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A B S T R A C T   

Fine spatial resolution (i.e., ≤ 100 m) land surface temperature (LST) data are crucial to study heterogeneous 
landscapes (e.g., agricultural and urban). Some well-known spatiotemporal fusion methods like the Spatial and 
Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM), which were 
originally developed to fuse surface reflectance data, may not be suitable for direct application in LST studies due 
to the high sub-diurnal dynamics of LST. Furthermore, the effectiveness of spatiotemporal fusion methods for LST 
data has not been thoroughly evaluated in previous studies that only focused on relatively small spatiotemporal 
extents. To address these limitations, we proposed a variant of ESTARFM, referred to as the unbiased ESTARFM 
(ubESTARFM), specifically designed to accommodate the high temporal dynamics of LST to generate fine- 
resolution LST estimates. We evaluated ubESTARFM and ESTARFM against in-situ LST and the ECOsystem 
Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) LST across 12 regions throughout 
Australia, encompassing various land covers and environments. Independent validation showed that ubES
TARFM had a bias of 2.55 K, unbiased root mean squared error (ubRMSE) of 2.57 K, and Pearson correlation 
coefficient (R) of 0.95 against the in-situ LST over 11,290 observations at the 12 sites, all of which were 
considerably better than those calculated for ESTARFM, being a bias of 4.73 K, ubRMSE of 3.80 K and R of 0.92. 
When compared to ECOSTRESS data, ubESTARFM LST had a bias of − 1.69 K, ubRMSE of 2.00 K, and R of 0.70 
over 43 near clear-sky scenes, while ESTARFM LST had a bias of 1.79 K, ubRMSE of 2.68 K, and R of 0.59. 
Overall, our results demonstrated that ubESTARFM can avoid systematic bias accumulation, substantially reduce 
uncertainty deviation, and maintain a good level of correlation with validation datasets when compared to 
ESTARFM. A further assessment underscored the potential of ubESTARFM for application using LST data ac
quired from geostationary platforms (e.g., Himawari-8), with a mean ubRMSE (R) of 2.22 K (0.97) against in-situ 
LST over 1327 observations at 3 sites from southeast Australia at the overpass time of MODIS/Terra. This 
promising method leverages reliable numeric values from coarse-resolution LST while borrowing spatial het
erogeneity from fine-resolution LST and has the potential to be coupled with energy balance and/or radiative 
transfer models thus enabling better farm and/or regional-scale water management strategies to be implemented. 
Furthermore, both the input and generated LST data, encompassing a comprehensive spatial extent over diverse 
land covers and climatic conditions, are publicly available for benchmarking future algorithmic refinements.   

1. Introduction 

Land surface temperature (LST) is an important geophysical variable, 
playing a key role in land-atmosphere exchanges and the surface radi
ation budget (Li et al., 2013). Knowledge of the spatiotemporal varia
tions of LST provides information on the dynamics of the surface energy 
balance, which is fundamentally important in fields such as meteorology 

and hydrology (Kerr et al., 2004; Li et al., 2013). As such, LST has a wide 
usage including drought monitoring (Hu et al., 2020; Zhang et al., 
2017), retrieval of soil moisture and soil carbon (Abowarda et al., 2021; 
Long et al., 2019; Yu et al., 2021), estimation of evapotranspiration (ET) 
(Kalma et al., 2008; Long and Singh, 2013; Semmens et al., 2016), and 
serving as an indicator of climate change (Eleftheriou et al., 2018). 
Recently, there have been growing interests in fine spatial resolution (≤
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100 m) LST due to its utility in agricultural applications (e.g., irrigation 
management and crop water stress assessment) and urban heat island 
studies, as the LST pixel size should be consistent with the spatial het
erogeneity of individual fields in these studies (Anderson et al., 2008; 
Anderson et al., 2021; Ekinzog et al., 2022; Liu and Zhang, 2011; Yuan 
and Bauer, 2007). 

However, the application potential of LST data is usually constrained 
due to a trade-off between the spatial and temporal resolutions of 
remotely sensed data, where a satellite sensor that can provide a fine 
spatial resolution usually has relatively poor temporal resolution, and 
vice versa (Emelyanova et al., 2013; Xia et al., 2019; Zhan et al., 2016). 
For example, the MODerate Resolution Imaging Spectroradiometer 
(MODIS) provides 1 km resolution LST data 4 times per day at 
maximum, whereas the Landsat 8 acquires 100 m resolution LST data 
but with a 16-day revisit time. Consequently, to overcome this dilemma, 
several fusion approaches to enhance both spatial and temporal reso
lutions of LST time series have been proposed (Chen et al., 2023; Gao 
et al., 2006; Wang and Atkinson, 2018; Zhu et al., 2010). 

The spatiotemporal fusion approaches aim to predict fine-resolution 
data by integrating both time series and neighbourhood information 
from at least two satellite sensors. They produce synthesised data with 
both high spatial resolution and temporal frequency from low-frequency 
fine-resolution imagery (e.g., Landsat, Sentinel-2) and coarse-resolution 
high-frequency imagery (e.g., MODIS, Sentinel-3) (Zhu et al., 2016). 
One of the earliest and most extensively used approaches is the Spatial 
and Temporal Adaptive Reflectance Fusion Model (STARFM) developed 
by Gao et al. (2006), which was originally implemented using surface 
reflectance from both Landsat and MODIS. The method assumes that 
temporal changes of reflectance within a coarse pixel are regarded as 
consistent. However, this assumption may be invalid across heteroge
neous landscapes where coarse pixels have mixed land covers. Zhu et al. 
(2010) proposed a successor to STARFM, the Enhanced Spatial and 
Temporal Adaptive Reflectance Fusion Model (ESTARFM), which uses a 
linear spectral mixing model to better account for landscape heteroge
neity. ESTARFM shows an advancement across heterogenous regions by 
considering geographic distance, spectral similarity and temporal cor
relation between coarse- and fine-resolution pixels (Emelyanova et al., 
2013; Zhu et al., 2010). Both STARFM and ESTARFM can be described as 
weighting-based methods (Xia et al., 2019), which integrate the infor
mation from all inputs through weight functions. Other weighting-based 
fusion methods include the Flexible Spatiotemporal DAta Fusion 
(FSDAF) (Zhu et al., 2016), Spatial Temporal Adaptive Algorithm for 
mapping Reflectance CHange (STAARCH) (Hilker et al., 2009) and the 
Spatiotemporal Adaptive Data Fusion Algorithm for Temperature map
ping (SADFAT) (Weng et al., 2014). The common feature of these fusion 
methods is the use of spatial relationship derived from fine- and coarse- 
resolution image pairs acquired at two times, to predict the fine- 
resolution image at a specific moment when only a coarse image is 
present. 

There have been many studies that successfully applied these fusion 
methods to generate fine spatiotemporal resolution reflectance data (e. 
g., Emelyanova et al., 2013; Gevaert and García-Haro, 2015; Huang 
et al., 2013; Roy et al., 2008; Shen et al., 2016; Zhang et al., 2013). 
However, applications of these methods to generate fine-resolution LST 
data are relatively less explored (e.g., Long et al., 2020; Ma et al., 2022; 
Quan et al., 2018; Shi et al., 2022; Xia et al., 2019) and have three po
tential limitations. Firstly, the accuracy of LST retrieval algorithms is 
reliant on the precise determination of emissivity. This dependence on 
emissivity may lead to an exacerbation of landscape heterogeneity due 
to varying approaches for assigning emissivity values, resulting in a lack 
of comparability between LST data obtained from different sensors. 
Secondly, thermal properties are dynamic, so small differences (e.g., 60 
min) in the overpass time of different satellites may lead to important 
differences in LST. Thirdly, and finally, the spatiotemporal fusion ap
proaches cannot eliminate the systematic differences between sensors 
(Long et al., 2020). Hence, when fusing LST data from multiple sensors, 

it is crucial to account for the comparability of the data, and to account 
for changes in the spatial and temporal patterns of LST distribution 
across the landscape that arise from variations in the rate of heating and 
cooling at different locations. 

There are also some aspects in the experimental design of spatio
temporal fusion of LST data that can be improved. Table 1 summarises 
the details of recent studies that utilised STARFM, ESTARFM or FSDAF 
to generate LST data. A common limitation is that most studies were 
conducted with a limited spatial and temporal coverage, usually only a 
few thousand of km2 over several months. Most LST-specific spatio
temporal fusion studies focused on built-up areas and bare soils (e.g., Li 
et al., 2021b; Liu et al., 2016; Shi et al., 2022; Xia et al., 2019) while few 
examined forested areas (e.g., Long et al., 2020; Zhu et al., 2021), hence 
most conclusions and implications may only be applicable to specific 
conditions. Nonetheless, Long et al. (2020) conducted the study within 
three 80 km × 80 km regions with some contrasting land covers and 
their objective was to downscale land surface modelled LST to the 
MODIS LST resolution (i.e., 1 km). Therefore, expanding the study re
gions and testing the algorithms over various landscapes and ecosystems 
could provide the opportunity for more comprehensive insights into the 
spatiotemporal LST fusion research. Furthermore, the usefulness of 
those spatiotemporal fusion approaches have not been fully evaluated 
previously as they were only compared to the original coarse-resolution 
data and in-situ data. Doing this does not provide fully independent 
verifications of the spatial details of the fused results, which, however, 
may have important impacts on further applications using LST data as 
input. 

The objectives of this study are to: (1) modify the well-known 
ESTARFM algorithm to better accommodate spatiotemporal dynamics 
to generate LST data; (2) generate daily 100 m resolution LST data using 
both ESTARFM and the modified algorithm over 12 regions with various 
climates and landscapes at a continental scale of Australia between 2013 
and 2021; (3) evaluate the generated LST against in-situ LST time series; 
and (4) validate the spatial patterns of generated LST with independent 
remotely sensed LST data. 

2. Data and study area 

The remotely sensed data and ground measurements used herein are 
itemised in Table 2. Landsat and MODIS LST data are used as inputs for 
the spatiotemporal fusion approach to generate fine-resolution LST, 
while ground longwave radiation and ECOSTRESS LST are respectively 
used for evaluation of the generated LST. 

