastructure attributes for furrow-irrigated fields. The 
models could describe yield variability within the fields well, with a 
median LCCC of 0.67. SHAP values were used to identify the primary 
spatial drivers of yield and proved useful for quantifying the magnitude 
of impact on yield imparted by each variable. Visualising these SHAP 
values as maps showing the negative impact of constraints on yield in 
bales per hectare (b ha− 1), improved the interpretation of the results. 
Overall, the approach implemented in this study provided a quantitative 
and robust method for growers and agronomists to implement man-
agement strategies to manage and overcome the primary limitations of 
yield. It also allows the further quantification of the economic cost of 
yield losses, and the economic benefit of amelioration. This work may be 
developed further by including multiple seasons of yield observation, 
and incorporating both spatial and temporal variables during yield 
modelling. 

CRediT authorship contribution statement 

Edward J. Jones: Conceptualization, Data curation, Formal anal-
ysis, Funding acquisition, Investigation, Methodology, Visualization, 
Writing – original draft, Writing – review & editing. Thomas F.A. 
Bishop: Conceptualization, Supervision, Writing – review & editing. 
Brendan P. Malone: Conceptualization, Formal analysis, Methodology, 
Writing – review & editing. Patrick J. Hulme: Conceptualization, Data 
curation, Funding acquisition, Investigation, Writing – review & editing. 
Brett M. Whelan: Methodology, Supervision, Writing – review & edit-
ing. Patrick Filippi: Conceptualization, Formal analysis, Methodology, 
Visualization, Writing – original draft, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 
The project was undertaken with financial support, encouragement, 
and assistance from Cubbie Agriculture. The research undertaken as 
part of this project was made possible with the support of the GRDC, 
the authors would like to thank them for their continued support. 

References 
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