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Abstract. Soil organic carbon (SOC) is the largest terrestrial
carbon pool. SOC is composed of a continuous set of com-
pounds with different chemical compositions, origins, and
susceptibilities to decomposition that are commonly sepa-
rated into pools characterised by different responses to an-
thropogenic and environmental disturbance. Here we map
the contribution of three SOC fractions to the total SOC con-
tent of Australia’s soils. The three SOC fractions, mineral-
associated organic carbon (MAOC), particulate organic car-
bon (POC), and pyrogenic organic carbon (PyOC), repre-
sent SOC composition with distinct turnover rates, chemistry,
and pathway formation. Data for MAOC, POC, and PyOC
were obtained with near- and mid-infrared spectral models
calibrated with measured SOC fractions. We transformed
the data using an isometric-log-ratio (ilr) transformation to
account for the closed compositional nature of SOC frac-
tions. The resulting back-transformed ilr components were
mapped across Australia. SOC fraction stocks for 0–30 cm
were derived with maps of total organic carbon concentra-
tion, bulk density, coarse fragments, and soil thickness. Map-
ping was done by a quantile regression forest fitted with the
ilr-transformed data and a large set of environmental vari-
ables as predictors. The resulting maps along with the quan-
tified uncertainty show the unique spatial pattern of SOC
fractions in Australia. MAOC dominated the total SOC with
an average of 59 %± 17 %, whereas 28 %± 17 % was PyOC
and 13 %± 11 % was POC. The allocation of total organic
carbon (TOC) to the MAOC fractions increased with depth.
SOC vulnerability (i.e. POC/[MAOC+PyOC]) was greater

in areas with Mediterranean and temperate climates. TOC
and the distribution among fractions were the most influential
variables in SOC fraction uncertainty. Further, the diversity
of climatic and pedological conditions suggests that differ-
ent mechanisms will control SOC stabilisation and dynam-
ics across the continent, as shown by the model covariates’
importance metric. We estimated the total SOC stocks (0–
30 cm) to be 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC, which
is consistent with previous estimates. The maps of SOC frac-
tions and their stocks can be used for modelling SOC dynam-
ics and forecasting changes in SOC stocks as a response to
land use change, management, and climate change.

1 Introduction

Soils are the main organic carbon pool in terrestrial ecosys-
tems, storing around two-thirds of the total C. The global
soil organic carbon (SOC) stock is estimated to be around
1500 Pg C for the first metre of soil (Jobbagy and Jackson,
2000), with other estimates ranging from 504 to 3000 Pg C
(Scharlemann et al., 2014). Changes in SOC storage and
dynamics can alter the ecosystem C balance and determine
whether soils become C sources or sinks from local to global
scales (Friedlingstein et al., 2020). SOC is strongly linked
to most soil properties and functions (e.g. nutrient and water
storage and cycling, habitat provisioning, and biodiversity)
(van Leeuwen et al., 2019) and hence is used as a general
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indicator of soil quality/capacity (Schoenholtz et al., 2000;
Bunemann et al., 2018) and soil health/condition.

Soil organic matter consists of a continuum of compounds
with different chemical compositions, origins (above-ground
litter, dead roots, rhizodeposition, microbial-derived), de-
grees of microbial processing and decomposition, and
turnover times (Lehmann and Kleber, 2015). SOC is the main
component of soil organic matter and varies in spatial and
temporal dynamics. SOC is protected against microbial de-
composition by several stabilisation mechanisms which have
been generally grouped into (1) selective preservation due to
biochemical recalcitrance, (2) chemical stabilisation via in-
teractions between organic compounds and mineral surfaces
or metal cations, and (3) physical protection by the inacces-
sibility of decomposers to the organic matter (Sollins et al.,
1996; von Lützow et al., 2006; Rowley et al., 2018). Spa-
tial inaccessibility and interactions between the mineral sur-
faces of silt- and clay-sized particles and organic compounds
are considered the major mechanisms for mid- and long-term
SOC stability (von Lützow et al., 2006), whereas an increas-
ing body of literature questions the relevance of biochemi-
cal recalcitrance for long-term persistence of SOC (Schmidt
et al., 2011). However, the hierarchy between stabilisation
mechanisms varies with the pedoclimatic context, land use,
and SOC fraction.

A myriad of physical, chemical, or combined fractiona-
tion methods have been designed for separating SOC into op-
erational pools characterised by specific stabilisation mech-
anisms, chemical compositions, and distinct turnover rates,
and yet it is difficult to isolate fractions that correspond
to functional SOC pools (von Lützow et al., 2007). Some
fractionation schemes were adapted to quantify conceptual
SOC pools from established C dynamics models, e.g. the
Rothamsted C model (RothC, Jenkinson and Rayner, 1977)
from measured SOC fractions (Poeplau et al., 2013; Zimmer-
mann et al., 2007). However, there can be some discrepan-
cies between the predicted SOC pools when the model is ini-
tialised with modelled SOC pools from equilibrium runs or
from measured SOC fractions (Poeplau et al., 2013). Other
biogeochemical models have been conceptualised and cali-
brated with functional and measurable SOC fractions to over-
come these differences (Robertson et al., 2019) but often re-
quire the determination of many SOC fractions. A compar-
ison of several fractionation schemes (Poeplau et al., 2018)
suggests that size separation into silt + clay (< 53 µm) (i.e.
mineral-associated organic carbon – MAOC) and sand-sized
particles (> 53 µm) (i.e. particulate organic carbon – POC)
may suffice to differentiate pools with distinct turnover rates,
chemistry, and pathway formation (Lavallee et al., 2020).
MAOC is predominantly composed of low-molecular-weight
molecules of microbial origin (e.g. microbial metabolites,
necromass) (Miltner et al., 2012; Kallenbach et al., 2016;
Liang et al., 2019), leachates from plant litter, and rhizode-
position (Villarino et al., 2021), which are protected through
sorption to mineral surfaces or occluded inside microaggre-

gates (Lavallee et al., 2020). POC is mainly composed of par-
tially decomposed plant litter and roots and fungal-derived
compounds (Baisden et al., 2002; Gregorich et al., 2006;
Geng et al., 2019; Villarino et al., 2021) that can be found
free or inside macroaggregates (Rabbi et al., 2014). MAOC
has a lower C : N ratio, a higher proportion of microbial-
derived and proteinaceous compounds (Kleber et al., 2007;
Knicker, 2011), and a longer mean residence time (decades
to centuries) than POC (mean residence time of years to
decades) (Baisden et al., 2002; Gregorich et al., 2006; von
Lützow et al., 2007; Heckman et al., 2022). Separating SOC
into POC and MAOC has been proposed as a simple and
effective way to conceptualise and model SOC dynamics
(Lavallee et al., 2020) and has been applied to predict the
vulnerability of SOC to future climate scenarios (Lugato et
al., 2022).

In Australia, the long history of burning suggests that py-
rogenic organic carbon (PyOC) is an additional important
component of SOC (Lehmann et al., 2008). PyOC refers to
charred residues derived from incomplete combustion of or-
ganic matter (also known as charcoal or black carbon) (Lut-
falla et al., 2017). PyOC is composed of a continuum of or-
ganic compounds thermally altered by fire, and its chemical
composition and pool size depend on the technique used for
its determination (Zimmerman and Mitra, 2017). PyOC is
considered a relatively stable SOC fraction with a turnover
time that ranges from decades to centuries (Singh et al.,
2012), protected from decomposition by the biochemical re-
calcitrance of condensed aromatic C (Lavallee et al., 2019).
However, turnover rates previously assessed from centuries
to many millennia may have overestimated its persistence
in soil (Singh et al., 2012; Lutfalla et al., 2017). PyOC can
be found in both POC and MAOC fractions (Lavallee et al.,
2019). Beyond the biochemical recalcitrance, which would
be the main stabilisation mechanism of PyOC in the POC
fraction (e.g. free PyOC not associated with clay- and silt-
sized mineral particles), PyOC can also interact with mineral
phases and be protected inside microaggregates or through
adsorption (Burgeon et al., 2021). Zimmerman and Mitra
(2017) suggest that PyOC (e.g. naturally occurring or added
as biochar) may promote the stabilisation of non-PyOC by
enhancing the creation of microaggregates and sorption onto
existing organo–mineral complexes. PyOC represents on av-
erage 14 %–26 % of total SOC and can reach up to 60 %–
80 % of SOC (Lehmann et al., 2008; Reisser et al., 2016).
Globally, PyOC stocks are not controlled by fire intensity
and return interval but are explained by soil properties and
climate (Reisser et al., 2016). However, in systems with lo-
cal records of fire history, PyOC content increased in sites
with high-frequency fires (Reisser et al., 2016). In Australia,
fire is an important driver of ecological processes, and bush-
fire frequency has increased in recent decades (Dutta et al.,
2016). Hence, PyOC can represent a large proportion of total
SOC in some Australian regions (Lehmann et al., 2008).
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Mapping and quantifying the stocks of SOC fractions
can be used for modelling SOC dynamics and forecasting
changes in SOC stocks as a response to land use change,
management, and climate change (Lugato et al., 2022; Xu
et al., 2011; Wiesmeier et al., 2016). High-resolution maps
of SOC fractions can inform agricultural management at the
farm scale and be incorporated into the design of climate
change and soil security policies at the state and national lev-
els (Dangal et al., 2022). The objective of this study was to
map the contribution of SOC fractions (MAOC, POC, and
PyOC) to the total SOC in the top 30 cm of the soil and
update the Soil and Landscape Grid of Australia (SLGA)
(Grundy et al., 2015) products for SOC fraction stocks (Vis-
carra Rossel et al., 2019). These digital soil maps will be
part of the v2 SLGA for Australia, following the principles
of transparency, reproducibility, and updatability as new data
become available (Malone and Searle, 2021).

2 Materials and methods

The methodology implemented in this study consists of two
main steps: (1) prediction of SOC fractions across the soil
spectral libraries available for Australia with different spec-
tral models calibrated with measured SOC fraction data from
the Australian Soil Carbon Research Program (SCaRP) (Bal-
dock et al., 2013b) and (2) mapping of the proportions
of SOC fractions after applying the isometric-log-ratio (ilr)
transformation to account for the compositional nature of the
data (i.e. the proportion of SOC fractions sums to 100 %).
Previous studies modelled SOC fraction stocks or concentra-
tions (Sanderman et al., 2021; Viscarra Rossel et al., 2019),
but we found some difficulties in implementing such an ap-
proach (see Sect. 2.5) and hence mapped proportions of SOC.
Finally, we calculated SOC fraction stocks for the 0–30 cm
topsoil using data from SLGA maps of total organic car-
bon (TOC) concentration (Wadoux et al., 2022), bulk density
(Viscarra Rossel et al., 2015), coarse fragments (this study),
and soil thickness (Malone and Searle, 2020).

