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A B S T R A C T   

Global pressures to improve soil organic carbon sequestration and soil health in general amongst the world’s 
agricultural soils are creating a demand for improved practice to drive positive and sustainable changes in the 
natural capital of soils. Incentive programs aimed to promote this must be informed by accurate observations of 
the state of soils, both temporally and spatially. Soil spectral inference is a useful method for capturing the state 
of soils cost-effectively, but the price of standard laboratory grade visible and near-infrared (Vis-NIR) sensors can 
limit its application. Further, the acquisition of spectra by these laboratory grade sensors is performed primarily 
in air-dried and ground condition, adding a time lag to information retrieval. Recently, low-cost, portable 
miniaturised near-infrafred (NIR) spectrometers have become available and have shown to be a viable alter
native for the measurement of several agronomically important soil properties, which are also vital to the 
maintenance of soil health, including soil organic carbon (SOC), and cation exchange capacity (CEC). However, 
the implementation of new spectrometers, to new locations requires the creation of new spectral libraries, an 
expensive and labour-intensive process requiring large amounts of soil analytical and spectral data gathering. 
Thus, existing, laboratory grade Vis-NIR spectral libraries present a high-quality and high-resolution resource to 
leverage. This work demonstrates how existing spectral library resources can be accessed with cheaper, portable 
miniaturised NIR spectrometers with appropriate spectral filtering, and appropriate transformation matrices. In 
addition, the work shows that by correcting for the influences of spectral differences between soils scanned in 
field condition, and those prepared for analysis in the laboratory, greater uptake of spectral inference as a tool to 
evaluate the state of soils can be enabled. This work also demonstrates how large existing laboratory grade 
spectral libraries such as the CSIRO national Australian Vis-NIR soil spectral library can be queried and using 
memory-based learning or similar methods, such as RS-Local, and the most appropriate samples may be iden
tified to be used for the prediction of soil properties. This work builds off an existing framework for the use of soil 
spectral inference for monitoring the state of soil, the Australian 2021 Soil Organic Carbon Credits Methodology 
Determination. Methods are demonstrated for the prediction of nine agronomically important soil properties, 
SOC, pH in water, pH in CaCl2, electrical conductivity, CEC, and exchangeable Ca, K, Mg and Na. For SOC a 
model using only 20 local samples was produced in this work with a Lin’s concordance correlation coefficient 
(LCCC) of 0.72, surpassing both the minimum requirement under the carbon credits methodology determination 
(LCCC 0.6), and a 50 sample local only model (LCCC 0.61). This example demonstrates that a significant further 
potential cost saving in laboratory analysis across soil monitoring projects can be achieved through selectively 
leveraging a large spectral library resource.   

1. Introduction 

The maintenance of soil health across agricultural environments is 
essential to the sustainability of soil function and to support food and 
fibre production for a growing global population (Herrick, 2000; 
McBratney et al., 2014). Monitoring the state of soil health requires 

methodologies that can assess the complex physical, chemical, and 
biological components of the soil’s condition cost-effectively and to 
enable plentiful sampling to address the spatially and temporally 
heterogenous nature of soil landscapes. Complex biogeochemical 
cycling, land management activities and underlying landform and 
parent material variability are all important influences on state of soil 
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properties, and the dynamic nature of these influences can drive sig
nificant fluxes in the stocks of these properties. As the stocks of these 
properties change, so too does a soil’s ability to deliver ecosystem ser
vices, improving or degrading soil health, and driving changes to soil 
natural capital. Successful monitoring of soil health thus requires low- 
cost and high throughput methodologies and tools that can inform on 
the stocks of these properties with consideration of the spatial and 
temporal variability inherent to them (Nocita et al., 2015). 