2.1. Remotely sensed data 

2.1.1. MODIS LST 
The MODIS sensor is onboard the Earth Observing System (EOS) 

Terra and Aqua satellites, launched in 1999 and 2002, respectively 
(Justice et al., 1998). They are in a sun-synchronous orbit with near- 
polar nominal descending node at ~10:30 local solar time (Terra) or 
ascending node at ~13:30 local solar time (Aqua). We collected time 
series of MOD11A1 data (Collection 6) over 01/Jan/2013–31/Dec/ 
2021, which has a 1 km spatial resolution and daily temporal frequency, 
with overpass times at approximately 10:30 and 22:30 local solar time. 
LST retrievals are obtained using a generalised split-window algorithm 
with an accuracy around 2.0 K (Wan, 2014). MODIS data were down
loaded from the National Aeronautics and Space Administration (NASA) 
Earthdata Search platform (https://search.earthdata.nasa.gov/search). 

2.1.2. Landsat 8 LST 
The Landsat 8 satellite, launched in 2013, carries the Operational 

Land Imager (OLI) and the Thermal Infrared Sensor (TIRS) instruments, 
and is in a sun-synchronous orbit. These instruments collect data along a 
185-km swath with a 16-day revisit cycle and an equatorial crossing 
time of ~10:50 local solar time. The OLI measures in visible, near 
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infrared, and shortwave infrared bands with the spatial resolution of 30 
m, while TIRS measures in two thermal infrared bands with the spatial 
resolution of 100 m. We collated the Landsat 8 level 1 data over 01/Jan/ 
2013–31/Dec/2021. The Landsat 8 collection for Australia and its cloud 
masks are publicly available from the Digital Earth Australia (DEA; htt 
ps://dea.ga.gov.au/). A split-window algorithm developed by 
Jiménez-Muñoz et al. (2014) was implemented to retrieve LST, with 
mean errors reported to be typically below 1.5 K. We utilised a Python 
package 'pylandtemp' developed by Mudele (2021) to conduct the LST 
retrieval. 

However, previous studies reported the presence of stray light arti
facts in Landsat 8 TIRS data, including banding patterns and absolute 
calibration discrepancies, which violate specified requirements in 
certain scenes (Montanaro et al., 2014; Reuter et al., 2015). These 

artifacts are caused by out-of-field radiance that scatters onto the de
tectors, introducing a non-uniform signal across the field-of-view. Spe
cifically, the effect is more pronounced in Band 11 compared to Band 10, 
with the magnitude typically being double in Band 11 (Barsi et al., 2014; 
Montanaro et al., 2014). To mitigate this issue, Montanaro et al. (2015) 
proposed an algorithm that employs near-coincident thermal data to 
establish per-detector functional relationships between incident out-of- 
field radiance and the additional stray light signal recorded by the 
TIRS detectors. However, further investigation is still required to assess 
the adequacy of this correction approach for operational usage 
(Cristóbal et al., 2018). 

2.1.3. ECOSTRESS LST 
The ECOsystem Spaceborne Thermal Radiometer Experiment on 

Table 1 
An overview of recent studies (i.e., since 2016) that used STARFM, ESTARFM, or FSDAF to generate LST. Studies are ordered alphabetically by the first author. Our 
study is added for completeness. The following abbreviations are used: ASTER: Advanced Spaceborne Thermal Emission and Reflection Radiometer; CLDAS: China 
Meteorological Administration Land Data Assimilation System; CLM 5.0: Community Land Model Version 5.0; HUTS: High-resolution Urban Thermal Sharpener.  

Reference Algorithm(s) Study regions / 
validation area (km2) 

Landscape specifics Input data Study period Key results for LST accuracy 

Abowarda 
et al. 
(2021) 

ESTARFM and HUTS Haihe basin in north 
China / 9 * 

Cropland, wetland, 
forestland and built- 
up areas 

CLDAS, 
MODIS, 
Landsat 7 and 
Landsat 8 

Mar 2015 - Oct 
2017 

30 m LST has R above 0.90, and bias, 
MAE, and RMSE all around 1 K. 

Li et al. 
(2021b) 

STARFM, ESTARFM and 
FSDAF 

Zhangye, Gansu 
Province, China / ~ 
1000 

Farmland and Gobi MODIS and 
Landsat 8 

Apr 2013 - Nov 
2016 

ESTARFM yields better RMSE and R2 

(3.66 K and 0.92, respectively) than 
STARFM and FSDAF. 

Liu et al. 
(2016) 

STARFM Beijing, China / ~ 
7000 

Built-up areas MODIS and 
Landsat 8 

May - Nov 2013 Landsat-like LST has RMSE above 1.36 K 
and R2 above 0.71. 

Liu and 
Weng 
(2018) 

STARFM Part of Los Angeles, 
California, USA / ~ 
8000 

Built-up areas, shrub, 
woodland and bare 
soils 

MODIS and 
ASTER 

Apr and Jul, 2007 LST differences were around 1 K from 15 
to 1000 m resolution. 

Long et al. 
(2020) 

ESTARFM with final bias 
correction step 

3 flux towers' 
surrounding areas in 
north China / 19,200 

Irrigated cropland, 
forestland and sandy 
soils 

CLDAS and 
MODIS 

Early 2015 - Late 
2017 

MODIS-like LST estimates have MAE of 
2.20–3.08 K, RMSE of 2.77–3.96 K, and 
R of 0.93–0.95. 

Ma et al. 
(2022) 

Filter-based 
spatiotemporal fusion 
model 

Wuhan and Heihe 
River Basin, China / 
1800 

Impervious surfaces, 
cropland, bare land, 
grassland and water 

CLM 5.0, 
MODIS and 
Landsat 7 

Feb 2016 - Apr 
2016 

Sub-hourly Landsat-like LST has R of 
0.96–0.99, MAE of 0.82–3.34 K, RMSE 
of 1.09–4.36 K. 

Shi et al. 
(2022) 

Modified FSDAF ** Beijing and Shenzhen, 
China / 3200 

Built-up areas MODIS and 
Landsat 5 

2000–2003, 2014 Proposed method yields better results 
than STARFM and FSDAF in assessments 
using spatial accuracy indices. 

Xia et al. 
(2019) 

Weighted framework 
based on STARFM and a 
kernel-driven method 

Beijing, China / ~ 
1600 

Built-up areas MODIS and 
Landsat 8 

Sep - Oct 2014, 
May - Sep 2017 

Proposed framework has an 
improvement of 0.1–0.6 K than the 
kernel-driven method while has no 
remarkable difference with STARFM in 
accuracy. 

Zhu et al. 
(2021) 

Framework based on 
FSDAF and machine 
learning 

Zhangye and Beijing, 
China / ~ 3200 

Cultivated land, 
deserts, bare land, 
built-up areas and 
forestland 

MODIS and 
Landsat 8 

Several months in 
2013, 2014 and 
2017 

Proposed framework yields better RMSE 
(0.85–2.29 K), relative RMSE 
(0.18–0.69 K) and R (all above 0.84) 
than three reference methods. 

Our study Modified ESTARFM with 
localised bias correction 

12 flux towers' 
surrounding areas 
across Australia / 
120,000 

Forestland, cropland, 
shrubland, pasture 
and various soils 

MODIS and 
Landsat 8 

Jan 2013 - Dec 
2021 

Proposed method yields better bias, 
ubRMSE and R (2.55 K, 2.57 K and 0.95, 
respectively) than ESTARFM (4.73 K, 
3.80 K and 0.92, respectively).   

* The area of Haihe basin is 318,200 km2 but they evaluated the spatial pattern of results using a 3 km × 3 km subset. 
** Modifications include considering mixed pixels, incorporating a new interpolation method, and using constrained least squares to combine spatiotemporal 

increments. 

Table 2 
Summary of data used herein. The spatial resolution of OzFlux measurements is not strictly a point, rather an aggregation of local area fluxes in the vicinity of the flux 
tower. This means the values of flux towers can be representative for a specific region, while how big the region is would depend on individual settings in the vicinity of 
each flux tower. The contribution from flux tower can range from meters to kilometres and can be considered comparable to remotely sensed data (Chu et al., 2021; 
Kljun et al., 2004).  

Categories Datasets Variable Spatial resolution Temporal frequency Period 

Remotely sensed data Landsat 8 LST 100 m 16-day 01/Jan/2013–31/Dec/2021 
MOD11A1 LST 1 km Daily 01/Jan/2013–31/Dec/2021 
ECOSTRESS LST 70 m 10-day 01/Jul/2018–31/Dec/2021 

Ground measurements OzFlux ground measurements Longwave radiation Point 30-min 01/Jan/2013–31/Dec/2021  
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Space Station (ECOSTRESS) mission is designed to measure plant tem
perature to explore how much water they need and how they respond to 
stress (Fisher et al., 2020). It was launched on 29/Jun/2018 by NASA 
and attached to the International Space Station (ISS). The satellite 
carries a TIR multispectral whiskbroom scanner with five bands between 
8 and 12.5 μm (Fisher et al., 2020). The instrument scans in a ~ 400 km 
swath and allows considerable coverage of a targeted region with mul
tiple revisits in a diurnal cycle. We collected the ECO2LSTE dataset 
(Version 1) over 01/Jul/2018–31/Dec/2021, which retrieves atmo
spherically corrected LST and emissivity using a physics-based Tem
perature/Emissivity Separation (TES) algorithm (Hook and Hulley, 
2019). The spatial resolution of these data is 70 m and needs to be co- 
processed with corresponding ECO1BGEO and ECO2CLD datasets that 
provide relevant geolocation information and cloud mask, respectively. 
The ECOSTRESS LST has a RMSE of ~1 K against ground-based mea
surements (Hulley et al., 2021). We acquired the ECO2LSTE, ECO1B
GEO and ECO2CLD datasets from the NASA Earthdata Search platform 
(https://search.earthdata.nasa.gov/search). 

2.2. Study area and ground measurements 

This study is conducted on twelve 1◦ × 1◦ tiles (i.e., each of the 12 
tiles is ~10,000 km2) located across the Australian continent. Within 
each tile a well-maintained flux tower site is located that forms part of 
the OzFlux network (Beringer et al., 2016). Fig. 1 shows the distribution 
of the flux sites across Australia and their land cover types (Lymburner 
et al., 2015) within a region of interest (ROI). Details of the 12 chosen 
flux sites are provided in Table 3. We divided the sites into 4 climate 
classification groups, including semi-arid, humid subtropical, oceanic 
and cool temperate. Furthermore, based on the land cover information, 
we also classified the Boyagin, Ridgefield and Yanco site as non- 
vegetated, and the other 9 sites as vegetated. 