2.1 Study area

The study area covers the continent of Australia, including
Tasmania and near-shore small islands. In Australia there are
six major climatic regions following the Köppen classifica-
tion. In the north, there are hot, humid summers in equatorial,
tropical, and sub-tropical regions. Summers are hot and dry,
with mild to cold winters in grasslands and desert regions
in the interior. Temperate areas in the southern coastal band
have cold winters and warm summers that are mild at higher
elevations and latitudes. Vast areas of the continent are very
dry, with precipitation increasing towards the coast and ele-
vation in the mountains of the eastern uplands. Australia is
characterised by flat and low-relief vast areas where the tec-
tonic stability and lack of glaciation have preserved a deeply

weathered mantle that dates from the Tertiary (McKenzie et
al., 2004). The distribution of soils in many regions depends
on the stripping of this weathered mantle, while in other areas
the dominant drivers of landforms and soils are water, fluvial,
and aeolian erosion and depositional processes (McKenzie et
al., 2004). Younger soils are found mainly in the east, along
the Great Divide (McKenzie et al., 2004). The dominant soil
orders according to the Australian Soil Classification (Isbell
et al., 1997) are Kandosol (30 % of the area), Tenosol (20 %),
Vertosol (14 %), Rudosol (8 %), Calcarosol (8 %), and Chro-
mosol (7 %) (Searle, 2021). In 2015–2016 most of the area
was dedicated to primary production, with 48 % of the con-
tinent used for livestock grazing (42 % native vegetation and
6 % modified pastures) and less than 5 % dedicated to dry-
land and irrigated cropping. About 9.5 % of Australia is allo-
cated to nature conservation and 18 % is protected managed
resources (Australian Bureau of Agricultural and Resource
Economics and Sciences, 2022).

2.2 SCaRP dataset – sampling design and SOC
fractionation scheme

The soil-sampling design and SOC fractionation protocol of
SCaRP are described in detail in Sanderman et al. (2011)
and Baldock et al. (2013b). The objective of SCaRP was
to characterise SOC stocks and the composition of agricul-
tural topsoils (0–30 cm) and their response to agricultural
practices. Plots of 25 m2 were laid in 4526 sites represen-
tative of the different combinations of agricultural manage-
ment and soil types across Australia between 2008 and 2012.
At each plot, soil samples were collected randomly at 10
nodes of a 5m× 5 m grid with a soil corer (≥ 4 cm diam-
eter) by depth interval (0–10, 10–20, 20–30 cm) and com-
posited by layer. In addition, at least three measurements
of bulk density by depth interval were taken at each plot,
although the methods varied between states to accommo-
date the soil type. A sub-set of 312 samples representative
of the range of TOC content (1.2–90.9 mgCg−1 soil) found
among the whole dataset (N = 24495 samples) and differ-
ent soil types and biomes was subject to fractionation fol-
lowing the protocol described in detail in Baldock et al.
(2013c). The size and chemical fractionation scheme di-
vided SOC into MAOC, POC, and PyOC. MAOC and PyOC
were originally defined as humic organic carbon and resis-
tant organic carbon (ROC) in Baldock et al. (2013c), and
although the ROC fraction may not correspond completely
to PyOC, we changed the terminology to match the recent
literature. A 10 g aliquot of air-dried soil ≤ 2 mm was dis-
persed with 5 gL−1 sodium hexametaphosphate and sepa-
rated into coarse (> 50 µm) and fine (< 50 µm) fractions with
wet sieving using an automated sieve-shaker system (Bal-
dock et al., 2013c). The TOC concentrations of the coarse
and fine fractions were analysed with high-temperature ox-
idative combustion after the removal of inorganic carbon
with 5 %–6 % H2SO3 if carbonates were present (method
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6B3a, Rayment and Lyons, 2011). Solid-state 13C nuclear-
magnetic-resonance (13C NMR) spectroscopy analyses were
conducted on both the coarse (> 50 µm) and fine (< 50 µm)
fractions. 13C NMR is a semi-quantitative method that is
commonly used to measure the proportion of aromatic C
compounds in soil and organic matter samples. The propor-
tion of poly-aryl C and aryl C that could be defined as lignin
was determined and used as an estimate of PyOC. We note
that, whereas the chemical signature of the poly-aryl C is
consistent with and likely dominated by charcoal and charred
plant residues, it may also indicate the presence of com-
pounds of non-pyrogenic origin (Baldock et al., 2013c). POC
and MAOC contents (mgC-fractiong−1 soil) were calculated
by subtracting the proportion of PyOC in each fraction with
the following equations (Baldock et al., 2013c):

POC= (2000− 50 µmOC)(1− fPyOC2000)MF2000, (1)
MAOC= (≤ 50µm OC)(1− fPyOC50)MF50, (2)

PyOC=(2000− 50 µmOC)(fPyOC2000)MF2000

+ (≤ 50µmOC)(fPyOC50)MF50, (3)

where 2000–50 µm OC is the measured TOC content in the
coarse fraction (mgCg−1 2000–50µmfraction), fPyOC2000
is the proportion of TOC attributed to poly-aryl C in the
coarse fraction, MF2000 is the proportion of soil mass found
in the coarse fraction (g2000–50µmfraction/g ≤ 2mmsoil),
≤ 50 µmOC is the measured TOC content in the fine frac-
tion (mgCg−1

≤ 50µmfraction), fPyOC50 is the proportion
of TOC attributed to poly-aryl C in the fine fraction, and
MF50 is the proportion of soil mass found in the fine frac-
tion (g≤ 50µm fraction/g≤ 2mm soil).

2.3 Spectral datasets and harmonisation

Four spectral soil datasets were combined in this study:
SCaRP (4526 sites and 24 495 soil specimens; Baldock
et al., 2013a), the Australian Soil Archive mid-infrared
(MIR) spectral library (703 sites and 4300 soil specimens;
AusSpecMIR) (Hicks et al., 2015), an additional MIR li-
brary of specimens from the Australian Soil Archive that was
not included in the Hicks et al. (2015) work (346 sites and
429 soil specimens; AusSpecMIR2), and the Australian Soil
Archive visible and near-infrared (Vis–NIR) spectral library
(4533 sites and 25 174 soil specimens; AusSpecNIR). The
majority but not all of these Vis–NIR data were described in
Viscarra Rossel and Hicks (2015).

The AusSpecNIR library also contained a sub-set (309) of
the soil specimens described in Viscarra Rossel and Hicks
(2015), which contain measures of soil carbon fractions
from selected SCaRP soil specimens and associated Vis–NIR
spectra. The spectra were collected using the same instru-
ment that was used to derive the Australian Soil Archive
Vis–NIR spectral library. The AusSpecNIR library contained
further data from the Terrestrial Ecosystem Research Net-
work (TERN) Ecosystem Surveillance plots (Sparrow et al.,

2020; Malone et al., 2020), increasing the representation of
non-agricultural soils (rangelands, forests, woodlands) of the
combined datasets (Fig. 1b). With these TERN data, vegeta-
tion and soils are sampled in more than 800 permanent plots
laid with stratified random sampling across bioregions (i.e.
zones with similar landforms, vegetation, and climate, anal-
ogous to ecoregions) (Sparrow et al., 2020). Soil samples are
taken from three depth intervals (0–10, 10–20, 20–30 cm) in
nine locations within a 100m× 100 m plot (Sparrow et al.,
2020), for a total of 15 157 soil specimens (with associated
Vis–NIR spectra) at 5711 georeferenced sampling points.

Excepting those with soil carbon fraction measurements,
multiple soil samples (approximately 700) were represented
in both AusSpecMIR and AusSpecNIR, and duplicates were
removed from AusSpecNIR for the subsequent modelling
processes.

The ScaRP spectral library was produced with a Nico-
let 6700 FTIR spectrometer (Thermo Fisher Scientific Inc.,
Waltham, MA, USA) equipped with a KBr beam split-
ter, a DTGS detector, and an AutoDiff automated diffuse-
reflectance accessory (Pike Technologies, Madison, WI,
USA). Spectra were acquired over the range 8000–400 cm−1

with a resolution of 8 cm−1. The spectrum of each soil sam-
ple was the average of 60 scans. The AusSpecMIR spec-
tral library was created with a Bruker FT-IR Vertex70 spec-
trometer. This instrument is fitted with a mercury cadmium
telluride detector that is liquid-nitrogen-cooled to improve
the signal-to-noise ratio and has a spectral range of 7500–
600 cm−1 at 4 cm−1 resolution. AusSpecMIR2 was mea-
sured with a Bruker FT-IR Invenio spectrometer with a sim-
ilar liquid-nitrogen cooling system and a spectral range of
7500–600 cm−1 at 4 cm−1 resolution. Soil samples from
AusSpecMIR and AusSpecMIR2 were scanned in quadru-
plicate. Diffuse-reflectance spectra for the AusSpecNIR li-
brary were collected with a Labspec® Vis–NIR spectrome-
ter (PANalytical Inc., Boulder, CO, USA) for the range 350–
2500 nm at 1 nm resolution. Each spectrum was the average
of 30 scans, and up to four spectra were collected for each
soil sample.

SCaRP spectra were baseline-corrected and mean-centred
prior to subsequent analyses but were not subject to ad-
ditional pre-processing. Pre-processing of the AusSpecNIR
spectra consisted of spectral trimming (453–2500 nm), a
Savitsky–Golay smoothing filter, conversion of reflectance
to absorbance, and standard normal variate transformation.
AusSpecMIR and AusSpecMIR2 were both pre-processed
with the following steps: (1) spectral resolution and range
harmonisation. All spectra were resampled using a smooth-
ing spline function to a common 2 cm−1 resolution. The
spectral range was set to 6500 to 598 cm−1, (2) the Savitsky–
Golay smoothing filter with a 22 cm−1 local neighbourhood,
(3) conversion from reflectance to absorbance units, and (4)
standard normal variate transformation.
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Figure 1. (a) Location of SCaRP soil samples subject to fractionation (n= 312) by Baldock et al. (2013c). (b) Soil spectral datasets combined
for mapping soil organic carbon fractions. TERN samples are part of the AusSpecNIR library.