In recent times, soil spectroscopy has emerged as a rapid soil mea
surement method as it provides many benefits over using traditional 
laboratory methods only, with fewer soil sample preparation steps, 
faster soil measurement turnaround times, lower costs and its ability to 
inform on multiple soil properties with a singular soil scan (Islam et al., 
2003). Diffuse Reflectance Infrared (IR) spectroscopy is favoured for its 
ability to determine soil properties through unique reflections caused by 
bending and excitation of molecular bonds, which can be related to a 
range of soil chemical, physical and biological properties through che
mometric models. Moreover, visible and near-infrared (Vis-NIR) spec
troscopy offers the ability to measure soils directly in field condition 
(Ackerson et al., 2017). Laboratory grade Vis-NIR spectrometers 
including those produced by Malvern Panalytical (e.g. the ASD Fieldspec 
and ASD Labspec range), and Spectral Evolution (SM-3500), are 
currently used in research settings and commercial applications for soil 
property assessment. They are favoured for their resolution and wide 
range of operation across the electromagnetic spectrum (350–2500 nm) 
enabling inference of soil features that react to light in these wave
lengths including soil colour, clay minerology, acidity, exchangeable 
cations, heavy metals, soil texture and organic carbon (Soriano-Disla 
et al., 2014; Stenberg et al., 2010). These benefits hold immense po
tential for real time inference, to provide rapid feedback on the states of 
soils. Rapid provisioning of this information can help support the uptake 
of decision support tools (Rose et al., 2016). This in turn can support 
informed management practices and enhanced agricultural sustain
ability (Bongiovanni and Lowenberg-Deboer, 2004). While these devices 
can provide rapid determinations of these soil properties, they are often 
priced well outside the limit of financial accessibility for smaller en
terprises, independent consultants, or laboratories in developing econ
omies. In contrast, lower cost near infrared (NIR) sensors have also 
demonstrated significant capability to predict soil properties (Soriano- 
Disla et al., 2017). Advances in manufacturing techniques, such as 
photolithography have allowed for the development of micro electro 
mechanical systems (MEMS), or single chip devices which miniaturise 
the interferometer componentry, allowing for lower production costs 
and smaller spectrometer form factors (Beć et al., 2020). Such in
struments are generally miniaturised, and in contrast to bench top in
struments described above, are often focused on the NIR region due to 
comparatively lower constraints in form factors for associated compo
nentry like mirrors offered by higher brightness sources, and higher 
specific detectivity than other regions of the electromagnetic spectrum 
(Huck, 2021). Studies have demonstrated promising results with the use 
of MEMS NIR spectrometers for the prediction of various soil properties 
including soil carbon, soil organic carbon, cation exchange capacity, pH 
and soil texture, and the classification of soil nutrient levels (Ng et al., 
2020; Tang et al., 2020). 

While the lower price point can make miniaturised NIR devices 
attractive as alternatives to laboratory grade spectrometers, their suc
cessful performance (like any other instrument) is constrained by the 
requirement to establish a spectral library of sufficient quality and range 
(i.e., a collection of spectral responses and corresponding soil analytical 
values) to build robust chemometric models. Evidently, irrespective of 
instrumentation, the costs of the development of spectral libraries and 
corresponding soil measurement databases is not insignificant, but also 
largely unreported. Nevertheless, large spectral libraries currently exist 
for a variety of laboratory grade Vis-NIR spectrometers at national 
(Demattê et al., 2019; Shi et al., 2014; Viscarra Rossel and Webster, 
2012), continental (Shepherd and Walsh, 2002), and global scales 

(Batjes, 2014; Brown et al., 2006), consisting of thousands of collected 
spectra across many regions and environmental conditions. 

Operationalising large spectral libraries has historically presented a 
persistent issue, as the entire breadth of spectra and analytical values 
contained within them may not be suitably informative at a paddock or 
regional level (Wetterlind and Stenberg, 2010). Strategic selection of 
appropriate spectra from amongst these libraries thus is an important 
step towards their use, leading to an increasing adoption of techniques 
to ‘localise’ models. Methods such as spiking (Barthès et al., 2020; 
Wetterlind and Stenberg, 2010), subset selection (Barthès et al., 2020) 
and techniques wich constrain the library with similarity, such as 
memory based learning, including spectrum-based learning (Ramirez- 
Lopez et al., 2013), and the RS-Local algorithm (Lobsey et al., 2017). The 
latter two methods constrain or augment an existing library to better fit 
the conditions at a target site, through similarity in the spectral and or 
analytical values of the local data to identify samples better aligned with 
the local spectra and target analyte relationships. 