We used the observed upwelling and downwelling longwave radia
tion (level 3) measured at each of the 12 sites, and by rearranging the 
standard longwave radiation balance equation (Allen et al., 1998) were 
able to estimate a 'ground-based' LST as: 

Ts =

(
F↑ − (1 − εb)F↓

σεb

)1/4

(1)  

Fig. 1. The distribution of 12 OzFlux sites within Australia. (a-l) show the locations of flux towers within the ROIs and their land cover backgrounds (Lymburner 
et al., 2015). The size of each ROI is 1◦ × 1◦. White areas in north-east of (g) Samford and south-east of (i) Warra are surrounding oceanic waters. Depending on the 
location of water features they can be dry salt-lake beds as common in central Australia. 

Table 3 
Summary information for each of the selected flux tower sites. The climate classification is based on a Köppen-Geiger climate classification (Beck et al., 2018), and 
information for both 'Climate classification' and 'Land cover' columns are obtained from https://ozflux.org.au/.  

Site name Latitude (◦N) Longitude (◦E) Landsat 8 path / row tile(s) Climate classification Land cover 

Boyagin − 32.477 116.939 112/082 Semi-arid Woodland and cropland 
Calperum − 34.003 140.588 096/084 Semi-arid Recovering woodland 
Cumberland Plain − 33.615 150.724 090/083 Humid subtropical Dry sclerophyll 
Gingin − 31.376 115.714 112/082 Oceanic Coastal health woodland 
Great Western Woodlands − 30.191 120.654 110/080, 110/081 Semi-arid Temperate woodland, shrubland and mallee 
Ridgefield − 32.506 116.967 112/082 Semi-arid Dryland agriculture 
Samford − 27.388 152.877 089/079 Humid subtropical Improved pasture 
Tumbarumba − 35.657 148.152 091/085 Oceanic Wet temperate sclerophyll eucalypt 
Warra − 43.095 146.655 090/090 Cool temperate Eucalyptus forest 
Whroo − 36.673 145.029 093/085 Cool temperate Box woodland 
Wombat State Forest − 37.422 144.094 093/086 Cool temperate Dry sclerophyll eucalypt forest 
Yanco − 34.989 146.291 092/084 Semi-arid Various soils and cropland  

Y. Yu et al.                                                                                                                                                                                                                                       

https://search.earthdata.nasa.gov/search
https://ozflux.org.au/


Remote Sensing of Environment 297 (2023) 113784

5

where Ts denotes LST (K), F↑ is the upwelling longwave radiation (W/ 
m2), F↓ is the downwelling longwave radiation (W/m2), εb is the surface 
broadband emissivity (unitless), and σ represents the Boltzmann con
stant (5.67 × 10− 8 W m− 2 K− 4). We accessed the broadband emissivity 
from the University of Wisconsin (UW) Baseline Fit Emissivity Database, 
a global database of land surface emissivity derived using MODIS 
operational land surface emissivity (Seemann et al., 2008). We calcu
lated the monthly emissivity by taking the average of the values from 
10.8- and 12.1-μm bands for each month, then used the monthly value of 
emissivity, along with the longwave radiation, to derive the ground- 
based LST every 30-min. 

3. Methodology 

3.1. ESTARFM 

The ESTARFM algorithm assumes that remotely sensed data from 
different sensors are acquired at a close time and so are comparable and 
correlated with each other after undergoing radiometric calibration and 
appropriate pre-processing (Zhu et al., 2010). It has been extensively 
used and demonstrated robustness in surface reflectance studies (Eme
lyanova et al., 2013), with only a few studies reporting its usage in LST 
research (Long et al., 2020; Yang et al., 2016). 

The ESTARFM algorithm begins with a search for the pixels with 
similar values within a moving window, where similarity is defined as: 
⃒
⃒
⃒F(xi, yi, t0) − F

(
xw/2, yw/2, t0

) ⃒
⃒
⃒ ≤ 2×

σ(P)
n

(2)  

where F
(
xi, yi, t0

)
is the ith pixel within the searching window of w × w 

pixels at time t0 from the fine-resolution imagery; F
(

xw/2, yw/2, t0
)

is the 

central pixel 
(

xw/2, yw/2

)
of the fine-resolution imagery within the same 

geographic area of the search window at time t0; σ(P) is the standard 
deviation of a given patch P; and n is the number of land cover classes. 

If a pixel satisfies Eq. (2), it will be classified as a spectrally similar 
homogeneous pixel with the central pixel within the window then be 
used to calculate weights and coefficients. The central pixel of the 
moving window at another time tp is predicted as: 

F
(

xw/2,yw/2,tp

)
=F

(
xw/2,yw/2,t0

)
+
∑N

i=1
Wi×Vi×

(
C
(
xi,yi,tp

)
− C(xi,yi,t0)

)

(3)  

where N is the number of similar pixels within the search window; Wi is 
the weight of the ith similar pixel; Vi is a regression coefficient between 
the chosen fine- and coarse-resolution pixels; C

(
xi, yi

)
is the pixel at the 

location 
(
xi, yi

)
of a coarse-resolution image. Wi is given as: 

Wi = (1/Di)

/
∑N

i=1
(1/Di) (4)  

Di = (1 − Ri)× di (5)  

di = 1+
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xw/2 − xi

)2
+
(

yw/2 − yi

)2
√ /

(w/2) (6)  

where Di is an index combining the spectral and spatial similarity; di is 
the distance between the ith pixel and the central pixel within the 
window; Ri is the spectral correlation coefficient between fine- and 
coarse-resolution pixels for the ith similar pixel. 

The final prediction is obtained by a weighted combination of the 
two individual predictions: 

F
(

xw/2, yw/2, tp

)
= Tm ×Fm

(
xw/2, yw/2, tp

)
+Tn ×Fn

(
xw/2, yw/2, tp

)
(7)  

Tk =
1
/⃒
⃒
⃒
∑w

j=1
∑w

l=1C
(
xj, yl, tk

)
−
∑w

j=1
∑w

l=1C
(
xj, yl, tp

) ⃒⃒
⃒

∑
k=m,n

(
1
/⃒
⃒
⃒
∑w

j=1
∑w

l=1C
(
xj, yl, tk

)
−
∑w

j=1
∑w

l=1C
(
xj, yl, tp

) ⃒⃒
⃒

), (k

= m, n) (8)  

where Tk(k ∈ (m, n) ) are the temporal weights of the individual pre
dictions. 

3.2. Unbiased ESTARFM (ubESTARFM) 

Initially developed for surface reflectance data, ESTARFM assumes 
that fine- and coarse-resolution data are comparable and aims to mini
mize systematic biases. However, in LST studies, fine- and coarse- 
resolution data might not always be comparable due to differences in 
their retrieval algorithms, potential anomalies in multi-sourced emis
sivity and differences in observation angles. LST is sensitive to temporal 
variations, and even a small difference in the acquisition time (e.g., 60 
min) may lead to substantial and non-linear difference in estimated LST 
values, while the overpass time of Landsat and MODIS are usually not 
considered equivalent. Moreover, the prediction accuracy of ESTARFM 
is highly dependent on the exact value of fine-resolution data, along 
with the temporal variation of coarse-resolution data (Eq. (3)), hence it 
is crucial to use highly accurate fine-resolution LST data. Time series- 
based bias correction is an extensively employed approach in hydrolo
gy and climate studies (Chen et al., 2011; Leander and Buishand, 2007; 
Long et al., 2020). However, the direct application of this technique in 
Landsat-MODIS LST fusion may not be applicable due to the sparse 
temporal frequency of Landsat LST data (i.e., only 1/16 of the obser
vation frequency of MODIS), which renders the characteristics of 
Landsat LST time-series less representative for generating daily results. 
Furthermore, the considerable absolute calibration discrepancies in 
Landsat-8 TIRS data (Barsi et al., 2014; Montanaro et al., 2014; Reuter 
et al., 2015) precludes the use of fine-resolution time series data as a 
reference. Therefore, by integrating this approach and localised spatial 
information, we propose a variant of ESTARFM here, referred to as the 
unbiased ESTARFM (ubESTARFM), to better accommodate spatiotem
poral fusion to LST data. 

In ubESTARFM, we applied a local bias correction on the central 
pixel and similarly fine-resolution pixels within the window using the 
mean value of corresponding coarse-resolution pixels as a reference: 

F
(

xw/2, yw/2, t0

)BC
= F

(
xw/2, yw/2, t0

)
− μ(F(xi, yi, t0) )+ μ(C(xi, yi, t0) )

(9)  

F(xi, yi, t0)
BC

= F(xi, yi, t0) − μ(F(xi, yi, t0) )+ μ(C(xi, yi, t0) ) (10)  

where F
(

xw/2, yw/2, t0
)BC 

and F
(
xi, yi, t0

)BC are the central pixel within 

the window and similarly fine-resolution pixels at t0 after bias correc
tion, respectively; μ

(
F
(
xi, yi, t0

) )
is the mean of similarly fine-resolution 

pixels and μ
(
C
(
xi, yi, t0

) )
is the mean of the corresponding coarse- 

resolution pixels. By applying this linear scaling approach, we can 
scale the systematic biases of the fine-resolution data to a same level of 
the corresponding coarse-resolution data in each moving window, while 
keeping the variation and spatial details of fine-resolution data. Fig. 2 
illustrates how ubESTARFM works. Hence, the Ri and Wi are accordingly 
modified and we can incorporate the bias corrected pixels into the 
prediction then modified Eq. (3) as: 

F
(

xw/2, yw/2, tp

)
=F

(
xw/2, yw/2, t0

)BC
+
∑N

i=1
Wi ×Vi ×

(
C
(
xi, yi, tp

)

− C(xi, yi, t0)
) (11) 

This localised bias correction strategy can work optimally when 
coarse-resolution LST demonstrates better performance than fine- 
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resolution LST. Moreover it is also expected to be effective under the 
condition that coarse-resolution LST data exhibits comparable or even 
slightly degraded agreement with reference LST data (typically obtained 
from in-situ measurements) when compared to fine-resolution LST data 
for three main reasons. Firstly, the prediction strategy of ESTARFM (Eq. 
(3)) relies on an integration of fine-resolution data values and the dif
ference in coarse-resolution data between the prediction and training 
dates. Assuming fine-resolution data demonstrates slightly superior 
performance compared to coarse-resolution data, there is no prior 
knowledge regarding whether both fine- and coarse-resolution data 
exhibit the same positive or negative bias performance. A direct inte
gration of multi-sourced data without addressing this issue is likely to 
accumulate errors. Secondly, the coarse-resolution LST value on a pre
diction date, denoted as C

(
xi, yi, tp

)
, plays a crucial role in generating 

daily outputs and is typically irreplaceable, as corresponding fine- 
resolution data values are unavailable on prediction dates for bias 
correction. Therefore, it is reasonable to choose the coarse-resolution 
data as the reference for bias-correcting the fine-resolution LST on a 
training date (Eq. (9)) to ensure consistency in uncertainty levels. 
Thirdly, even in cases where fine-resolution data is superior and could 
be utilised as the reference for localised bias correction, it would yield 
equivalent results to our current strategy: 

F
(

xw/2, yw/2, tp

)
=F

(
xw/2, yw/2, t0

)
+
∑N

i=1
Wi ×Vi ×

(
C
(
xi, yi, tp

)

− C(xi, yi, t0)
BC ) (12)  

C(xi, yi, t0)
BC

= C(xi, yi, t0) − μ(C(xi, yi, t0) )+ μ(F(xi, yi, t0) ) (13) 

By moving the term C(xi, yi, t0)BC out of the bracket, the predicted 
result would still undergo a weighted removal of μ(F(xi, yi, t0)) and a 
weighted addition of μ(C(xi, yi, t0) ). However, it is anticipated that this 
strategy, referred to as ubESTARFMfine, may be sub-optimal as it retains 
residuals of systematic biases from both data sources. 