2.4 Spectral models and predictions of SOC fractions

SOC fractions’ contents (mgCg−1 soil) of SCaRP were
previously estimated with partial-least-squares-regression
(PLSR) models by Baldock et al. (2013a). Baldock et
al. (2013a) reported cross-validation results (squared-root-
transformed SOC fractions’ contents) withR2 values of 0.84,
0.88, and 0.85 and root-mean-squared errors (RMSEs) of
0.43, 0.40, and 0.32 for POC, MAOC, and PyOC, respec-
tively.

SOC fractions’ contents for AusSpecMIR and
AusSpecMIR2 were estimated with a new set of spec-
tral predictive functions (Malone and Wadoux, 2021).
Spectral harmonisations using piecewise direct standardis-
ation (Bouveresse and Massart, 1996; Ge et al., 2011) was
used to align spectra collected for SCaRP and AusSpecMIR2
to the AusSpecMIR spectrometer. Approximately 200 soil
samples from the SCaRP dataset were measured with
the Bruker FT-IR Vertex70 spectrometer, following the
estimate of parameters to harmonise the SCaRP library with
AusSpecMIR. Similarly, the AusSpecMIR2 was harmonised
with AusSpecMIR with piecewise direct standardisation
(PDS) using a standard of 300 soil samples measured with
both instruments.

Soil spectral model functions were developed with the
312 SCaRP samples with data on SOC fraction con-
centration (mgC-SOCfractiong−1 soil), TOC concentration
(mgCg−1 soil), and used PDS-harmonised spectra. The con-
tents of SOC fractions were converted into percentages of
TOC (summing up to 100 %) and modelled as compositional
data. Hence, the ilr transformation was applied to the propor-
tions of SOC fractions. The ilr generates aD−1-dimensional
Euclidean vector, where D is the number of variables in
the original variables (Aitchison, 1986). PLSR models with
bootstrapping were used to predict the ilr-transformed SOC

fractions. Out-of-bag validation statistics were calculated
from the average of 50 model realisations on the back-
transformed data. The average RMSEs for POC, MAOC, and
PyOC were 6.2 %, 7.7 %, and 6.4 %, respectively. Lin’s con-
cordance correlation coefficient (ρc) values were 0.86, 0.76,
and 0.70, and R2 was 0.74, 0.61, and 0.52. When the per-
centages were back-transformed into SOC fractions’ con-
tents (mgC-SOCfractiong−1 soil), the RMSEs were 2.1, 2.7,
and 1.8 mgCg−1 soil, ρc was 0.92, 0.95, and 0.90, and R2

was 0.85, 0.88, and 0.77 for POC, MAOC, and PyOC, re-
spectively.

SOC fractions’ contents for the AusSpecNIR dataset were
predicted with PLSR models calibrated with data on TOC
concentration and SOC fractions’ contents from the 309
SCaRP samples. Before modelling, the spectra were trimmed
to the 453–2500 nm range, processed with a Savitsky–Golay
smoothing filter, and transformed from reflectance to ab-
sorbance. We also applied the standard normal variate trans-
formation, and then wavelet coefficients were derived. Simi-
larly, as for the MIR datasets, spectral predictive functions
were developed for ilr-transformed SOC fraction compo-
sitional data, and validation statistics were calculated for
the back-transformed data. The validation statistics for the
POC, MAOC, and PyOC models were, respectively, RM-
SEs of 5.0 %, 6.4 %, and 5.8 %, ρc of 0.92, 0.84, and 0.76,
and R2 of 0.83, 0.71, and 0.61 when validated as propor-
tions of TOC. When the validation statistics were calculated
for SOC fractions’ contents, the RMSEs were 3.2, 4.0, and
2.3 mgCg−1 soil, ρc 0.81, 0.87, and 0.80, and R2 0.65, 0.75,
and 0.64 for POC, MAOC, and PyOC.

Fitted spectral models based on either MIR and Vis–NIR
data were then extended to all data cases of the respective
soil spectral libraries.
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2.5 SOC fractions’ data processing and depth
standardisation

The georeferenced SOC fraction data from all libraries
were projected to WGS84 (EPSG:4326) and collated. The
data were filtered and processed to harmonise units, and
duplicates and potentially wrong data entries (e.g. miss-
ing upper- or lower-horizon depths) were excluded. SOC
predictions of the quadruplicated scans per soil sample
were averaged as well as multiple soil samples per hori-
zon by sampling location. SOC fraction concentrations
(mgC-SOCfraction g−1 soil) were transformed to the propor-
tion of total SOC (% SOC). SOC potential vulnerability (Vp)
was defined as the ratio of POC to the sum of MAOC and
PyOC (Baldock et al., 2018), i.e. the proportion of the less-
protected SOC fraction (POC) to the SOC fractions with
stability by physico-chemical protection and recalcitrance
and longer turnover rates. SOC fractions and Vp data were
standardised to the first three depth intervals of the Global-
SoilMap (GSM) specifications (0–5, 5–15, 15–30 cm) (Ar-
rouays et al., 2014) with equal-area quadratic splines (Bishop
et al., 1999) (Fig. 2). For sampling locations with just one
sampled horizon, this was converted to the GlobalSoilMap
depth intervals (assigned to a single or several depth inter-
vals) via aggregation with the slab function of the aqp R
package (Beaudette et al., 2022). We calculated the mean and
standard deviation of SOC fractions and Vp by the Global-
SoilMap depth interval and by biome (Olson et al., 2001).
Extreme values of Vp were constrained to a maximum of 5
before calculating the summary statistics.

Modelling SOC fraction concentrations directly was the
preferred option tested in preliminary work. We compared
the sum of the predicted SOC fractions’ contents with mea-
sured TOC. Pearson’s r correlation coefficient was 0.56,
but the sum of SOC fractions showed some extreme values
(Fig. S1 in the Supplement). The mismatch between the sum
of SOC fractions and measured TOC is most likely derived
from the prediction error of the spectral models and to a mi-
nor extent from the TOC recoveries of the laboratory SOC
fractionation data. We adjusted the SOC fractions’ contents
with measured TOC data extracted from the Soil Data Fed-
erator (Searle et al., 2021) and the Biome of Australian Soil
Environments (BASE) contextual data (Bissett et al., 2016).
However, the resulting dataset had a reduced spatial cover-
age and the maps exhibited unrealistic patterns. Hence, we
preferred to use all available data and map the proportion of
SOC fractions and SOC vulnerability.

The values of SOC proportions were modelled considering
their compositional nature (i.e. multivariate data with pos-
itive values that sum up to a constant in the case of SOC
fractions 100 %). The set of all compositional observations
(SD) is a simplex sample space, a sub-set of the real space
RD . The ilr transformation (Egozcue et al., 2003) transposes
SD into multi-dimensional real space (RD−1), without the
collinearity problems associated with other transformations,

such as the centred log-ratio transformation (clr). Ilr is based
on the choice of an orthonormal basis on the hyperplane in
RD formed by the clr transformation. The ilr-transformation
equation is defined:

zi = ilr(xi)=

√
i

i+ 1
ln

 i

√∏i
j=1xj

xi+1

 ,
i = 1,2, . . .,D− 1. (4)

The inverse equation is defined as follows (Filzmoser and
Hron, 2008):

xi =
exp(yi)∑D
i=1 exp(yi)

, i = 1,2, . . .,D, (5)

yi =

D∑
j=i

zj
√
j (j + 1)

−

√
i− 1
i
zi=1

with z0 = zD = 0 for i = 1,2, . . .,D. (6)

We applied the ilr transformation with the ilr function of the
compositions R package (van den Boogaart et al., 2022), gen-
erating two variables hereafter referred to as ilr1 and ilr2.
The predictions (ilr1 and ilr2) were back-transformed into
MAOC, POC, and PyOC with the ilrInv function.

2.6 Coarse fragments

Data on the abundance of coarse fragments
(particles> 2 mm) and gravimetric content (wt %)
were extracted using the TERN Soil Data Federa-
tor (https://esoil.io/TERNLandscapes/Public/Pages/
SoilDataFederator/SoilDataFederator.html, last access:
22 June 2022) managed by CSIRO (Searle et al., 2021).
The Soil Data Federator is a web API that compiles soil
data from different institutions and government agencies
throughout Australia. The abundance (% vol) is assessed vi-
sually in the field as part of the soil profile description using
standards described in the Australian Soil and Land Survey
Field Handbook (National Committee on Soil and Terrain,
2009). The abundance of rock fragments per soil horizon
on the cut surface of the soil profile was grouped into six
categories: very few (0 %–2 %), few (2 %–10 %), common
(2 %–20 %), many (20 %–50 %), abundant (50 %–90 %), and
very abundant (> 90 %). The gravimetric content (% mass)
is measured in the laboratory as percent mass of coarse frag-
ments (particles> 2 mm) from the whole soil. Here, we take
the profile surface abundance of coarse fragments as a proxy
for volumetric coarse fragments (CFVol). The data were
cleaned and processed to exclude duplicates and wrong data
entries (e.g. missing values). The observations of CFVol (%)
were converted into GlobalSoilMap depth intervals with the
slab function of the aqp R package (Beaudette et al., 2022),
assigning the most probable class to each depth interval.
The gravimetric coarse fragments were also standardised to
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Figure 2. Locations of the spectral predictions standardised for the depths 0–5, 5–15, and 15–30 cm used as input data for digital soil
mapping. Contribution of SOC fractions to total organic carbon (% TOC): MAOC, POC, PyOC, and Vp.
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the GlobalSoilMap depth intervals with equal-area quadratic
splines (Bishop et al., 1999). Observations of gravimetric
coarse-fragment content (CFMass) were transformed into
volumetric ones with Eq. (4):

CFVol(%)=
VolCF

VolWhSoil

MassCF
ρCF

MassWhSoil
ρWhSoil

=
CFMass× ρWhSoil

ρCF
, (7)

where ρWhSoil is the bulk-density prediction for bulk soil
from SLGA (Viscarra Rossel et al., 2015), ρCF is assumed
to be 2.65 gcm−3 (Hurlbut and Klein, 1977, in McKenzie et
al., 2002), and CFVol is the volumetric coarse-fragment con-
tent (continuous), which was assigned to the corresponding
class. This resulted in CFVol observations for 110 308 loca-
tions (Fig. 3).