Large spectral libraries collected using laboratory grade spectrome
ters present an opportunity for easy adoption of newer, low cost, 
portable NIR spectrometers, particularly in cases where regions of the 
spectra overlap. These large spectral library resources could be exploited 
to reduce the challenges and investments required in construction of 
reference spectral libraries for new devices as they come to market, but 
their construction and development must be done with consideration of 
the portable device’s utility for in situ observation. Miniaturised 
portable NIR spectrometers are uniquely placed for use in in situ soil 
conditions. Their small hand-held form, and lower power requirements 
lend themselves to real time use, but environmental factors such as soil 
moisture, temperature, humidity, and surface roughness add con
founding effects to the spectra, diluting the signal of soil properties, and 
make spectra collected in situ incomparable to laboratory processed 
spectra. Further, laboratory spectral analysis, which represents the 
greater part of existing large soil spectral libraries, is generally con
ducted on homogenised, dried and ground soil samples, under uniform 
conditions, minimising the influences of these effects (Hutengs et al., 
2019). Construction of new libraries with in situ spectra is possible, but 
these environmental factors vary in both space and time, and their in
fluence on spectra is not constant, causing chemometric models pro
duced on field acquired spectra to perform poorly when contrasted with 
laboratory condition soils (Waiser et al., 2007). To reduce the impact of 
these problems, correction methods have become available. External 
Parameter Orthogonalization (EPO) (Roger et al., 2003), for example, 
has gained popularity as the method of choice to rotate spectra against 
and remove undesired environmental influences. EPO was first used for 
soil spectral inference by Minasny et al. (2011) for the removal of soil 
moisture effects induced in laboratory prepared soil samples but has also 
been utilised to address other features of in situ soil condition including 
temperature, humidity, and soil matrix condition (Ackerson et al., 
2017). EPO has also demonstrated utility in linking wet soil samples to 
existing spectral libraries (Viscarra Rossel et al., 2017). Integrating 
existing spectral libraries from laboratory grade sensors for in situ soil 
monitoring using cheaper miniaturised NIR spectrometers thus appears 
achievable using spectral transfer functions, and environmental 
correction through EPO. 

In situations where legislators wish to improve environmental out
comes and ecosystem services delivered under production systems, 
economic-incentive-based instruments can become a primary tool (Pan
nell, 2008; van Grieken et al., 2019). Such programs provide commercial 
incentives to land managers to alter practices to benefit natural capital 
outcomes. Natural capital associated with soil can present an attractive 
target for such programs, especially with global commitments to 
sequester significant amounts of carbon to offset emissions (Minasny 
et al., 2017), but must be underpinned by assessment of the status of the 
soil natural capital at regular intervals. Soil focussed incentive programs 
that exist may combine soil observations with empirical or mechanistic 
models, like the Australian Commonwealth Government’s Carbon Credits 
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(Carbon Farming Initiative— Estimation of Soil Organic Carbon Sequestration 
using Measurement and Models) Methodology Determination 2021 (Industry, 
Energy and Emissions Reduction, 2021) a component of the Emissions 
Reduction Fund (ERF) wherein management induced sequestered soil 
organic carbon can be credited with Australian Carbon Credit Units 
(ACCUs). The soil carbon accounting method within the ERF prescribes 
sampling events at a five-year interval, designed to capture the accumu
lation of soil carbon stocks through management practice change, distinct 
from seasonal and climactic impacts on carbon stocks (Paustian et al., 
2019). The ERF soil carbon methodology is one of the first soil organic 
carbon methodologies to introduce the use of infrared spectroscopy to 
determine SOC concentrations (Environment and Energy, 2018). Spec
troscopic methods are required to follow several appropriate sampling 
design constraints, including the creation of a moderately sized ‘local’ soil 
spectral library (with a required minimum of 50 samples) collected during 
the establishment of baseline SOC stocks. Despite the method acknowl
edging the benefits of leveraging a ‘large’ soil spectral library to improve 
prediction quality, the methodology lacks details about approaches for 
practical implementation of existing spectra for individual projects. 

The aims of this study were therefore to construct and evaluate 
methods to leverage information from a large spectral library of labo
ratory grade Vis-NIR spectra, the CSIRO national Australian Vis-NIR soil 
spectral library, to predict a series of soil properties using a miniaturised 
portable NIR spectrometer on soils in their field condition for a local 
situation. Additionally, this study also aimed to demonstrate the 
advantage of access to an existing spectral library to enable a meaningful 
reduction in laboratory expenses when characterising soil natural cap
ital using miniaturised portable NIR spectrometers, compared to exist
ing spectroscopic measurement guidelines in a modern soil organic 
carbon credit program. To demonstrate utility in a real-world soil nat
ural capital stock baseline assessment setting, this study therefore fol
lowed the guidelines of the Supplement to the Australian 2021 Soil 
Organic Carbon Credits Methodology Determination. 