3.3. Evaluation methods 

To minimize the influence of sub-diurnal LST dynamics, we need to 
ensure the acquisition times of remotely sensed data are comparable 
with ground measurements. The overpass times of MODIS satellites are 
not constant, ranging from 10:00 to 12:10 local solar time for Terra (Hu 
et al., 2014). To make the acquisition times of MODIS LST consistent 
with the records of in-situ LST, we convert the 'view time' layer (which is 
in local solar time) in MODIS LST data to the GMT format, which is given 
as: 

Tview,GMT = Tview,solar − Lon
/

15 (14)  

where Tview,GMT is the MODIS view time in GMT time zone, Tview,solar is the 
MODIS view time in local solar time, and Lon is the longitude in decimal 
of a given pixel. 

Then we use a one-hour window to search for corresponding in-situ 
LST, as OzFlux sites measure longwave radiation every 30 min: 

Tview,GMT − 30 min ≤ Tinsitu,GMT ≤ Tview,GMT + 30 min (15)  

where Tinsitu,GMT is the time of in-situ LST in GMT time zone. We calculate 
a mean value if there are two in-situ records within this temporal win
dow. Implementing this means we compare MODIS LST with ground 
measurements within a +/− 30-min window regardless of their indi
vidual time zones. Furthermore, we evaluated the applicability of this 
strategy by comparing the in-situ LST values from two temporal win
dows (i.e., 10:00–10:30 and 10:30–11:00 local standard time, respec
tively) against their mean values. The calculated bias and unbiased root 
mean square error (ubRMSE) among 30,900 samples are ±0.64 K and 
0.52 K, respectively. The detailed statistics can be found in Table S1. 
These findings unequivocally indicate a marginal deviation and affirm 
the feasibility of adopting this strategy. 

3.3.1. Evaluation metrics 
We calculated the following metrics to evaluate the performance of 

fused results against in-situ data, including bias and ubRMSE: 

Fig. 2. A schematic to show how ubESTARFM works. Part (a) gives an example of the distribution of the similar fine-resolution pixels and corresponding coarse- 
resolution pixels within a searching window of ubESTARFM, and part (b) shows the distribution of them after bias correction using coarse-resolution pixels as 
reference. In both plots that comprise part (b) the black columns represent the similar fine-resolution pixels and the light-yellow columns represent corresponding 
coarse-resolution pixels. 
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Bias = μ
(
LSTfuse − LSTref

)
(16)  

ubRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ ( (

LSTfuse − μ
(
LSTfuse

) )
−
(
LSTref − μ

(
LSTref

) ) )2

N

√

(17)  

where LSTfuse is the time series of fused LST; LSTref is the time series of 
reference LST (i.e., in-situ LST); N is the number of individual obser
vations in the time series. 

3.3.2. Cross-satellite comparison 
The Landsat and MODIS/Terra mission have sun-synchronous orbits 

and relatively stable overpass times. However, the overpass time of 
ECOSTRESS varies daily due to the asynchronous orbit of the ISS. Hence, 
we used the same strategy as proposed in Eq. (13) to search for a 
temporally close ECOSTRESS scene with MODIS LST, i.e., we imple
mented a +/− 30-min window to match the overpass time of ECO
STRESS and MODIS LST. Furthermore, we apply the metrics in Eqs. (14) 
and (15), and a Pearson correlation coefficient on a pixel-wise basis: 

R =

∑(
LSTfuse − μ

(
LSTfuse

) )(
LSTref − μ

(
LSTref

) )

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑ (

LSTfuse − μ
(
LSTfuse

) )2 ∑(
LSTref − μ

(
LSTref

) )2
√ (18)  

where R is the Pearson correlation coefficient; LSTref is the reference LST 
(i.e., ECOSTRESS LST). 

3.4. Experimental design 

Fig. 3 shows the schematic of this study. Firstly, we performed a 
temporal evaluation of the Landsat LST on every 16 days and the cor
responding MODIS LST using the in-situ LST data, to evaluate if the 

coarse-resolution LST at least has comparable agreement with in-situ 
data compared to the fine-resolution LST. Secondly, we paired Landsat 
LST and MODIS LST every 16 days (i.e., on the dates when Landsat data 
were acquired) for a given ROI between 1/Jan/2013 and 31/Dec/2021. 
The completeness of training scenes plays a crucial role in obtaining 
accurate results using (ub)ESTARFM, as one missing pixel in training 
pairs can lead to the absence of that pixel throughout the entire time 
series and affect the prediction accuracy within a moving window (see 
Eq. (3)). Thus, we shortlisted the pairs by only considering those Landsat 
and MODIS scenes with >2/3 clear-sky pixels after applying their 
respective cloud masks. After that, we trained both ESTARFM and 
ubESTARFM on every two pairs of the shortlisted LST candidates, then 
performed the prediction using the MODIS LST acquired between the 
two pairs. The patch size is 200 × 200 pixels and the moving window is 
51 × 51 pixels, which follow the default settings of (Zhu et al., 2010). Ma 
et al. (2018) demonstrated that augmenting the size of the moving 
window generally leads to enhanced accuracy; while this enhancement 
diminishes as the window size exceeds a certain threshold, potentially 
resulting in a decline in accuracy. Through a series of iterative experi
ments, we found that the accuracy of the results was insensitive to 
variations in window size beyond a threshold of approximately two 
thousand pixels, hence we retained the default settings of those pa
rameters. Using both ESTARFM and ubESTARFM, we obtained two 
datasets of fused LST, both of which have a 100 m spatial resolution and 
a daily frequency (cloud permitting). Thirdly and finally, we performed 
a temporal evaluation of the fused LST against the in-situ LST and a 
spatial comparison with the ECOSTRESS LST. 

Fig. 3. The framework diagram of this study. The Landsat LST and MODIS LST acquired on the same date (i.e., Landsat overpass date) are deemed 'a pair'. M denotes 
the total number of Landsat-MODIS pairs with a temporal frequency of 16-days spanning the period from 01/Jan/2013 to 31/Dec/2021; N represents the number of 
pairs that have been shortlisted, with an irregular frequency, based on a clear-sky ratio exceeding 2/3 for both images. Both ESTARFM and ubESTARFM were 
implemented on every two consecutive image-pairs. For example, the first iteration employed the first and second Landsat-MODIS pairs for training and subsequently 
made predictions using the daily MODIS LST within this specific period. The second iteration used the second and third Landsat-MODIS pairs, and so forth. This 
framework was independently implemented at each ROI. 
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4. Results 

4.1. Evaluation of Landsat and MODIS LST against in-situ LST 

Fig. 4 shows the scatterplots of Landsat LST and corresponding 
MODIS LST against in-situ LST at all 12 sites over the study period (i.e., 
1/Jan/2013 to 31/Dec/2021). We performed the assessment at the 
native resolution of MODIS and Landsat (i.e., 1 km and 100 m, respec
tively). This is because we found Landsat LST showed similar perfor
mance against in-situ LST at 100 m and after aggregated to 1 km 
resolution (Table S2). There are at least 20 cloud-free samples at all sites 
over these 9 years except for the Ridgefield site. In terms of bias, MODIS 
LST outperforms Landsat LST at nine sites, except for the Cumberland 
Plain, Wombat State Forest, and Yanco sites. In terms of ubRMSE, 
MODIS LST outperforms Landsat LST at 10 sites, except for the Whroo 
and Wombat State Forest sites. The best performance of bias for MODIS 
LST (− 0.23 K) is observed at the Warra site (Fig. 4i), which is covered by 
forests, while the best ubRMSE (1.33 K) is observed at the Great Western 
Woodlands site (Fig. 4e). The best performance of bias for Landsat LST 
(− 0.31 K) is observed at the Yanco site (Fig. 4l) with a land cover of 
cropland, while the best ubRMSE (0.86 K) is observed at the Wombat 
State Forest site (Fig. 4k). In general, Landsat LST exhibits more un
certainty, such as the observed substantial bias at the Great Western 
Woodlands site despite having a relatively moderate deviation (Fig. 4e), 
though it demonstrates superior agreement with in-situ LST at the 
Wombat State Forest site (Fig. 4k). By comparison, MODIS LST exhibits 
stable performance at all sites. 

Table 4 summarises the metrics comparing MODIS and Landsat LST 

against in-situ LST at 12 sites. Across different climate classifications, 
the bias of MODIS LST is relatively stable, ranging from 1.31 K to 1.91 K, 
whereas the bias of Landsat LST ranges from − 0.41 K to 5.17 K; the 
ubRMSE of MODIS LST ranges from 1.91 K to 2.57 K, while that of 
Landsat LST ranges from 2.43 K to 3.87 K. Under varying vegetation 
conditions, both MODIS and Landsat LST have better bias at non- 
vegetated sites (− 0.95 K and 1.65 K, respectively) than the vegetated 
sites (2.00 K and 3.37 K, respectively); the ubRMSE of MODIS LST is 
2.24 K at vegetated sites and 2.14 K at non-vegetated sites, while that of 

Fig. 4. Scatterplots of Landsat LST and MODIS LST against in-situ LST across the 12 sites when both data are available. The units of the Bias and ubRMSE statistics 
shown on each plot are K. The thin black continuous diagonal line on each plot is the 1:1 line. The red and blue dashed lines are the linear regression lines of best-fit 
(as provided by the equations on each sub-part) for MODIS and Landsat, respectively. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 4 
Evaluation statistics of Landsat LST and MODIS LST across the 12 sites and as 
grouped into climate classifications (semi-arid, humid subtropical, oceanic and 
cool temperate) and land cover classes (vegetated and non-vegetated) during 1/ 
Jan/2013–31/Dec/2021. The units of the Bias and ubRMSE statistics are K.  