2.7 Environmental covariates

We selected 61 spatially exhaustive covariates (90 m grid-
cell size) for Australia made available by TERN, describing
soil-forming factors and soil properties (Table 1), to calibrate
scorpan models (McBratney et al., 2003). A scorpan model
establishes quantitative relationships between soil properties
or classes and other soil properties (s), climate (c), organ-
isms (o), relief (r), parent material (p), age (a), and spatial
position (n), i.e. soil= f (s,c,o,r,p,a,n) (McBratney et al.,
2003). We used the soil properties of clay and sand content
for each GSM layer due to the relevant role of soil texture in
SOC stabilisation. We selected 15 climatic covariates since
climate is a relevant driver of SOC storage from the global to
sub-regional scale (Wiesmeier et al., 2019), influencing both
the SOC decomposition and the C input into the soil. The or-
ganism factor was represented by 22 covariates related to net
primary productivity (e.g. normalised difference vegetation
index, NDVI, enhanced vegetation index, EVI) and vegeta-
tion type, which influence the C allocation patterns, quanti-
ties, and pathways of C input (e.g. above-ground vs. below-
ground). The long-term average NDVI calculated with Land-
sat 5 surface reflectance data was processed with Google
Earth Engine. Eight relief covariates were surrogates for ele-
vation, water flow, erosion processes, and sediment transport
and accumulation, derived from the 3 s Shuttle Radar Topo-
graphic Mission (SRTM) (Farr et al., 2007). Gamma radio-
metrics, total magnetic intensity, and weathering intensity in-
dex (Wilford, 2012) were used as proxies for parent material
and age. Gamma radiometrics inform on regolith’s mineral-
ogy and surface geochemistry. The concentrations and ratios
of three radio elements (potassium, K, thorium, Th, uranium,
U) are indicators of the lithology and degree of weathering
(Wilford and Minty, 2007). The weathering intensity index
map (Wilford, 2012) was generated from field-based data on
the degree of bedrock weathering and multi-variate analysis
using gamma radiometrics and relief covariates as predictors.

The covariates were void-filled by a combination of plane
fitting and inverse distance weighting (< 0.5 % of pixels in
the study area). The plane-fitting method was used to com-
pute the average value of the neighbouring pixels, and oth-
erwise an inverse-distance-weighting algorithm with default
parameters was applied when the error in the plane fitting
was large. This is the default implementation from ArcGIS
software 10.5.

2.8 Modelling SOC fractions, SOC vulnerability, and
coarse fragments

Quantile regression forests (Meinshausen, 2006) are a gener-
alisation of the popular machine-learning algorithm random
forests (Breiman, 2001). Random forests are based on an en-
semble of regression trees. Each decision tree is fitted on a
bootstrap sample of the original data. Further randomness is
incorporated into each individual regression tree by selecting
a sub-set of variables in each node for which the split is made.
While random forests report the mean from the observations
allocated in each final node, quantile regression forests keep
all values (Meinshausen, 2006), and thus estimates of condi-
tional quantiles can be made (Meinshausen, 2006). In digi-
tal soil mapping (DSM), quantile regression forests were ap-
plied previously by Vaysse and Lagacherie (2017).

We fitted quantile regression forest models for ilr1, ilr2,
and Vp by GSM depth interval with the following settings:
ntree= 500 (number of trees), default values of nodesize= 5
(minimum number of observations in terminal nodes), and
mtry= 7 (number of predictor variables sub-set as candi-
dates to make the split at each node). The models were cal-
ibrated with the ranger package (Wright and Ziegler, 2017)
for the R environment. We fitted probability random forest
models for coarse fragments (Malley et al., 2012), setting
nodesize= 10. In probability random forest models, each
tree predicts the class probability for each sample, and these
are averaged for the forest probability estimate. The models
were evaluated with 10-fold cross-validation. Variable im-
portance was calculated with permutation (Breiman, 2001)
on models fitted with 5000 trees and all observations. After
the regression trees are constructed, the values of a variable
of interest are randomly permuted and the error for the out-
of-bag data is estimated. The variable importance is given by
the percent increase in error compared with the out-of-bag
predictions, leaving all variables intact.

We checked the spatial structures of the regression model
residuals with cross- and auto-variograms. The spatial cross-
correlation was somewhat important at a short range (ap-
proximately 20 km) for the 15–30 cm depth interval but with
a high nugget-to-sill ratio in the fitted variogram models.
For the 0–15 and 5–15 cm depths, only the residuals of ilr2
had some spatial structure. Overall, we considered the spa-
tial structures of the residuals to be negligible for the effects
of mapping at the continental scale and hence modelled the
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Figure 3. Calibration data on coarse-fragment (% vol) classes for the 0–5, 5–15, and 15–30 cm depth intervals.

spatial distribution of SOC fractions with quantile regression
models only.

For mapping, the expected mean values of the SOC frac-
tions and quantile regression forest models for ilr1 and ilr2
were fitted with all available observations, predicted at 90 m
resolution, and back-transformed into MAOC, POC, and
PyOC. Similarly, the mean and prediction intervals for Vp
were predicted with a quantile regression forest model fitted
with all observations, setting the 95th and 5th percentiles as
prediction interval limits at a 90 % confidence level. The pre-
diction intervals for the SOC fractions were calculated from
the full-conditional probability distributions of ilr1 and ilr2
inferred from the quantile regression forest models. In the
model cross-validation, for each observation, a set of 500
values was generated with simple random sampling with re-
placement from both the ilr1 and ilr2 models. Each of the
500 pairs was back-transformed into proportions of MAOC,
POC, and PyOC (percentage of SOC). The lower and up-
per prediction interval limits were calculated as the 5th and
95th percentiles from the empirical distribution of the 500
values of the SOC fractions. For mapping, we used 100 sim-
ulations instead of 500 to reduce the computational time. We
also mapped the probability of each CFvol class at 90 m res-
olution.

2.9 Validation statistics

Model performance was assessed with a random 10-fold
cross-validation for the ilr variables, back-transformed SOC
fraction predictions, and Vp. The validation statistics in-
cluded the RMSE, the bias or mean error (ME), the coeffi-
cient of determination (R2), and Lin’s concordance correla-
tion coefficient (ρc) (Lin, 1989). For variable z at a location
si , the validation statistics are calculated as

RMSE=

√√√√1
n

n∑
i=1
(z(si)− ẑ(si))

2, (8)

ME=
1
n

n∑
i=1

z(si)− ẑ(si), (9)

R2
= 1−

∑n
i=1(z(si)− ẑ(si))

2∑n
i=1(z(si)− z)

2 , (10)

ρc =
2ρσẑσz

σ 2
ẑ
+ σ 2

z + (ẑ− z)
2
, (11)

where z(si) and ẑ(si) are observed and predicted values of z
at the location si (i = 1, . . .,n), z and ẑ are the means of the
observed and predicted values, respectively, σ 2

z and σ 2
ẑ

are
their respective variances, and ρ is the correlation between
the predicted and observed values. The concordance evalu-
ates both the accuracy and the precision of the prediction: it
can range between−1 and 1, and a value closer to 1 indicates
a better agreement between predictions and observations.

We assessed the validity of the uncertainty estimates with
the prediction interval coverage probability (PICP) (Shrestha
and Solomatine, 2006). The PICP is calculated as

PICP=
count(LPLi < z(si) < UPLi)

n
× 100 , (12)

where n is the number of observations, and the numerator is
the counts that an observation z(si) fits within its prediction
interval limits. If the prediction uncertainty was correctly es-
timated, for example, a 90 % confidence level should have
a PICP value close to 90 % (approximately 90 % of the ob-
served values fall within the 90 % prediction interval).

The CFvol models were validated with 10-fold cross-
validation, assigning the class with the highest probability
to each observation prediction. Using the predicted and ob-
served class values, we computed an error matrix. The er-
ror matrix is a two-way contingency table composed of the
observed and predicted classes for all points within the val-
idation dataset. From the error matrix, we calculated kappa
indices: overall accuracy, user’s accuracy, and producer’s ac-
curacy.
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Table 1. List of environmental covariates with unit and associated reference when applicable. All covariates are in geographic coordinates
with a 3 arcsec grid-cell (about 90m× 90 m) resolution with coordinate system WGS84 (EPSG:4326) and extent 10.0004–44.00042◦ S,
112.99958–153.99958◦ E.

Factor Covariate Predictor variable Unit Reference

Soil Clay Depth-specific soil clay content (0–5, 5–15, 15–30 cm) % Malone and Searle (2021)
Sand Depth-specific soil sand content (0–5, 5–15, 15–30 cm) % Malone and Searle (2021)

Climate ADM Mean annual aridity index (annual precipitation/annual
potential evaporation)

Index Harwood (2019)

EPA Annual potential evaporation mm Harwood (2019)
EPI Minimum monthly potential evaporation mm Harwood (2019)
EPX Maximum monthly potential evaporation mm Harwood (2019)
Prescott Prescott index generated by using Prescott index

0.445P/E0.75
Index –

PTA Annual precipitation mm Harwood (2019)
PTI Minimum monthly precipitation mm Harwood (2019)
PTS1 Precipitation seasonality 1 – solstice-seasonality

composite factor ratio
Ratio Harwood (2019)

PTS2 Precipitation seasonality 2 – equinox-seasonality
composite factor ratio

Ratio Harwood (2019)

PTX Maximum monthly precipitation mm Harwood (2019)
RSM Short-wave solar radiation – annual mean MJm−2 d−1 Harwood (2019)
TNM Minimum temperature – annual mean ◦C Harwood (2019)
TRA Annual temperature range ◦C Harwood (2019)
TXM Maximum temperature – annual mean ◦C Harwood (2019)
WDA Annual atmospheric water deficit (annual precipitation−

annual potential evaporation)
mm Harwood (2019)

Organisms/
vegetation

NDVI_Q1 Landsat 5 long-term average NDVI
(January–March) 1986–2011

Unitless U.S. Geological Survey
Landsat 5 Surface
Reflectance Tier 1;
Masek et al. (2006)

NDVI_Q2 Landsat 5 long-term average NDVI
(April–June) 1986–2011

Unitless U.S. Geological Survey
Landsat 5 Surface
Reflectance Tier 1;
Masek et al. (2006)

NDVI_Q3 Landsat 5 long-term average NDVI
(July–September) 1986–2011

Unitless U.S. Geological Survey
Landsat 5 Surface
Reflectance Tier 1;
Masek et al. (2006)

NDVI_Q4 Landsat 5 long-term average NDVI
(October–December) 1986–2011

Unitless U.S. Geological Survey
Landsat 5 Surface
Reflectance Tier 1;
Masek et al. (2006)

FC_Max_BS Landsat fractional cover–bare soil–maximum
(1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Max_NPV Landsat fractional cover–non-photosynthetic
vegetation–maximum (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Max_PV Landsat fractional cover–photosynthetic vegetation–
maximum (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Mean_BS Landsat fractional cover–bare soil–mean
(1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Mean_NPV Landsat fractional cover–non-photosynthetic
vegetation–mean (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Mean_PV Landsat fractional cover–photosynthetic vegetation–
mean (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Min_BS Landsat fractional cover–bare soil minimum
(1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_Min_NPV Landsat fractional cover–non-photosynthetic
vegetation–minimum (1987–2019)

% Joint Remote Sensing
Research Program (2021)
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Table 1. Continued.