2. Materials and methods 

2.1. Study area – CSIRO Boorowa Agricultural Research Station 

Multiple methods for leveraging large spectral libraries for local 
predictions under differing spectral and sample conditions were 

investigated at the newly established (2021) long-term cropping trial 
site (LTT) at the CSIRO Boorowa Agricultural Research Station (BARS) 
in southern NSW, Australia (Fig. 1). CSIRO BARS is a 220 ha mixed 
cropping farm and research station located close to the locality of 
Boorowa in south-eastern NSW, Australia. BARS belongs to the Boorowa 
River catchment and is characterised by gently undulating to undulating 
rises with a local relief ranging between 9 and 30 m above the average 
elevation of 600 m above sea level across the farm. BARS is charac
terised by a temperate climate with long summers and cool to cold 
winters. The farm experiences a slightly winter-dominated annual 
average rainfall of 619 mm. The geology at BARS comprises of Silurian 
ignimbrites and tuffs with interbedded sediments of the Douro group 
(Johnston et al., 2013). Soil types are characterised by yellow to light 
red duplex soils (with a texture-contrast of 20 % clay increase between 
the A and B soil horizon) on crests and slopes, which are classified as 
either Yellow or Red Chromosols or Kurosols as of the Australian Soil 
Classification (Isbell, 2021) depending on the presence of subsoil acid
ity. Other soil types found across the farm are Red and Yellow Dermosols 
and Kandosols and Yellow Sodosols are also found close to the drainage 
lines (Malone et al., 2022). The BARS LTT was identified as a location 
within the farm of strong utility for assessing baseline soil organic car
bon distribution. The BARS LTT is an 11 ha trial site, located in the 
southwestern part of BARS, consisting of eight separated runs, currently 
zoned into four, paired farming “philosophies” under which different 
carbon accumulation rates would be expected. 

2.2. Sampling design 

Each prospective zone within the BARS LTT was treated as a Carbon 
Estimation Area (CEA) as of the Australian Commonwealth Govern
ment’s Carbon Credits Methodology Determination 2021 (Industry, Energy 
and Emissions Reduction, 2021), subdividing the trial by intended 
similar land management activities, with each CEA further divided into 
three strata. In this manner, the overall study area was subdivided into 
four paired CEA sections, and each was stratified independently using 
covariates associated with variation in soil organic carbon. Previous 
survey work at BARS provided a diverse set of background digital soil 
attribute data to stratify the BARS LTT in zones of similar conditions. 
Environmental covariates used in this study included gridded rasters (at 
2.5 × 2.5 m resolution) of digital soil maps representing soil pH, texture 

Fig. 1. A map showing the location of the CSIRO Boorowa Agricultural Research Station, and the long-term cropping trial site contained within.  
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and bulk density, electromagnetic conductivity and gamma radiometric 
surveys (Malone et al., 2022), and historic yield data, which was all 
supplemented with the 10th, 90th and 50th percentile normalised dif
ference vegetation index (NDVI) values from the Copernicus Sentinel-2 
MSI (European Space Agency, 2021) for the five-year period prior to 
sampling, retrieved from Google Earth Engine (Gorelick et al., 2017). 
These covariates were reprojected to a 1 m grid using a bilinear trans
formation, and strata were created through k-means clustering (Fig. 2). 
All analyses were performed using the R programming language (v4.0.2 
and v4.0.5; R Core Team, 2020). For each of the four CEAs, 15 sample 
locations were randomly selected from across the strata within, with a 
minimum of three locations per stratum, and the remaining six distrib
uted according to the size of each stratum, for a total of 60 soil sampling 
locations across the BARS LTT (Fig. 2). For each sampling location, two 

soil cores were taken within 50 cm of each other, to a depth of 50 cm, 
which were sealed and refrigerated to allow for soil spectral measure
ments in as close to field condition as possible. 