Group name Bias ubRMSE Sample number 

MODIS Landsat MODIS Landsat 

Semi-arid 1.31 5.17 1.91 3.87 264 
Humid subtropical 1.38 − 0.41 2.22 3.19 122 
Oceanic 1.91 3.15 2.47 3.06 125 
Cool temperate 1.60 2.10 2.57 2.43 140 
Vegetated 2.00 3.37 2.24 3.20 541 
Non-vegetated − 0.95 1.65 2.14 3.68 110 
All 1.50 3.08 2.22 3.28 651 
11 sites * 1.51 2.97 2.23 3.25 638  

* Excluding the Ridgefield site, which has too few samples for significant 
statistics. 
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Landsat LST is 3.20 K and 3.68 K, respectively. The overall bias and 
ubRMSE of MODIS LST against in-situ LST are 1.50 K and 2.22 K, 
respectively. In comparison, the overall bias and ubRMSE of Landsat LST 
against in-situ LST are 3.08 K and 3.28 K, respectively. When excluding 
the Ridgefield site, the performance gap between MODIS and Landsat 
LST is slightly narrowed, with a bias of 1.51 K and 2.97 K, respectively, 
and a ubRMSE of 2.23 K and 3.25 K, respectively. Overall, the results 
indicate that MODIS LST has a better agreement with in-situ LST than 
Landsat LST under most conditions, indicating the suitability of coarse- 
resolution LST to be used as a reference in the spatiotemporal fusion 
process. 

4.2. Assessment of algorithm performance 

We compared the fitting performance of two algorithms using 
MODIS LST as reference. Fig. 5 shows scatterplots comparing the results 
of ESTARFM and ubESTARFM against the MODIS LST at the 12 sites 
during the training dates. The ubESTARFM LST exhibits superior 
agreement with the MODIS LST at all sites, with substantially less un
certainty when compared to the ESTARFM LST. The ubESTARFM LST 
performs better in terms of bias than the ESTARFM LST at 11 sites, 
except for Whroo. Additionally, the ubESTARFM LST outperforms the 
ESTARFM LST in ubRMSE at all 12 sites. Notably, at sites where 
ESTARFM predictions exhibit high bias, such as the Boyagin (Fig. 5a), 
Great Western Woodlands (Fig. 5e), and Ridgefield (Fig. 5f), the ubES
TARFM substantially improves agreement between the prediction and 
MODIS LST. 

Table 5 presents a summary of the metrics for the results from 

ESTARFM and ubESTARFM against the MODIS LST at the training dates. 
The ubESTARFM outperforms ESTARFM in terms of ubRMSE, with a 
range of 0.64 K to 1.27 K compared to ESTARFM's range of 2.20 K to 
3.92 K across all conditions. When it comes to bias performance under 
different climates, ubESTARFM performs remarkably better under semi- 
arid and oceanic climates (both 0.13 K) than ESTARFM (2.56 K and 3.33 
K, respectively). Though ESTARFM has an almost perfect bias perfor
mance under humid subtropical climate (− 0.01 K) whereas that of 
ubESTARFM is − 1.20 K, they are comparable under cool temperate 
climate (− 0.84 K and − 0.87 K for ESTARFM and ubESTARFM, respec
tively). Under varying vegetation conditions, they have comparable bias 
at vegetated sites (0.48 K and − 0.52 K for ESTARFM and ubESTARFM, 
respectively). However, ubESTARFM has a remarkably better perfor
mance of bias at non-vegetated sites (0.20 K) than ESTARFM (4.29 K). 
The overall bias and ubRMSE for ubESTARFM LST are − 0.34 K and 0.90 
K, respectively, whereas those for ESTARFM LST are 1.43 K and 3.27 K, 
respectively. If the Warra site is excluded, the metrics for ubESTARFM 
LST change slightly to − 0.35 K and 0.88 K, respectively, whereas those 
for ESTARFM LST change to 1.40 K and 3.24 K, respectively. In general, 
ubESTARFM reduces the uncertainty level in prediction by about 75% 
when compared to ESTARFM output. 

We showcase the difference in spatial patterns of the algorithms on 
the training dates at the Calperum and Samford sites (Fig. 6). At Cal
perum (Fig. 6a-h), the MODIS and Landsat LST on 10/Nov/2014 have a 
difference of approximately 5 K. The ESTARFM LST (Fig. 6c) is identical 
to the Landsat LST (Fig. 6b), while the ubESTARFM LST (Fig. 6d) has a 
similar pattern and value scale to the MODIS LST (Fig. 6a), but with 
sharper details. In the 10 km × 10 km zoom window, it is observed that 

Fig. 5. Scatterplots of ESTARFM and ubESTARFM LST against MODIS LST at the 12 sites on the training dates. The units of the Bias and ubRMSE statistics are K. The 
thin black continuous diagonal line on each plot is the 1:1 line. The red and black dashed lines are the linear regression lines of best-fit (as provided by the equations 
on each sub-part) for ESTARFM and ubESTARFM, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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the ESTARFM LST (Fig. 6g) is still identical to the Landsat LST (Fig. 6f); 
however, the ubESTARFM LST (Fig. 6h) has a similar value scale with 
the MODIS LST (Fig. 6e), and also provides similar spatial details to the 
Landsat LST over this homogenous region. At the relatively heteroge
neous Samford site (Fig. 6i-p) on 29/Nov/2016, the ESTARFM LST 
(Fig. 6k, o) is still identical to the Landsat LST (Fig. 6j, n) at all scales. In 
comparison, the ubESTARFM LST (Fig. 6l) has a good consistency with 
the MODIS LST (Fig. 6i) within the 1◦ × 1◦ ROI. In the zoom window 
(Fig. 6p), it exhibits considerably richer details based on the Landsat 
features while maintaining a reasonable value range compared to the 
MODIS LST (Fig. 6m). In general, the prediction of ESTARFM on a 
training date is identical to the fine-resolution scene, whereas the pre
diction of ubESTARFM on a training date borrows the spatial details of 
fine-resolution data and has a comparable value range with the coarse- 

resolution data. 

4.3. Evaluation of fused LST against in-situ LST 

Fig. 7 shows the scatterplots of ESTARFM and ubESTARFM LST 
against in-situ LST at the 12 sites between 2013 and 2021 excluding the 
training dates. The ubESTARFM LST coincides better with the in-situ 
LST than the ESTARFM LST at most sites. At some sites, such as Boya
gin, Great Western Woodlands, and Ridgefield (Fig. 7a, e, and f, 
respectively), where the ESTARFM LST is highly biased, the ubES
TARFM can adjust the LST values to a more reasonable scale with the in- 
situ LST. Even at sites where the ESTARFM LST shows better bias per
formance, such as the Cumberland Plain and Wombat State Forest sites 
(Fig. 7c and k, respectively), the ubESTARFM LST exhibits a better 

Table 5 
Statistics of ESTARFM and ubESTARFM LST against MODIS LST across the 12 sites and as grouped into climate classifications (semi-arid, humid subtropical, oceanic 
and cool temperate) and land cover classes (vegetated and non-vegetated) on the training dates. The units of the Bias and ubRMSE statistics are K.  

Group name Bias ubRMSE Sample number 

ESTARFM ubESTARFM ESTARFM ubESTARFM 

Semi-arid 2.56 0.13 3.17 0.64 230 
Humid subtropical − 0.01 − 1.20 2.20 1.27 94 
Oceanic 3.33 0.13 3.92 0.88 95 
Cool temperate − 0.84 − 0.87 3.74 1.09 134 
Vegetated 0.48 − 0.52 3.42 0.96 415 
Non-vegetated 4.29 0.20 2.83 0.69 138 
All 1.43 − 0.34 3.27 0.90 553 
11 sites * 1.40 − 0.35 3.24 0.88 544  

* Excluding the Warra site, which has too few samples for significant statistics. 

Fig. 6. Two examples from the Calpe
rum and Samford site to show the dif
ference between MODIS, Landsat, 
ESTARFM and ubESTARFM LST on the 
training dates. (a-d) are the LSTs within 
a homogenous 1◦ × 1◦ ROI (Calperum) 
on 10/Nov/2014, and the black window 
is a 10 km × 10 km area surrounding the 
in-situ site; (e-h) are zoomed areas of the 
window in (a-d); (i-l) are the LSTs 
within a heterogenous ROI (Samford) on 
29/Nov/2016, with the black window 
representing the surrounding area of the 
in-situ site; (m-p) are zoomed areas of 
the window in (i-l).   
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performance of ubRMSE, implying less deviation in error in the evalu
ation against in-situ LST. 

Table 6 summarises the performance statistics of the MODIS, 
ESTARFM, and ubESTARFM LST against in-situ LST at the 12 sites, 
excluding the training dates. The results show that the ubESTARFM LST 

outperforms the ESTARFM LST in terms of bias at 10 out of 12 sites, 
except for the Cumberland Plain and Wombat State Forest sites. The 
overall bias performance of the ubESTARFM LST is 2.55 K, which is 
about half of that of the ESTARFM LST (4.73 K) and comparable with the 
MODIS LST (2.42 K) benchmark. The ubESTARFM LST also has a better 

Fig. 7. Scatterplots of ESTARFM and ubESTARFM LST against in-situ LST at the 12 sites (excluding the training dates). The thin black continuous diagonal line on 
each plot is the 1:1 line. The red and black dashed lines are the linear regression lines of best-fit (as provided by the equations on each sub-part) for ESTARFM and 
ubESTARFM, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 6 
Statistics of MODIS, ESTARFM and ubESTARFM LST against in-situ LST across the 12 sites and as grouped into climate classifications (semi-arid, humid subtropical, 
oceanic and cool temperate) and land cover classes (vegetated and non-vegetated). The training dates are excluded. The units of the Bias and ubRMSE statistics are K.  