Factor Covariate Predictor variable Unit Reference

FC_Min_PV Landsat fractional cover–photosynthetic vegetation–
minimum (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_SD_BS Landsat fractional cover–bare soil–standard
deviation (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_SD_NPV Landsat fractional cover–non-photosynthetic
vegetation–standard deviation (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FC_SD_PV Landsat fractional cover–bare soil–standard
deviation (1987–2019)

% Joint Remote Sensing
Research Program (2021)

FPAR_Max Fraction of photosynthetically active radiation
(FPAR)–AVHRR–maximum value in the time series

% Donohue et al. (2021)

FPAR_Mean FPAR
–AVHRR–mean value in the time series

% Donohue et al. (2021)

FPAR_Median FPAR
–AVHRR–median value in the time series

% Donohue et al. (2021)

FPAR_Min FPAR
–AVHRR–minimum value in the time series

% Donohue et al. (2021)

LC_EVI National Dynamic Land Cover Dataset mean of
the enhanced vegetation index (EVI) for the time series
2000–2008

Unitless Lymburner et al. (2010)

Pers_Green_Veg Landsat 2000–2010 persistent green-vegetation
fraction

Unitless Johansen et al. (2012)

Relief DEM Elevation 3 Second – Shuttle Radar Topography
Mission

m Farr et al. (2007)

MRRTF Multi-resolution ridgetop flatness Unitless Gallant and Austin (2015)
MRVBF Multi-resolution index of valley-bottom flatness Unitless Gallant and Dowling (2003)
Plan_curv Plan curvature Unitless Wilson and Gallant (2000)
Prof_curv Profile curvature Unitless Wilson and Gallant (2000)
Roughness Relief roughness Unitless Wilson and Gallant (2000)
Slope Slope % Zevenbergen and Thorne (1987)
TWI Topographic wetness index Unitless Wilson and Gallant (2000)

Parent material/ Gravity Gravity Anomaly Grid of Australia Unitless Lane et al. (2020)
age dose Radiometric grid of Australia (Radmap) v4 2019 –

Filtered dose
Unitless Wilford and Kroll (2020)

K Radmap v4 2019 –
potassium

% Wilford and Kroll (2020)

Th Radmap v4 2019 –
thorium

ppm Wilford and Kroll (2020)

U Radmap v4 2019 –
uranium

ppm Wilford and Kroll (2020)

Th_K Radmap v4 2019 –
thorium : potassium ratio

Ratio Wilford and Kroll (2020)

U2_Th Radmap v4 2019 –
uranium-squared : thorium ratio

Ratio Wilford and Kroll (2020)

U_K Radmap v4 2019 –
uranium : potassium ratio

Ratio Wilford and Kroll (2020)

U_Th Radmap v4 2019 –
uranium : thorium ratio

Ratio Wilford and Kroll (2020)

WII Weathering intensity index Unitless Wilford (2012)

The overall accuracy is the fraction of locations correctly
classified. It is calculated as

p =

U∑
i=1

NUU/N, (13)

where U is the total number of classes. The user’s accuracy
represents the fraction of the class u that is correctly clas-
sified (i.e. mapped class u in the validation dataset is also
observed as class u):

pu =
Nuu

Nu+
. (14)
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Producer’s accuracy is similar to the user’s accuracy but is
calculated on the columns marginal or the error matrix. It is
the fraction of observations u for which the prediction is also
class u. It is obtained as follows:

ru =
Nuu

N+u
. (15)

For more information on kappa statistics for evaluating map
accuracy, we refer the reader to Congalton (1991) and Brus
et al. (2011).

2.10 Mapping SOC fraction densities and stocks

The expected SOC fraction density for each GSM depth in-
terval i was calculated with the following equation using the
map of TOC concentration from v1.2.SLGA (Wadoux et al.,
2022), bulk density for the whole soil (Viscarra Rossel et al.,
2015), and volumetric coarse fragments:

SOCfraction idensity(MgCha−1 cm−1)=

SOCfraction i

(
mgCSOC fraction i

mgC

)
×TOC

(
mgC

g soil< 2mm

)
× bulk densitywhole

(
gsoil
cm3

)
×
(
1− coarse fragmentsvol(%/100)

)( soil< 2 mm
g soil

)
× correction units

(
108 cm2

ha
Mg

109 mg

)
, (16)

coarse fragmentsvol =

6∑
u=1

CF probabilityu×CF midu, (17)

where CF probabilityu is the predicted probability and
CF midu the midpoint of the CFvol class u. The SOC stock
density may be overestimated, especially in soils with a high
content of rock fragments, due to using the bulk density of
the whole soil and not of fine soil (Poeplau et al., 2017).
We then calculated the SOC fraction stocks for the 0–30 cm
depth interval using the median predictions of soil thickness
(Malone and Searle, 2020) as a constraint in areas with shal-
low soils (< 30 cm). We explored differences among SOC
fraction stocks (Mg Cha−1) by biome and land use (natural
or agriculture) by taking a regular sample of 500 000 pixels
across Australia.

The uncertainty of the SOC fraction density for each GSM
depth interval was estimated with simulations. We gener-
ated a sample of 500 values from the conditional probabil-
ity distributions of ilr1 and ilr2 and back-transformed those
into proportions of MAOC, POC, and PyOC (percentage of
SOC). Similarly, we generated a sample of 500 TOC values
with the quantile regression model. To account for the uncer-

tainty of the coarse-fragment volume, we generated a sam-
ple of 500 values where (1) the number of samples within
each CFVol class was proportional to the predicted class prob-
ability and (2) assumed a continuous uniform distribution
within each class. The sample for bulk density was gener-
ated assuming a normal distribution, where the standard de-
viation was calculated from the prediction interval limits,
sd= UPL−LPL/2× z, with z-score= 1.64 for a 90 % pre-
diction interval. We calculated the SOC fraction density for
each simulation and calculated the mean and upper and lower
prediction interval limits with the 95th and 5th percentiles.

The uncertainty in SOC fraction stocks for 0–30 cm was
calculated in a similar way for a sub-set of 98 400 pixels,
incorporating the uncertainty of soil thickness (Malone and
Searle, 2020). A sample of 500 values for soil thickness was
generated assuming a normal distribution, where the stan-
dard deviation was calculated from the prediction interval
limits (10th and 90th percentiles), sd= UPL−LPL/2× z,
with z-score= 1.28 for a 80 % prediction interval. For each
sample, we calculated the corresponding thickness for each
GlobalSoilMap layer (j = 1,2,3) and calculated the SOC
fraction stock:

SOCfraction istock(MgCha−1)=

3∑
j=1

SOCfraction i

(
mgCSOC fraction i

mgC

)

×TOC
(

mgC
g soil< 2mm

)
× bulk densitywhole

(
g soil
cm3

)
×
(
1−Coarse Fragmentsvol(%/100)

)( soil< 2mm
g soil

)
× thicknessj (cm)

× correction units

(
108 cm2

ha
Mg

109 mg

)
. (18)

The 95th and 5th percentiles of the 500 simulations were
calculated to estimate the upper and lower prediction inter-
val limits of the SOC fraction stocks. The means of the 500
simulations were compared with predictions of SOC fraction
stocks for 0–30 cm at those locations by Viscarra Rossel et
al. (2019).

We performed a variance-based, global sensitivity analy-
sis of every pixel to identify which variables account most
for the uncertainty of SOC fraction density and stocks and
how they vary spatially. We calculated the first-order and to-
tal effects of Sobol’s sensitivity indices (Saltelli et al., 2008).
The first-order sensitivity index Si represents the main ef-
fect contribution of each input factor Xi (SOC fraction %,
TOC, CFvol, and bulk density) to the variance of the out-
put of model Y (SOC fraction density). It is calculated as
the quotient between the variance of the conditional expec-
tation of the output with respect to an input factor and the
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Figure 4. Distribution of TOC among three SOC fractions in the
spectral dataset: MAOC, POC, and PyOC.

unconditional variance of the output (Saltelli et al., 2008).
Si ranges between 0 and 1, and a high value indicates that
factor Xi is an important contributor to the variance of the
output (if we knew the true value of Xi , we would signif-
icantly reduce the variance of Y). The total effect index STi
includes non-additive features of the model by accounting for
the first-order effect of Xi and its interactions with other fac-
tors on the variance of Y. When STi is close to 0, the factor
is non-influential on the model output variance. A compre-
hensive explanation of the variance-based methods for global
sensitivity analyses can be found in Saltelli et al. (2008). We
calculated the indices with the method by Martinez (2011)
with the function sobolmartinez of the sensitivity package in
R (Iooss et al., 2021).

3 Results

3.1 Variation of the proportions of SOC fractions with
depth and biome

The boxplots of the SOC fraction data predicted with spec-
tral models showed that most of the TOC was found in
the MAOC fraction with a mean (± standard deviation)
of 59 %± 16 %, whereas 28 %± 18 % of TOC was PyOC
and 13 %± 11 % was POC. The allocation of TOC to the
MAOC fractions increased with depth (Fig. 4), with means
(± standard deviation) of 56 %± 17 %, 59 %± 17 %, and
62 %± 18 % at 0–5, 5–15, and 15–30 cm, respectively. Con-
versely, the proportion of SOC stored as POC decreased with
depth, from 15 %± 11 % and 13 %± 11 % in the top 0–5
and 5–15 cm to 11 %± 11 % at 15–30 cm. The percentage of
SOC in the PyOC fraction remained relatively constant with
depth, with values around 29 %± 17 % (Fig. 4). Hence, on
average, carbon vulnerability decreased slightly with depth,
with Vp= 0.2± 0.2 at 0–5 and 5–15 cm and Vp= 0.1± 0.3
at 15–30 cm.