2.3. Field condition spectra acquisition – BARS LTT local spectral library 

Soil cores sampled across the BARS LTT were unsealed, and the more 
intact core of the two was bisected to expose a large, flat surface, to 
increase spectrometer contact, and reduce opportunity for light leakage. 
Soil cores were then scanned with the hand-held Hone Lab Red NIR 
spectrometer in triplicate at 5 cm increments down the profile, for a total 
of 600 scanning locations (Fig. 3). The Hone Lab Red (Hone Carbon, 
Newcastle, NSW, Australia) is a miniaturised diffuse reflectance spec
trometer featuring a spectral range of 1350–2500 nm, leveraging a 

Fig. 2. A map displaying the strata generated for each of the four management zones or CEAs established within the BARS LTT, and the distribution of the sampling 
points within them. 

Fig. 3. A diagram displaying a field condition soil core, with 10 arrows distributed in 5 cm increments to demonstrate the collection of spectral information.  
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NeoSpectra OEM module (Si-Ware Systems, Menlo Park, CA, United 
States of America) that comes at an affordable price point when 
compared to laboratory grade Vis-NIR spectrometers. 

A total of 200 samples were selected for laboratory analysis for nine 
soil properties, soil organic carbon content (SOC) using dry combustion 
following method 6B2b (Rayment and Lyons, 2011), electrical conduc
tivity (EC) using method 3A1, pH in water and CaCl2 using methods 4A1 
and 4B2, and cation exchange capacity (CEC) and exchangable cations 
using method 15E1. Soils chosen for laboratory analysis consisted of a 
minimum of three sampling locations selected randomly from each core, 
and a further five randomly selected across each of the four CEAs. 

2.4. Existing legacy spectral libraries and datasets 

2.4.1. CSIRO national Australian Vis-NIR soil spectral library resource 
The CSIRO national Australian Vis-NIR soil spectral library holds 

more than 40,000 unique spectral observations (k) together with in
formation on a variety of soil analytes, with the library being collected 
with an laboratory grade ASD Fieldspec 3 spectrometer. For this study, 
all observations were extracted from amongst this library of spectra 
holding equivalent chemical analyses to those undertaken on the 200 
samples from the BARS LTT (Table 1, Fig. 4). When possible, observa
tions were restricted to a singular laboratory code, except in the case of 
SOC, which was aggregated across 5376 6A1 observations (Walkley- 
Black), and 602 method 6B2 observations (Dry combustion). All SOC 
observations were corrected to 6B2 using a conversion factor of 1.32 
(Bornemisza et al., 1979). A further 11,735 EC observations in a 1:5 soil 
to water solution, 11,287 pH in 1:5 soil to water observations, 5744 pH 
in 1:5 soil to 0.01 M CaCl2 observations, and 3218 observations of CEC 
and exchangeable cations (Mg, K, Na, Ca). 

2.4.2. Soil water library 
To address the influence of soil moisture, and surface roughness on 

the field condition spectra a soil water library was used, which was 
chosen from a set of intact soil core samples of up to 1 m of depth from 
the CSIRO national Australian soil archive. Using an approach outlined 
by Viscarra Rossel et al. (2017), 29 soil profiles were selected to repre
sent diverse soil types and textures from regions of agricultural impor
tance across Australia (i.e. the Harden-Young, Macquarie-Bogan 
Floodplain, Moree and Central West regions of NSW, as well as Emerald 
in QLD) (Stockmann et al., 2022). Intact soil cores were sub-sampled 
using a soil core smaller in diameter and of 4 cm height at three depth 
increments, approximately between 0 and 15 cm, 15–30 cm and 30–60 
cm, to a total of 87 soil samples. Sub-sampled small soil cores were re- 
wetted and subjected to multiple soil suctions along the soil moisture 
retention curve at 10 cm, 50 cm, 100 cm, 300 cm and 600 cm moisture 
potentials using suction plates, and at 500 kPa bar and 1500 kPa using 
pressure chambers at the CSIRO soil physics laboratory, ACT Australia, 
and following methods outlined in McKenzie et al. (2002). At each 
suction point, soils were scanned in triplicate with a laboratory grade 

ASD Fieldspec 3 spectrometer. 