Site name Bias ubRMSE R Sample number 

MODIS ESTARFM ubESTARFM MODIS ESTARFM ubESTARFM MODIS ESTARFM ubESTARFM 

Boyagin − 0.44 5.90 0.64 3.16 4.28 3.62 0.96 0.94 0.95 538 
Calperum 5.19 5.97 5.27 2.92 3.60 2.79 0.97 0.97 0.97 1087 
Cumberland Plain 2.81 0.59 2.19 2.75 3.46 2.58 0.93 0.90 0.94 1025 
Gingin 2.36 3.20 2.29 2.44 4.77 2.24 0.96 0.92 0.97 1204 
Great Western Woodlands 4.82 13.26 5.53 2.50 3.96 2.47 0.98 0.97 0.98 1561 
Ridgefield 3.00 10.46 3.03 2.89 4.56 2.58 0.97 0.92 0.98 740 
Samford − 2.16 − 3.82 − 3.74 3.11 3.19 3.03 0.87 0.86 0.87 539 
Tumbarumba 1.68 3.04 2.12 2.48 3.10 2.29 0.94 0.92 0.95 1032 
Warra − 0.79 3.97 0.21 2.68 4.65 2.49 0.90 0.76 0.91 498 
Whroo 3.71 4.66 3.28 3.18 3.83 2.75 0.96 0.93 0.96 982 
Wombat State Forest 1.94 1.30 2.77 1.97 2.18 1.96 0.96 0.96 0.97 833 
Yanco 0.77 1.74 0.82 2.80 4.05 2.66 0.97 0.96 0.97 1251 
Semi-arid 3.13 5.78 3.44 2.55 3.83 2.45 0.97 0.96 0.97 5936 
Humid subtropical − 1.30 1.03 − 1.55 3.14 3.74 3.32 0.91 0.90 0.91 1077 
Oceanic 2.23 6.14 2.50 2.66 3.71 2.41 0.95 0.92 0.96 1772 
Cool temperate 2.45 2.86 2.23 2.90 3.84 2.63 0.94 0.89 0.94 2505 
Vegetated 1.78 3.26 1.81 2.70 3.76 2.54 0.95 0.91 0.95 7391 
Non-vegetated 3.62 7.53 3.94 2.71 3.89 2.62 0.97 0.97 0.98 3899 
All 2.42 4.73 2.55 2.70 3.80 2.57 0.95 0.92 0.95 11,290  
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performance of ubRMSE against in-situ LST than both the MODIS and 
ESTARFM LST at 11 out of 12 sites, except for Boyagin. The overall 
ubRMSE performance of the ubESTARFM LST is 2.57 K, whereas that of 
the ESTARFM and MODIS LST are 3.80 and 2.70 K, respectively. In 
terms of R, the performance of ubESTARFM LST is better than that of 
ESTARFM LST at all sites and is very similar to MODIS LST's perfor
mance. The overall R performance of the ubESTARFM, ESTARFM, and 
MODIS LST are 0.95, 0.92, and 0.95, respectively. When it comes to the 
varying climate and vegetation groups, ubESTARFM has a better per
formance of all three metrics than ESTARFM under most conditions, 
except for the humid subtropical group, where ubESTARFM and 
ESTARFM have bias of − 1.55 K and 1.03 K, respectively. These metrics, 
which are based on 11,290 samples, indicate that the ubESTARFM al
gorithm not only eliminates potentially systematic biases in the fusion 
process but also provides a better coincidence with the in-situ LST 
compared to the ESTARFM algorithm. The evaluations across various 
climates and vegetation conditions showcase the robustness of ubES
TARFM. Furthermore, compared to MODIS LST, ubESTARFM LST can 
reduce the deviation of uncertainty and maintain the same level of 
correlation with in-situ LST. 

Fig. 8 presents the boxplots of seasonal statistics of MODIS, 
ESTARFM and ubESTARFM LST against in-situ LST across the 12 sites. 
The metrics of ubESTARFM LST consistently outperform those of 
ESTARFM LST in all seasons and are comparable with those of MODIS 
LST, with the ubRMSE of ubESTARFM LST even slightly better than that 
of MODIS LST. In summer, all three LSTs exhibit relatively higher bias 

and ubRMSE than other seasons, while in winter, all three LSTs 
demonstrate the best performance in terms of bias and ubRMSE. The 
gaps between ESTARFM LST and ubESTARFM LST with respect to bias 
and ubRMSE are also the narrowest in the winter season. These results 
suggest that the typical ESTARFM algorithm may have more uncertainty 
when the land surface is heated up. Moreover, with regard to the metric 
of R, the three LSTs demonstrate relatively similar performance in the 
spring and autumn seasons, while in the summer and winter seasons, the 
median values of ESTARFM LST show gaps of approximately 0.15 
compared to the other two LSTs. 

Fig. 9 shows the temporal variations of MODIS, ESTARFM and 
ubESTARFM LST at the 12 sites between 01/Jan/2013 and 31/Dec/ 
2021. All three LSTs have reasonable seasonal variations that are 
consistent with the in-situ LST. For the sites where the ESTARFM LST is 
remarkably biased (Boyagin, Great Western Woodlands, Ridgefield and 
Warra), the ubESTARFM LST is able to narrow the gap with the in-situ 
LST hence provides better temporal consistency. Furthermore, when 
the MODIS LST is discrete, e.g., summer in 2017 and 2018 at the 
Cumberland Plain site (Fig. 9c), the ubESTARFM LST shows less un
certainty and better matches the trend of in-situ LST. At the Warra site 
(located in Tasmania and has an annual rainfall of around 1700 mm), 
both MODIS and ESTRAFM LST have relatively high uncertainty, while 
the ubESTARFM can still have a stable performance. Fig. S1 gives 
shortened LST time series of the 12 sites within a single year to show 
more details in temporal variations of LST. 

Fig. 8. Seasonal boxplots of statistics of MODIS, ESTARFM and ubESTARFM LST against in-situ LST at the 12 sites (excluding the training dates). For the southern 
hemisphere temperate zone, spring is from September to November, summer from December to February, autumn from March to May, and winter from June to 
August. The dark horizontal line within the boxplots represents the median value; the upper and lower quartiles of the interquartile range represent the 75% and 25% 
thresholds, respectively; the upper and lower whiskers extend from the box represent the maximum and minimum values excluding any outliers. The units of the Bias 
and ubRMSE statistics are K. 
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4.4. Spatial comparison between fused LST and ECOSTRESS LST 

We selected two examples to show the spatial difference between the 
MODIS, ECOSTRESS, ESTARFM and ubESTARFM LST on clear sky days 
(Fig. 10). At the Great Western Woodlands site (Fig. 10a-h), the 
ESTARFM LST is positively biased and has spatial discontinuity 
(Fig. 10c). The MODIS, ECOSTRESS and ubESTARFM LST have a 
consistent spatial pattern at the ROI scale (Fig. 10a, b, d), with the 
ECOSTRESS LST being the sharpest, likely due to its native resolution of 
70 m, which is even finer than the Landsat LST. In the zoom windows, 
the ESTARFM LST provides a correct spatial pattern with some distinct 
paths but with approximately 7 K higher values (Fig. 10g); whereas the 
ubESTARFM LST shows both reasonable values and abundant spatial 
details (Fig. 10h). At the Tumbarumba site (Fig. 10i-p), all four LSTs 
show a consistent spatial pattern at the ROI scale (Fig. 10i-l), though 
they have some differences in values at the southwest region. However, 
in the zoom windows, both the values and spatial pattern of ESTARFM 
LST (Fig. 10o) are considerably different with both MODIS (Fig. 10m) 
and ECOSTRESS LST (Fig. 10n). As a comparison, the ubESTARFM LST 
still performs well in both numerical values and spatial structure 
(Fig. 10p). 

Table 7 provides a summary of the pixel-wise statistics of ESTARFM 
and ubESTARFM LST against ECOSTRESS LST. Compared to the 
ESTARFM LST, the ubESTARFM LST has a lower bias against ECO
STRESS LST at 7 sites, and a slightly better overall performance (− 1.69 K 
to 1.79 K). However, the ubESTARFM LST is remarkably superior in 
terms of ubRMSE and R against ECOSTRESS LST, where it outperforms 
the ESTARFM LST at 11 out of 12 sites (except for Cumberland Plain). 
The overall ubRMSE of ESTARFM and ubESTARFM LSTs is 2.68 and 
2.00 K, respectively, while the overall R of them is 0.59 and 0.70, 
respectively. In general, the cross-satellite comparison demonstrated 
that ubESTARFM has a comparable performance of bias with ESTARFM, 
but shows a substantial improvement in uncertainty reduction and 
correlation with independent satellite LST retrievals. 

5. Discussion 

5.1. A further evaluation of ubESTARFM's assumption 

5.1.1. Comparison between different bias correction strategies 
This research demonstrated the superiority of ubESTARFM over 

ESTARFM on a continental scale, considering that MODIS LST generally 
exhibited better performance across most sites. However, the evaluation 
of ubESTARFM's effectiveness was not fully explored, as its applicability 
is expected to be evident when coarse-resolution LST data presents 
comparable or even slightly degraded performance compared to fine- 
resolution LST data. Therefore, to further assess the applicability of 
ubESTARFM, we selected six sites where Landsat LST demonstrated 
comparatively superior agreements with in-situ LST in comparison to 
MODIS LST (as indicated in Fig. 4), including Cumberland Plain, Gingin, 
Tumbarumba, Whroo, Wombat State Forest, and Yanco. Moreover, we 
incorporated three additional methods as comparative benchmarks: (1) 
an alternative bias correction strategy utilising fine-resolution data as a 
reference (described by Eq. (12)), referred to as ubESTARFMfine; (2) a 
temporal bias correction approach proposed by Long et al. (2020); and 
(3) a statistical downscaling approach for sharpening thermal imagery 
(TsHARP; Agam et al., 2007). 