The distribution of TOC among fractions showed similar
patterns across biomes (MAOC� PyOC> POC), except for

montane grasslands and shrublands, where 67 % of TOC was
stored as PyOC, while only 27 % was stored as MAOC (Ta-
ble 2 and Fig. S2 in the Supplement). However, there were
only 160 observations located in this biome. The propor-
tion of TOC as POC was greater in Mediterranean forests
and scrub, temperate forests, and tropical and sub-tropical
forests. In Mediterranean systems, the proportion of MAOC
was around 10 % less than across the other biomes, (exclud-
ing montane grasslands), whereas the smallest proportion of
PyOC was found in tropical and sub-tropical forests. Hence,
the Vp was highest in the Mediterranean biome, followed by
temperate forests and tropical and sub-tropical forests, de-
creasing with depth across all biomes (Table 2).

3.2 Cross-validation statistics for SOC fractions

The cross-validation statistics indicated that both ilr-fraction
models had a similar RMSE and bias, although the R2 and
ρc were better for ilr2 than ilr1. Model performance indices
decreased with depth but were overall good, with R2

≥ 0.54
for ilr1 and R2

≥ 0.68 for ilr2. Similarly, the concordance
coefficients indicated good agreement between predictions
and observations, with ρc ≥ 0.70 for ilr1 and ρc ≥ 0.81 for
ilr2. The uncertainty was somewhat underestimated (Table 3)
but was close to a PICP of 90 %. The cross-validation of
the back-transformed SOC fractions indicated that the con-
cordance coefficient and R2 followed the trend PyOC>
MAOC> POC (Table 3). In contrast, the RMSE was great-
est for MAOC, with values between 8 % and 10 %, and was
somewhat smaller for PyOC and POC, between 8 % and 6 %.
SOC fraction predictions had a small bias, with an average
underprediction of MAOC and an overprediction of POC and
PyOC. The accuracy plots (Fig. S3 in the Supplement) indi-
cate that the uncertainty was overestimated for MAOC and
PyOC and underestimated for POC, for all probability in-
tervals, although the uncertainty was adequately estimated
for the 90 % prediction interval (Table 3). Cross-validation
statistics for SOC vulnerability were worse than for the SOC
fractions, with R2 ranging between 0.39 and 0.56 and a con-
cordance coefficient between 0.58 and 0.72, which is possi-
bly due to some extreme values in the calibration dataset. A
PICP around 86 % indicates that the uncertainty was some-
what underestimated.

3.3 Cross-validation statistics for coarse-fragment
classes

The overall accuracy of predicting coarse-fragment classes
was 67 % for the 0–5 cm depth interval, 66 % for the 5–
15 cm depth interval, and 63 % for the 15–30 cm depth in-
terval. The kappa statistics were 0.39, 0.38, and 0.37, re-
spectively, which indicate some agreement. The producer’s
accuracy was around 90 % for the “very few” class across
the three depths, but the omission error was significant for
the remaining classes, especially for “common” and “very
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Table 2. Summary statistics, mean (± standard deviation) of SOC fractions, and Vp by biome. Spectral dataset used as input for digital soil
mapping. N : number of observations. MAOC, POC, and PyOC.

Biome Depth N MAOC POC PyOC Vp
(% SOC) (% SOC) (% SOC)

Montane grasslands and shrublands 0–5 cm 160 26± 9 7± 7 67± 14 0.1± 0.1
5–15 cm 160 27± 10 6± 5 67± 15 0.1± 0.1

15–30 cm 152 28± 13 5± 4 68± 16 0.1± 0.1
Temperate broadleaf and mixed forests 0–5 cm 2865 54± 10 21± 8 25± 8 0.3± 0.2

5–15 cm 2871 58± 10 16± 7 26± 9 0.2± 0.2
15–30 cm 2722 64± 11 10± 7 26± 10 0.1± 0.2

Temperate grasslands, savannas, and shrublands 0–5 cm 750 58± 18 11± 7 31± 21 0.1± 0.1
5–15 cm 762 60± 19 9± 6 30± 20 0.1± 0.1

15–30 cm 703 62± 20 8± 7 31± 21 0.1± 0.1
Mediterranean forests, woodlands, and scrub 0–5 cm 4671 49± 17 20± 14 31± 20 0.3± 0.3

5–15 cm 4695 52± 18 18± 14 30± 20 0.3± 0.3
15–30 cm 4229 55± 21 16± 15 30± 21 0.3± 0.5

Deserts and xeric shrublands 0–5 cm 2427 65± 16 8± 7 26± 18 0.1± 0.1
5–15 cm 2421 66± 17 7± 7 26± 18 0.1± 0.1

15–30 cm 2187 67± 17 7± 7 26± 18 0.1± 0.2
Tropical and sub-tropical grasslands, savannas, 0–5 cm 3283 61± 14 10± 7 28± 15 0.1± 0.1
and shrublands 5–15 cm 3236 64± 14 9± 6 28± 15 0.1± 0.1

15–30 cm 2851 67± 15 7± 6 25± 15 0.1± 0.1
Tropical and sub-tropical moist broadleaf forests 0–5 cm 242 62± 19 18± 11 20± 20 0.3± 0.4

5–15 cm 243 65± 19 17± 10 18± 20 0.2± 0.4
15–30 cm 234 70± 18 15± 10 15± 18 0.2± 0.4

Table 3. Cross-validation statistics for ilr1, ilr2, MAOC, POC, PyOC, and Vp by depth interval. ME, RMSE, R2, Lin’s concordance corre-
lation coefficient (ρc), and PICP.

Ilr-transformed SOC fractions Depth ME RMSE R2 ρc PICP (%)

ilr1 0–5 cm −0.01 0.45 0.60 0.75 85
5–15 cm −0.01 0.42 0.63 0.77 86

15–30 cm −0.01 0.56 0.54 0.70 86
ilr2 0–5 cm 0.01 0.46 0.73 0.84 86

5–15 cm 0.01 0.47 0.74 0.85 87
15–30 cm 0.00 0.58 0.68 0.81 86

Vp 0–5 cm 0 0.21 0.39 0.58 86
5–15 cm 0 0.17 0.56 0.72 86

15–30 cm 0 0.21 0.56 0.72 86

Soil property Depth ME (%) RMSE (%) R2 ρc PICP (%)

MAOC 0–5 cm 1.2 8.4 0.74 0.85 95
5–15 cm 1.3 8.8 0.73 0.85 95

15–30 cm 2.0 10.4 0.68 0.82 95
POC 0–5 cm −0.9 6.6 0.67 0.80 85

5–15 cm −0.8 6.2 0.65 0.79 86
15–30 cm −1.2 7.1 0.59 0.74 85

PyOC 0–5 cm −0.3 7.7 0.80 0.89 94
5–15 cm −0.5 7.9 0.79 0.89 94

15–30 cm −0.8 8.8 0.76 0.87 94
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abundant”, with values around 15 %. The user’s accuracy
was smaller than 50 % for the classes “few”, “common”, and
“many” coarse fragments but improved somewhat for “very
abundant”, “abundant”, and “few” (Table 4). The confusion
matrices are provided in the Supplement (Tables S1–S3).

3.4 Variable importance for predicting proportions of
SOC fractions and coarse fragments

The environmental covariates important for both the ilr1 and
ilr2 models were parent material and climate, whereas relief
and organisms were secondary factors (Fig. 5). The rank of
the 10 most important variables indicates that parent mate-
rial, soil properties, and relief were more relevant for ilr1, es-
pecially gravity, gamma radiometrics K, clay, and elevation
(DEM), whereas for ilr2 the importance of gamma radiomet-
ric variables and gravity was more important for the depth
intervals 5–15 and 15–30 cm. By contrast, climate variables
were more critical for ilr2 models, especially precipitation
seasonality (PTS1 and PTS2), potential evaporation (EPA
and EPX), and annual temperature (TNM and TXM), while
the annual temperature range (TRA) was more important for
the ilr1 model. Amongst the relief covariates, DEM, topo-
graphic wetness index (TWI), and roughness were the most
relevant variables for both ilr1 and ilr2. Non-photosynthetic
vegetation and mean EVI were the only covariates represent-
ing the soil-forming factor organisms with some importance
in the models. The most significant variables predicting the
distribution of coarse fragments were gamma radiometrics
and other proxies of parent material (Th, U, total dose, and
ratio Th/K), followed by some covariates of climate (EPX,
TRA) and relief (roughness, slope, DEM) (Fig. 6).

3.5 Maps of SOC fraction proportions, SOC
vulnerability, and coarse fragments

The spatial predictions of SOC fractions allocated most of
the SOC to the MAOC fraction across most of Australia
(Fig. 7a and Figs. S4–S6 in the Supplement). The POC pro-
portion was greater in the Mediterranean and temperate areas
along the coast and northern Queensland. There were three
main regions with a high proportion of PyOC: in the north-
west around the Prince Regent River and the Dampier Penin-
sula, in the west south of the Gascoyne River, and in some
parts of the south and centre, e.g. east of Lake Frome. These
predictions are likely driven by some calibration data with
high PyOC values at these locations (Fig. 2). The prediction
intervals for the SOC fractions were wide (Figs. S4–S6) but,
based on the accuracy plots (Fig. S3), were estimated rela-
tively well at the 90 % confidence level. Therefore, SOC vul-
nerability was higher in areas with Mediterranean and tem-
perate climates and in the centre and east (Fig. 7b). The lat-
ter is likely an artifact since that area is largely occupied by
salt lakes (Kati-Thanda/Lake Eyre) and the Strzelecki Desert.
The coarse-fragment class with the highest probability across

Australia was “very few” (< 2 %), and the estimated volume
of coarse fragments was higher in western and north-western
Australia as well as along the Great Divide (Figs. S7–S9 in
the Supplement).

3.6 SOC fraction stocks and sensitivity analysis

The spatial patterns of SOC fraction density are mainly de-
termined by the spatial gradient in TOC concentration. Thus,
irrespective of the dominant fraction, SOC density follows a
climatic gradient and is higher in the south-west, east, Tasma-
nia, and some regions in northern Australia (Figs. S10–S12
in the Supplement). PyOC density was predicted to be higher
along the Snowy Mountains, as the proportion of PyOC in
montane grasslands and shrublands in the calibration dataset
was around 67 % (Table 2) and the TOC concentration was
high (Fig. S10). POC density was higher in south-western
Australia, east of Tasmania, and in the south-east and east.
MAOC density showed similar patterns and had higher val-
ues than POC. Ultimately, the SOC fraction stocks at 0–
30 cm (Fig. 8) were not high in the east of Tasmania be-
cause these are organic soils, and the median soil thickness
was estimated for mineral soils. Similarly, the SOC stocks
in the Snowy Mountains were constrained by the shallow
soil thickness. The total stocks of SOC fractions for Aus-
tralia (0–30 cm) were 13 Pg MAOC, 2 Pg POC, and 5 Pg
PyOC. The predictions of SOC fraction stocks were gener-
ally smaller but correlated with the previous SOC fraction
stocks estimated by Viscarra Rossel et al. (2019) (Figs. S21
and S22 in the Supplement). The Pearson correlation coeffi-
cients were, respectively, r = 0.72 for MAOC, r = 0.75 for
POC, and r = 0.77 for PyOC (Fig. S21). The differences
between the predictions of the present study and Viscarra
Rossel et al. (2019) were higher in areas of shallow soils
(Fig. S22). We mapped the uncertainty of the SOC frac-
tion density (mgCcm−3) by depth interval with simulations
(Figs. S11–S13 in the Supplement) and estimated the uncer-
tainty in SOC fraction stocks (0–30 cm) in a sub-set of pixels
(Fig. 9).

MAOC stocks were generally higher in tropical and sub-
tropical moist broadleaf forests and temperate broadleaf and
mixed forests (Fig. 10). In some biomes (temperate and tropi-
cal grasslands, savannas and shrublands, and desert and xeric
shrublands), MAOC stocks were higher in agricultural soils
(which included rainfed and irrigated pastures) than in nat-
ural areas. In the Mediterranean biome, MAOC stocks were
similar in natural and agricultural regions, where only 1.6 %
of the agricultural area (pastures and cropping) is irrigated
(Australian Bureau of Agricultural and Resource Economics
and Sciences, 2022). POC stocks followed similar trends
to MAOC, although in the Mediterranean biome, POC was
greater in agricultural soils than in natural areas. Montane
grasslands and shrublands had maximum values of PyOC,
although the median PyOC stocks were greater in the natural
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Table 4. Cross-validation statistics for classification of coarse fragments (% vol).

Depth Very few Few Common Many Abundant Very abundant
(< 2 %) (2 %–10 %) (10 %–20 %) (20 %–50 %) (50 %–90 %) (> 90 %)

Producer’s accuracy (%) 0–5 93 39 17 35 22 15
5–15 92 40 16 34 21 12

15–30 92 38 13 31 39 8
User’s accuracy (%) 0–5 76 47 42 44 58 56

5–15 74 47 43 43 53 63
15–30 71 46 42 43 53 52

Figure 5. Variable importance of random forest models for predicting ilr-transformed SOC fractions. Variable importance was calculated
from permutation as per Breiman (2001).

and agricultural temperate biomes, followed by tropical and
sub-tropical forests (Fig. 10).

The two variables with the most influence on the uncer-
tainty of SOC fraction density were TOC concentration and
SOC fraction percentage (Figs. S14–S19 in the Supplement).
The total Sobol indices varied spatially depending on the
SOC fraction, with TOC being the most relevant in interior
areas with smaller SOC stocks and both variables having a
similar influence towards the coast in the southern half of the
continent. Total Sobol indices show that bulk density was not
very influential on the uncertainty of the SOC fraction den-
sity. This may be related to the relatively small prediction
interval of the bulk-density maps, calculated with bootstrap-
ping (Viscarra Rossel et al., 2015). Coarse fragments also
had a small influence, as indicated by the small Sobol indices
across most of Australia, except in zones where a higher vol-
ume of coarse fragments had a higher probability, e.g. west-
ern and northern Australia (Figs. S7–S9). A sensitivity anal-
ysis was also performed for the total SOC fraction stocks (0–
30 cm) at a sub-set of pixels to determine the influence of soil
thickness on the uncertainty. The results of the first and total
Sobol indices indicate that soil thickness had a high influence
on the SOC fraction stocks in areas of shallow soils, since we
only estimated the stocks for 0–30 cm (Fig. S20 in the Sup-
plement). The variables with higher total Sobol indices for

SOC fraction stocks were generally TOC concentration and
the distribution among SOC fractions at 5–15 and 15–30 cm.

4 Discussion

4.1 Differences in SOC allocation to fractions across
biomes

The trend of lower MAOC proportions with increasing sand
content was observed across all biomes (Fig. 11). Sand con-
tent is generally higher in the western half of Australia, coin-
ciding with the Mediterranean and desert biomes, which have
a mean (± standard deviation) sand content of 73 %± 14 %
and 71 %± 10 %, respectively, in the calibration dataset. The
smaller capacity of coarse-textured soils to stabilise SOC
through organo–mineral associations may partly cause the
lower proportion of MAOC and higher POC in Mediter-
ranean soils (Figs. 10 and 11). Similarly, Doetterl et al.
(2015b) found that more SOC was stored as POC in arid en-
vironments, where biochemical weathering is limited, due to
a lower capacity for physico-chemical protection.

Conversely, the proportion of SOC found as MAOC is
around 60 % in Australian temperate grasslands, savannas,
and shrublands, 50 % in Mediterranean forests and wood-
lands, ∼ 54 %–64 % in temperate forests, and 60 %–70 % in
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Figure 6. Variable importance of random forest probability models for coarse-fragment classes. Variable importance was estimated with Gini
index impurity (Sandri and Zuccolotto, 2008).

Figure 7. (a) Composite of the contributions of the three SOC fractions to SOC for the depth intervals 0–5, 5–15, and 15–30 cm. The colours
indicate the dominant fractions with MAOC in red, POC in green, and PyOC in blue. (b) SOC vulnerability for the three depth intervals.
SOC vulnerability is in the log10 scale for better differentiation.

tropical ecosystems (Table 2). Sokol et al. (2022) reported
that a high proportion of MAOC in temperate grasslands
(∼ 70 %) was due to higher net primary productivity (NPP)
and microbial decomposition favouring MAOC formation.
They also found that savannas and temperate and tropical
forests had a relatively high proportion of MAOC (∼ 64 %),
whereas shrublands had a lower proportion of MAOC (∼
42 %). Some differences are possibly explained by a higher

percentage of SOC as PyOC in some systems (e.g. montane
grasslands, tropical and sub-tropical savannas), in compari-
son to two fractions (MAOC and POC) (Sokol et al., 2022),
and differences in the definitions of biomes.
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Figure 8. SOC fraction stocks (0–30 cm) (MgCha−1). The values are represented in the log10 scale.

4.2 Abiotic and biotic predictors of SOC allocation to
SOC fractions at the continental scale

Climate and parent material were the main soil-forming fac-
tors for predicting the partitioning of SOC into fractions in
continental Australia. Climate is a major driver of SOC stor-
age (Wiesmeier et al., 2019) and partitions into SOC frac-
tions at the continental scale (Bui et al., 2009). Climate in-
fluences weathering of primary minerals, the development of
reactive secondary minerals over long-term pedogenetic pro-
cesses, and the chemistry of the soil solution, which in turn
condition the formation of organo–mineral associations (Kle-
ber et al., 2015). At the same time, climate also controls SOC
decomposition rates and input of organic matter through net
primary productivity. At the global scale, climate is a major
driver of the abundance, persistence, and distribution of SOC
among fractions (Heckman et al., 2022), with different ef-
fects by fractions and depth. Mean annual temperature had
a strong effect on POC. The content of free POC decreased
with an increase in MAT in topsoils (0–30 cm), whereas free
POC increased slightly with MAT in subsoils, and occluded
POC increased with MAT at all depths. In contrast, the wet-
ness index (ratio of annual precipitation to potential evap-
otranspiration) had a stronger effect on MAOC, suggesting
that, under wetter conditions, weathering and increasing re-
activity of minerals with depth, together with the downward
transport of organic matter, enhance the formation of organo–
mineral associations (Kleber et al., 2015). Parent material
alone did not have a significant effect on the partitioning of
SOC into MAOC at the global scale but on interaction with
the wetness index (Heckman et al., 2022).

In this study we could not verify the influence of soil geo-
chemistry and mineralogy (metal ions, sesquioxides) on the
proportion of SOC fractions due to a lack of samples with
extensive laboratory analysis. Soil geochemical properties
have been found to control SOC storage at continental and
regional scales (Doetterl et al., 2015b) and are involved in

the stabilisation of SOC, with different mechanisms depend-
ing on the climatic context and soil pH (von Lützow et al.,
2006; Rasmussen et al., 2018). In Australia, soil physico-
chemical properties, and particularly extractable iron, were
the most important predictors of SOC storage at the conti-
nental scale (Li et al., 2020). Multiple soil chemical proper-
ties can be estimated fairly well with mid-infrared spectral
models (Ng et al., 2022). Therefore, future research could
expand on this study by investigating the relationships (and
their spatial patterns) between soil chemical properties (ex-
changeable Ca and Mg, oxalate- and dithionite-extractable
Fe and Al) and MAOC in the context of Australia, where the
soil pH is quite acidic even under arid and semi-arid condi-
tions.

Among vegetation variables, only EVI and the fractional
cover of non-photosynthetic vegetation were important pre-
dictors for the distribution of SOC among fractions. The frac-
tion of non-photosynthetic vegetation may be indicative of
the type of C input into the soil (e.g. woody debris), which
influences the subsequent decomposition and transformation
pathways of organic matter (Cotrufo et al., 2015) and the al-
location to SOC fractions (Heckman et al., 2022).