Fig. 11 are boxplots of the bias, ubRMSE, and R values for the five 
methods evaluated at three sites (where Landsat is better) and six sites 
(where Landsat is better or comparable), respectively. The statistics for 
all the 12 sites are summarised in Table S3. The ubESTARFM approach 
consistently exhibits the best performance in terms of bias, ubRMSE, and 
R at the six sites, with mean values of 2.17 K, 2.43 K, and 0.96, 
respectively. Additionally, ubESTARFM achieves the best mean ubRMSE 
(2.45 K) and R (0.96) at the three sites, while its mean bias of 1.79 K is 
second only to ESTARFM (1.25 K). These results demonstrate the 
robustness of ubESTARFM to produce results that both have high ac
curacy while maintaining a low level of uncertainty, marking a sub
stantial improvement over ESTARFM, which yields mean ubRMSE 
values of 3.36 K for the three sites and 3.66 K for the six sites. 
Comparatively, the ubESTARFMfine approach exhibits only a minor 
degradation in performance compared to ubESTARFM, which can be 
attributed to the residual uncertainty retained from the fine-resolution 
LST. Furthermore, Long's method demonstrates improved mean 

Fig. 9. Temporal variations of MODIS, ESTARFM and ubESTARFM LST at the 12 sites between 2013 and 2021. Gaps in the time series are either due to the absence 
of in-situ LST or cloud contamination in the MODIS LST. A shortened time series for only 1 year can be found in Fig. S1. 
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ubRMSE values compared to ESTARFM, specifically 3.02 K for the three 
sites and 3.22 K for the six sites. This highlights the benefits of the 
temporal bias correction approach, which relies on the uncertainty level 
of a single dataset rather than directly accumulating uncertainties. 
However, Long's method displays unstable bias performance, likely due 

to the unsuitability of using Landsat LST as the temporal reference. The 
remarkably sparser temporal frequency of Landsat (i.e., 1/16 of MODIS 
observations) renders the characteristics of Landsat LST time-series less 
representative for generating daily results. Regarding TsHARP LST, its 
performance consistently falls slightly behind that offered by 

Fig. 10. Two examples of the spatial comparison between MODIS, ECOSTRESS, ESTARFM and ubESTARFM LST on clear sky days. (a-d) are the LSTs within a 
homogenous 1◦ × 1◦ ROI (Great Western Woodlands) on 11/Jul/2019, and the black window is a 10 km × 10 km area surrounding the in-situ site; (e-h) are zoomed 
areas of the window in (a-d); (i-l) are the LSTs within a heterogenous ROI (Tumbarumba) on 10/Sep/2020, with the black window representing the surrounding area 
of the in-situ site; (m-p) are zoomed areas of the window in (i-l). 

Table 7 
Statistics of ESTARFM and ubESTARFM LST against ECOSTRESS LST. The units of the Bias and ubRMSE statistics are K. For the scene number column only ECOSTRESS 
scenes with >50% clear-sky pixels within the ROIs were considered in the comparison. For the Warra site, N/A means 'Not Applicable', and this is because there was no 
near clear-sky ECOSTRESS scene having a coincident overpass time with the MODIS LST for the Warra ROI between 01/Jul/2018 and 01/Dec/2021.  

Site name Mean bias Mean ubRMSE Mean R Scene number 

ESTARFM ubESTARFM ESTARFM ubESTARFM ESTARFM ubESTARFM 

Boyagin 5.70 − 2.62 2.98 1.88 0.54 0.64 8 
Calperum − 0.43 − 0.04 3.27 2.46 0.38 0.57 4 
Cumberland Plain − 1.28 − 3.53 2.25 2.27 0.86 0.86 1 
Gingin − 0.15 − 1.40 2.93 2.63 0.69 0.74 6 
Great Western Woodlands 2.78 − 1.89 1.97 1.02 0.53 0.83 3 
Ridgefield 5.70 − 2.62 2.98 1.88 0.54 0.64 8 
Samford − 2.68 − 1.89 2.87 2.68 0.61 0.64 1 
Tumbarumba − 0.41 − 1.24 2.40 2.20 0.88 0.90 2 
Warra N/A N/A N/A N/A N/A N/A 0 
Whroo 0.41 0.45 2.26 1.47 0.36 0.58 2 
Wombat State Forest − 2.94 − 2.16 2.28 2.01 0.76 0.85 4 
Yanco − 1.11 − 0.20 1.90 1.77 0.64 0.66 4 
All 1.79 − 1.69 2.68 2.00 0.59 0.70 43  
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ubESTARFM to estimate LST. Nonetheless, the downscaling strategy 
employed by TsHARP partly incorporates the coarse-resolution residual 
of MODIS LST to its fine resolution prediction (Agam et al., 2007; 
Huryna et al., 2019; Lacerda et al., 2021), which is likely to weaken the 
sharpening effects. To summarise, ubESTARFM was effective when the 
fine-resolution LST data performs slightly better or shows comparable 
performance to the coarse-resolution LST data. It is anticipated that 
ubESTARFM can maintain its effectiveness as long as the uncertainty of 
coarse-resolution LST does not exceed a difference of 1–1.5 K compared 
to the fine-resolution LST. 

5.1.2. Application of ubESTARFM using geostationary LST 
The ubESTARFM algorithm's efficacy in reducing error deviation 

within the context of MODIS-Landsat LST fusion has been conclusively 
demonstrated. However, as there has been a notable upsurge in the 
availability of LST data in recent years, it becomes imperative to assess 
the versatility of the ubESTARFM algorithm to be applied with LST from 
diverse sources. Geostationary satellites exhibit the capability to 
monitor sub-hourly thermal variations over specific regions while with a 
relatively coarser resolution compared to polar-orbiting satellites 
(Freitas et al., 2013). A pertinent example is the Himawari-8 mission 
(Bessho et al., 2016), which furnishes data with a spatial resolution of 2 
km and a temporal frequency of 10 min over the Asia-Pacific region, 
allowing for synchronisation with the overpass time of both MODIS and 
Landsat satellites. Against this backdrop, we proceeded to apply ubES
TARFM using a Himawari-8 LST dataset from the Australian National 
University (Yu et al., 2024) to further evaluate its effectiveness. 

We selected three sites over southeast Australia, including the 
Tumbarumba, Wombat State Forest and Yanco sites, for the assessment 
(Fig. 12). The ubESTARFM LST demonstrates ubRMSE (R) values of 
1.81 K (0.97), 2.29 K (0.96) and 2.57 K (0.98) for the respective sites. 
These values, when compared to those generated by ESTARFM, being 
3.72 K (0.89), 4.20 K (0.87) and 4.31 K (0.94), respectively, demonstrate 
a substantial improvement. Notably, the performance of ubESTARFM 
LST also surpasses that of Himawari-8 LST (1.84 K and 2.89 K) at the 
Tumbarumba and Yanco sites, respectively. In terms of spatial patterns, 
similar to the case of MODIS-Landsat fusion, while ESTARFM LST cap
tures intricate spatial features, it struggles to accurately estimate value 
ranges, with observed overestimations among all three sites (Fig. 12 g-i). 
In contrast, ubESTARFM LST not only enhances spatial details but also 

provides more plausible numeric value estimations (Fig. 12 j-l). These 
outcomes underscore the potential of the ubESTARFM algorithm for 
application using LST data acquired from geostationary platforms. 

5.2. Strengths and prospects of ubESTARFM 

Spatiotemporal fusion algorithms have been increasingly used to 
generate fine-resolution LST data for agricultural fields and other studies 
requiring access to fine-resolution LST data. However, since LST data are 
sensitive to time-of-day of image acquisition and may have retrieval 
process uncertainties, original spatiotemporal fusion approaches (e.g., 
STARFM and ESTARFM) may generate LST data with sub-optimal ac
curacies (see Table 1). This motivated us to develop and evaluate a 
fusion variant. Based on the usage of independent ground-based obser
vation for validation and satellite-based evaluation, our results 
demonstrate that ubESTARFM performs better than ESTARFM in terms 
of bias control, reduction of error deviation, and maintaining correla
tion. The strengths and prospects of the ubESTARFM algorithm can be 
summarized as follows: 

The ubESTARFM approach is effective in avoiding the accumulation 
of systematic errors from multiple sensors. While the difference in 
overpass time of Landsat and MODIS satellites may not substantially 
impact reflectance studies, this time difference does have a relatively 
higher impact in LST studies. LST data derived using ESTARFM are 
highly reliant on the fine-resolution LST data. In contrast, ubESTARFM 
calibrates systematic bias of fine-resolution LST using the values of 
coarse-resolution data within the moving window as a reference while 
preserving the spatial heterogeneity of fine-resolution data. It's worth 
noting that the ubESTARFM approach has been shown to considerably 
reduce the degree of error dispersion (represented by ubRMSE) when 
compared to in-situ LST measurements, even outperforming the MODIS 
LST benchmark. This demonstrates that the spatial details and temporal 
variations of fine features in Landsat LST data can be considered reliable, 
despite being subject to coherent systematic biases (Duan et al., 2021; Li 
et al., 2021a; Vlassova et al., 2014). Using ubESTARFM enabled us to 
generate highly accurate LST data, which is crucial for applications such 
as modelling fine-resolution ET and soil moisture that are require ac
curate values of LST (Long et al., 2019; Long and Singh, 2012b) and 
urban heat island monitoring (Liu et al., 2016; Xia et al., 2019). 