4.3 Vulnerability of SOC fractions to climate change

We estimated the total stock of SOC fractions for Australia
(0–30 cm) in 13 Pg MAOC, 2 Pg POC, and 5 Pg PyOC, which
give a total of 20 Pg SOC. This value is smaller than a previ-
ous baseline of SOC stock of 25 Pg SOC for Australian top-
soils but is within its prediction interval (19–31.8 Pg C) (Vis-
carra Rossel et al., 2014). Differences in the total SOC stock
may be partly due to differences in soil thickness (Fig. S22)
and in TOC predictions between the previous version of
SLGA v1 (Viscarra Rossel et al., 2015, 2014) and the current
SLGA v1.2 (Wadoux et al., 2022). Both maps show simi-
lar patterns and ranges of TOC values, and hence differences
in SOC fraction and total SOC stock may be mostly caused
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Figure 9. Uncertainty of SOC fraction stocks (MgCha−1) for 0–30 cm calculated with 500 simulations in a sub-set of 98 400 pixels.

by differences in the DSM framework (e.g. calculating SOC
fraction densities prior to spatialisation, accounting or not for
coarse fragments) and input soil layers (soil thickness).

Our calculations estimated that about 64 % of the total
SOC is stored as mineral-associated SOC, which is consis-
tent with other studies at global and continental scales (Heck-
man et al., 2022). In Australian topsoils, we estimated that
only 10 % of the SOC stock is stored as POC and 26 % as
PyOC. POC is generally more responsive than MAOC to
management practices and to global change (Rocci et al.,
2021). Our PyOC estimate is higher than the world aver-
age (14 % of SOC, Reisser et al., 2016) but is consistent
with a study in Australia (14 %–33 %, Lehmann et al., 2008).

Since the 1970s, there has been an upward trend in “fire
weather” conditions in Australia linked to anthropogenic cli-
mate change (Harris and Lucas, 2019), which may modify
the proportion and stock of PyOC.

There is great uncertainty about the effects of an increase
in temperature on SOC fraction stocks and dynamics. There
is much evidence supporting the temperature sensitivity of
decomposition being higher for stable SOC fractions (Co-
nant et al., 2008; Jia et al., 2020) or SOC pools with longer
mean residence times (Li et al., 2013), although other stud-
ies indicate no differences or opposite trends in sensitivity
between SOC fractions (von Lützow and Kögel-Knabner,
2009). Since most SOC is stored as MAOC, an increase
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Figure 10. SOC fraction stock (MgCha−1) by biome and land use. MAOC, POC, and PyOC.

Figure 11. Allocation of SOC to the MAOC plotted vs. sand content (%) by biome, from calibration data.
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in MAOC decomposition rates with temperature (when soil
moisture is not limiting) may turn some soils into a C source
(Li et al., 2013). By contrast, coarse-textured soils with a
lower capacity for physico-chemical protection and a greater
proportion of POC may be more vulnerable to SOC loss with
an increase in temperature than fine-textured soils (Hartley et
al., 2021). Heckman et al. (2022) found a decrease in SOC
persistence among all SOC fractions, with a higher mean an-
nual temperature at the global scale and a decrease in SOC
abundance in free POC in the surface (0–30 cm). However,
the increase in temperature did not affect the abundance of
occluded POC and MAOC, which may be less vulnerable
to warming. Similarly, a recent meta-analysis (Rocci et al.,
2021) found a reduction in POC (% SOC) with warming,
suggesting that soils with higher POC contributions may be
more vulnerable to SOC loss. In the case of Australia, this
would mean that coarse-textured soils from Mediterranean
and temperate ecosystems may be more vulnerable to an in-
crease in temperature.

Other climatic and hydrological conditions linked to cli-
mate change may also affect SOC fraction stocks in Aus-
tralia. Changes in the precipitation regime (e.g. intensity
and frequency of droughts, extreme precipitation events and
flooding) can affect the SOC fraction stocks by either limit-
ing or enhancing C input into the soil (effects on NPP) and
modifying decomposition or SOC losses by increased ero-
sion. Rocci et al. (2021) did not find clear effects on the par-
titioning of SOC among fractions with an increase in precip-
itation, although they found a negative tendency for POC and
a positive tendency for MAOC. The effect of wind erosion on
SOC loss will depend on particle-size distribution and soil
cover, with vulnerable soils losing 3.6 MgCha−1 in south-
western Australia (Harper et al., 2010). While wind erosion
may deplete locally the soil of clay- and silt-sized particles
and light SOC fractions (light MAOC and light POC) and
facilitate mineralisation by disruption of aggregates, aeolian
transport and deposition may contribute to SOC enrichment
in other regions (Webb et al., 2012). The influence of water
erosion on SOC fractions will vary with agricultural prac-
tices, with the latter sometimes having a stronger effect on
POC than erosion depending on hillslope position (Zhao et
al., 2022). SOC destabilisation and stabilisation processes
vary along the hillslope with changes in particle-size distri-
bution, degree of weathering, and abundance of secondary
minerals (Doetterl et al., 2015a).

4.4 Components in the calculation of SOC fraction
stocks: current limitations and priorities for
improving their quantification

The maps of total Sobol indices inform which variables are
more influential on the uncertainty of SOC fraction densi-
ties and stocks across Australia and can guide the priorities
for mapping locally, regionally, or at a continental scale the
different components of SOC fraction stocks. TOC was gen-

erally the main variable of influence for SOC fraction den-
sity and stocks, and methods for measuring it efficiently and
more economically on farms and in the laboratory are experi-
encing continuous development. TOC concentration in Aus-
tralian ecosystems has been underestimated by previous SOC
maps in temperate forests (Bennett et al., 2020). It is then
possible that in this study the SOC fraction stocks for these
ecosystems are underestimated for two reasons: random for-
est models tend to underestimate the high values (Wadoux
et al., 2022), and the SOC fraction data used to calibrate the
spectral models did not represent forest ecosystems.

The percentage of TOC in the three fractions was generally
the second variable of influence on the uncertainty of SOC
fraction density. Still, it could be the most influential variable
in areas with moderate to low SOC density. Soil thickness
was the most influential variable on SOC fraction uncertainty
in areas of shallow soils.

Several sources of error in the SOC fraction predictions
were not accounted for in the sensitivity analysis, like the
error propagated from the fractionation scheme, the differ-
ent spectral models, digital soil mapping models, or the fact
that the fractionation in the original dataset was applied to
agricultural soils and some pastures but lacks forest soils.
There is also an underrepresentation of some biomes and
land cover types (e.g. tropical savannas) in the soil samples
used for fractionation, which decreases the reliability of the
SOC fraction stock predictions in some areas. Ideally, the
spectral models could be improved by increasing the repre-
sentation of different natural ecosystems (especially forests
and woodlands) across biomes, which may have very differ-
ent mechanisms of stabilisation.

Another limitation of the current study is linked to the frac-
tionation method used for the determination of PyOC. 13C
NMR has been used in the past to determine the ROC in the
soil (Baldock et al., 2013c). ROC has a chemical composi-
tion that is not incompatible with that of charcoal (or that
is dominated in its majority by charcoal and charred plant
residuals), but there is a potential presence of other poly-aryl
carbon compounds that do not have a pyrogenic origin. How-
ever, the benzene polycarboxylic acid (BPCA) approach is a
preferred method that gives a more realistic estimate of con-
centrations of PyOC in soil. Hence, future studies could carry
a comparison between PyOC determined with BCPA and 13C
NMR in Australian soil samples (Dymov et al., 2021).

We used estimates of rock fragment volume in the calcu-
lation of SOC fraction stocks, which can overestimate the
stocks when the bulk density is for the whole soil instead of
that for the fine soil (< 2 mm) (Poeplau et al., 2017). The
error due to combining volumetric coarse fragments and the
bulk density of the whole soil is not captured in the sensitiv-
ity analysis. Neglecting the content of coarse fragments can
significantly overestimate the SOC fraction stocks in soils
with non-negligible stoniness (> 5 %), more than doubling
the actual stocks in soils with > 30 % rock fragments (Poe-
plau et al., 2017). We anticipated that the inaccuracy of the
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coarse-fragment maps and the broad range within each cat-
egory would contribute significantly to the error and uncer-
tainty in the SOC fraction stock estimates. This was true in
areas with non-negligible stoniness (> 2 %), as indicated by
the total Sobol indices (Figs. S14–S19). However, compared
with the distribution among SOC fractions and TOC concen-
trations, coarse fragments were not the most relevant variable
influencing SOC fraction density.

5 Conclusions

SOC fractions are crucial as input for dynamic SOC models.
These maps of MAOC, POC, and PyOC can be used as in-
put for modelling SOC stocks under different management
strategies and identify areas where SOC stocks could be aug-
mented more efficiently (i.e. areas with higher SOC seques-
tration potential/SOC deficit) (Meyer et al., 2017; Martin et
al., 2021). Land management practitioners could then opti-
mise the spatial allocation of different agricultural practices
while maintaining several soil functions and services, mainly
food security and climate change mitigation and adaptation.

The main covariates predicting the distribution of SOC
among fractions at the continental scale were identified as
climate and parent material. However, a comprehensive and
homogeneous dataset that examines the soil geochemical
properties (e.g. exchangeable Ca and Mg, extractable Fe and
Al, CEC ascribed to minerals) controlling SOC stabilisation
processes is lacking in Australia. The diversity of climatic
and pedological conditions suggests that different mecha-
nisms will control SOC stabilisation and dynamics across the
continent, as observed in other regions (Rasmussen et al.,
2018). The link between mycorrhizal associations (Averill
et al., 2014; Jo et al., 2019) and soil microbial community
composition (e.g. N2-fixing organisms), soil stoichiometry
and vegetation communities (Bui and Henderson, 2013), and
their effects on SOC fractions (Cotrufo et al., 2019) should be
further investigated. For example, it is possible that in native
ecosystems with a higher soil C : N ratio and recalcitrant lit-
ter, there may be a high proportion of SOC as POC, whereas
the MAOC fraction may not be C-saturated.

The uncertainty in the spatial predictions of SOC fraction
stocks was driven mainly by TOC and the proportion of SOC
fraction predictions, which in turn rely on spectral predictive
models developed with soil samples originating mainly from
agricultural soils. However, the sensitivity analysis allows
targeting of variables that should be prioritised at the local
and regional scales to reduce the uncertainties of SOC frac-
tion stock estimates. Future works will include more sam-
pling efforts for measuring TOC, fractionation on underrep-
resented regions, or development of local spectral models for
predicting SOC fractions.
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