Based on the pattern of generated 100 m LST, it appears that 

Fig. 11. Boxplots of statistics of ESTARFM, ubESTARFM, ubESTARFMfine, Long's method and TsHARP LST against in-situ LST (excluding the training dates). Parts (a- 
c) present the statistics from 3 sites (Cumberland Plain, Wombat State Forest and Yanco) where Landsat LST has better agreement against in-situ LST than MODIS 
LST. Parts (d-f) present the statistics from 6 sites (Cumberland Plain, Gingin, Tumbarumba, Whroo, Wombat State Forest and Yanco) where Landsat LST has better or 
comparable agreement against in-situ LST compared to MODIS LST. The explanation of boxplot features is the same as in Fig. 8 caption. For the boxplots in (a-c), the 
upper and lower quartiles for the interquartile range lack statistical significance due to the limited data available from only 3 sites. The sample number for 3 sites and 
6 sites are 3104 and 6273, respectively. The units of the Bias and ubRMSE statistics are K. 
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Fig. 12. (a-c) Scatterplots of Himawari-8, ESTARFM and ubESTARFM LST against in-situ LST at the Tumbarumba, Wombat State Forest and Yanco sites, respectively, 
between 01/Jan/2016 and 31/Dec/2021 (excluding the training dates). The thin black continuous diagonal line on each plot is the 1:1 line. (d-f) are spatial examples 
of Himawari-8 LST at the three sites on 24/Dec/2018, 18/Nov/2019 and 11/Mar/2020, respectively; (g-i) are spatial examples of ESTARFM LST at the three sites on 
corresponding dates, respectively; and (j-l) are spatial examples of ubESTARFM LST at the three sites on corresponding dates, respectively. The sample numbers of 
Himawari-8 LST are less than those of MODIS LST because Himawari-8 LST is only available since July 2015. 
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ubESTARFM functions more like a downscaling method rather than a 
traditional fusion approach (Chen et al., 2023; Pu and Bonafoni, 2023). 
This is because ubESTARFM incorporates both the numerical values 
from coarse-resolution data and the spatial structure from fine- 
resolution data, resulting in a simple and robust approach with high 
computational efficiency. However, for this approach to work optimally, 
it is necessary for the coarse-resolution data to be at least comparable 
with the fine resolution data, which may not always be the case. For 
example, herein Landsat LST performed better than the MODIS LST at 3 
of the 12 sites (Table 4). In small spatial extent studies focused on re
gions where Landsat data are more consistent with in-situ data and 
where ground stations are absent, the ubESTARFM approach might 
ignore the value of Landsat data. To address this issue, an optimisation 
strategy such as the Markov Chain Monte Carlo method (MCMC) 
(Brooks, 1998) or an error variance comparison method such as the 
triple collocation approach (McColl et al., 2014) could be considered. 
For example, by incorporating MCMC, it is theoretically possible to 
generate a posterior distribution of the predicted fine-resolution LST 
values, which captures the inherent uncertainty associated with the 
predictions. This enhanced uncertainty estimation throughout an iter
ative sampling process provided by MCMC may allow for a more robust 
characterisation of the prediction uncertainty in ubESTARFM. These 
approaches could better evaluate the systematic and random errors in 
multi-sourced data, thereby enabling the determination of the weights 
of each input data type in the fusion process, rather than simply using 
the coarse-resolution data as the reference. 

Depending on the rates of change of LST signatures being fused, the 
length of the temporal gap between the two training dates could impact 
on results. To ensure the most accurate results possible, we searched for 
Landsat and MODIS scenes with abundant clear-sky pixels. However, 
this sometimes can lead to a considerable time gap (e.g., several weeks 
to months) between the two training dates which could result in addi
tional errors in the fused LST when there is a substantial difference 
between the LST on the target date and the LST on the training dates. 
This is particularly relevant in regions where there are agricultural ac
tivities (e.g., harvesting and irrigation), as land cover types may change 
rapidly during the growing period (Van Niel et al., 2003; Van Niel and 
McVicar, 2004), potentially introducing errors in the fused LST. For 
example, at the Yanco site, the Landsat LST performs better than the 
MODIS LST (Fig. 4l), possibly because the former is better able to detect 
transitions between soil and vegetation associated with agricultural 
activity. To further improve the ubESTARFM approach, additional ef
forts could be considered, such as the application of a spectral linear 
theory to help predict potential changes in land cover types. This could 
help to minimize errors introduced by changes in land cover types 
during the temporal gap between the training dates (Xia et al., 2019; Zhu 
et al., 2016). 

There are at least three limitations of the current experimental 
design. Firstly, some parameters could be optimised, such as the size of 
the patch and moving window, as well as the number of land covers. 
Following Zhu et al. (2010), we used their default settings where the 
window is 51 × 51 pixels and the patch is 200 × 200 pixels, which are 
considered suitable for a scene with 1000 × 1000 pixels. For studies that 
have a different spatial extent, an iterative or optimisation strategy 
might be considered to determine the window size and ensure good 
consistency between the results and the source data distribution. Sec
ondly, the current algorithm assumes that there are a pre-determined 
number of land covers, which may not be the case in real-world situa
tions. By incorporating a land cover map in the window searching 
strategy (Liu et al., 2016; Shi et al., 2022), the algorithm may better 
account for the spatial variability of land cover types and their impact on 
surface temperature, thus has the potential to generate more accurate 
and robust fusion results. Nonetheless, this strategy also creates another 
dependency and reliance on land-cover mapping being accurate and up- 
to-date, which requires additional efforts and inputs. Thirdly, and 
finally, the emissivity values used herein were obtained from the UW 

Baseline Fit Emissivity Database (Seemann et al., 2008) coupled with 
ground-based radiation to generate in-situ LST. However, the UW data 
has a 5 km resolution derived using the same input as the MODIS 
operational emissivity product. The 5 km resolution is closer to the 
MODIS spatial resolution and may be sub-optimal for the much finer 
Landsat product due to the dependency of LST product on emissivity 
(Mohamed et al., 2017; Parastatidis et al., 2017). Additionally, as the 
MODIS LST and in-situ LST share an emissivity input, this could also 
compromise the Landsat LST in the in-situ evaluations. In future studies, 
we could consider using the emissivity from next-generation products (e. 
g., ECOSTRESS) to generate in-situ LSTs, which would be more appro
priate in fine-resolution studies. 

5.3. Future applications 

The ubESTARFM algorithm demonstrates an advancement to the 
typical ESTARFM in generating fine resolution LSTs. There are a few 
application directions and implications derived from this study: 

In this study, the majority of the in-situ sites in this study were 
covered by croplands, woodlands, or forests. To further improve the 
algorithm's applicability, future studies should extend to areas covered 
by sparse vegetation, bare soil, or desert. The Landsat LST appears to be 
highly biased in semi-arid regions (Table 4), as evidenced by the results 
at the Great Western Woodlands and Ridgefield sites. Furthermore, the 
examination of ubESTARFM's performance in urban areas is an aspect 
that deserves exploration, since urban environments present unique 
challenges due to the increased complexity and heterogeneity of land 
cover types, making the systematic differences between MODIS and 
Landsat data more prominent. Particularly, an accurate estimation of 
emissivity values can be challenging in urban areas and is often hindered 
by limitations associated with the commonly used NDVI threshold 
method (Weng et al., 2014). To shed light on the applicability of 
ubESTARFM in urban settings, it is important to expand the analysis to 
include urban areas in addition to the peri-urban regions investigated 
herein (i.e., Cumberland Plain and Samford). By considering diverse 
urban landscapes with varying levels of impervious surfaces, vegetation 
cover, infrastructure and shadowing, a more comprehensive under
standing of ubESTARFM's performance can be obtained. Therefore, 
additional evaluation should be conducted in semi-arid areas with 
sparse vegetation, such as agricultural (both irrigated and non-irrigated) 
and horticultural (tree and vine) crops and shrubs, and to further test 
ubESTARFM's performance in a wider range of land cover types espe
cially in urban environments. 

We utilised Landsat 8 and MODIS data to generate LSTs between 01/ 
Jan/2013 and 31/Dec/2021. Our current LSTs were generated for the 
morning time only, around 11 am local solar time. To better understand 
the diurnal patterns of LST, future research could include LST at other 
times by utilising data with higher temporal resolutions, such as the 
geostationary Himawari-8 AHI LST with a 10-min image acquisition 
frequency (Yamamoto et al., 2018; Yu et al., 2024) and/or the ECO
STRESS LST which has irregular overpass times (Fisher et al., 2020). To 
improve spatiotemporal completeness, future applications could incor
porate a gap-filled coarse-resolution satellite LST product or LST vari
ables from land surface models, while additional systematic errors must 
be quantified. 

The fine-resolution LST generated herein has broad applications in a 
variety of fields, such as urban heat island studies, field-to-farm scale ET 
estimation, and soil moisture retrieval. By coupling the generated LSTs 
with physical models such as radiative transfer models (Jackson, 1993; 
Vergopolan et al., 2020), energy balance models (Guerschman et al., 
2022; Long and Singh, 2012a; McVicar and Jupp, 1999), or soil- 
vegetation temperature decomposition algorithms (Yang et al., 2015), 
we can derive corresponding fine-resolution variables and develop 
improved farm- or regional-scale water management strategies and 
decision-making processes. 
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6. Conclusion 

Traditional spatiotemporal fusion approaches may not be suitable for 
direct application in LST studies due to the high temporal dynamics of 
LST. Additionally, the effectiveness of traditional spatiotemporal fusion 
approaches on LST data has not been thoroughly evaluated previously at 
relatively fine-resolution for a wide range of land cover experienced 
across continental climate gradients. We developed an unbiased variant 
of ESTARFM, referred to as ubESTARFM, to better accommodate 
spatiotemporal dynamics to generate LST data. The ubESTARFM utilises 
a moving window to locally correct the systematic biases of chosen 
pixels of fine-resolution LST using the mean value of the corresponding 
coarse-resolution LST pixels as a reference, which was shown to 
generate LST having consistency with coarse-resolution data while 
maintaining spatial heterogeneity. 

We evaluated the performance of both algorithms through temporal 
evaluations against in-situ LST and a spatial comparison with the 
ECOSTRESS LST product across 12 locations scattered across the 
Australian continent. Over 11,290 samples at 12 sites, the results 
demonstrate that ubESTARFM outperforms the ESTARFM method, with 
a bias of 2.55 K, ubRMSE of 2.57 K, and R of 0.95 (compared to 4.73 K, 
3.80 K and 0.92, respectively, for ESTARFM). The deviation of uncer
tainty (represented by ubRMSE) of ubESTARFM LST is even lower than 
the benchmark of MODIS LST (2.70 K). In the spatial comparison with 
the ECOSTRESS LST, the ubESTARFM LST has a bias of − 1.69 K, 
ubRMSE of 2.00 K, and R of 0.70 over 43 near clear-sky scenes, while the 
ESTARFM LST has a bias of 1.79 K, ubRMSE of 2.68 K, and R of 0.59. 
Ground-based evaluations and satellite-based comparisons demonstrate 
that ubESTARFM avoids the accumulation of systematic bias that occurs 
within ESTARFM, considerably reduce the deviation of uncertainty, and 
maintain a good level of correlation with validation datasets. 

Overall, compared to ESTARFM, ubESTARFM makes better use of the 
reliable numeric values in MODIS LST while borrowing spatial details 
from Landsat LST. A further assessment also underscores the potential of 
ubESTARFM for application using LST data acquired from geostationary 
platforms (e.g., Himawari-8). Further improvements could include 
considering potential changes in land cover types between training 
dates, extending the theory to sparsely vegetated areas and urban, and 
incorporating data from previous Landsat satellites and/or from up
coming next-generation satellites. It is expected that the generated LST 
can have broad usage and better enable farm- or regional-scale water 
management strategy or decision making. Furthermore, the LST data 
used and generated herein, encompassing a comprehensive spatial 
extent over diverse land covers and climatic conditions, is publicly 
available for benchmarking future algorithmic refinements. 
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