2.5. Pre-processing of spectral data – CSIRO national Australian Vis-NIR 
soil spectral library and BARS LTT local spectral library 

2.5.1. General spectral pre-processing including spectrometer 
harmonisation 

The collected Hone Lab Red NIR spectra from all BARS LTT locations 
(Section 2.3), as well as the ASD Fieldspec 3 collected spectral datasets 
from the CSIRO national Australian Vis-NIR soil spectral library (Section 
2.4.1) and the soil water library (Section 2.4.2) were pre-processed 
uniformly to maximise comparability of spectra. Spectra from all sour
ces were backgrounded, ASD Fieldspec 3 spectra splice corrected at 
detector edges, and all spectra trimmed to the 1350–2450 nm region of 
the Hone Lab Red spectra (Fig. 5). Spectra were then converted to 
absorbance, and all spectra were treated with a 2nd order Savitzky- 
Golay filter with a window size of 17. The large window size of this 
filter was applied to address the difference in the resolution of the ASD 
Fieldspec 3 and Hone Lab Red spectrometers. Whilst both devices 
observe the spectral responses of the soil at similar wavelength spacing, 
with the Hone Lab Red sampling absorbance at an interval ranging from 
1.2 to 4.4 and the ASD Fielspec 3 at intervals of 1.4 and 2 nm, the actual 
resolution of the two spectrometers are quite different. The ASD Field
spec 3 holds a resolution of 10 nm at the coarsest detector, whilst the 
Hone Lab Red observes spectra across a 16 nm window. The large 
window size of the Savitzky-Golay filter thus was applied to reduce any 
disparity in signal between the devices, by acting as a low pass filter, 
obscuring the high frequency signal of the ASD Fieldspec 3 spectra, and 
emphasising the lower frequency signal observable across both spec
trometers, whilst also reducing the noise that may be imparted with 
finely discretised wavelength spacing. Hone Lab Red in triplicate 
collected spectra were visually inspected for quality control, to ensure 
spectral signals were consistent across replicated scans. Consistent 
spectra were then averaged, and these averaged spectra were utilised in 
all further analysis. 

2.5.2. EPO generation for removal of field condition effects 
To remove the influence of field condition effects, namely moisture 

and surface roughness, an external parameter orthogonalization matrix 
(EPO) was generated from the processed soil water library spectra 
(Section 2.4.2). For each of the 87 soil samples, the air-dry spectra were 
subtracted from a random moisture state selected from along the 
assessed points on the water retention curve, to generate a difference 
matrix D. A series of transformation matrices were generated using the 
EPO function in the Soilspec package in R (Wadoux et al., 2021), from 
difference matrix D and different numbers of principal components, 
from which the Wilkes lambda was calculated. A maxima in Wilkes 
lambda was identified at four principal components, and thus this value 
was used in the generation of the final transformation matrix. 

2.6. Soil property prediction model generation 

To assess the suitability of the generated EPO for moisture correction 
on spectra collected under a different spectrometer, chemometric 
models were produced, both with, and without transformation of the 
spectra. Cubist, a rule-based data mining algorithm was used to create 
calibration models for the prediction of nine agronomically important 
soil properties, SOC, pH in water, pH in CaCl2, electrical conductivity, 
CEC, and exchangeable Ca, K, Mg and Na. Cubist is a regression rule 
model and is an extension of Quinlan’s (1992) M5 model tree. During 
model building one or more rules are created, with each rule being a 
linear model of the predictors, with the possibility of rules overlapping. 
Cubist was executed using the Cubist package in R. We implemented a 
modelling approach employing bootstrap resampling with replacement, 
over 50 bootstraps or bags, and predicted values were reported as the 
mean predicted value across all bootstraps. This bootstrapping method 

Table 1 
Number of unique entries in the CSIRO national Australian Vis-NIR soil spectral 
library for a variety of soil properties. *Note: The EC values dataset is of low 
quality, with many values exceeding reasonable levels within mineral soils.  

Soil Property Chemical 
Method Code 

Corresponding Spectra within the 
CSIRO Australian National Vis-NIR 
soil spectral library 

Soil Organic Carbon 6A1 5376 
Soil Organic Carbon 6B2 602 
Electrical Conductivity 3A1 11735* 
pH in Water 4A1 11,287 
pH in CaCl2 4B2 5744 
Cation exchange capacity 

and exchangeable cations: 
Mg, Na, K, Ca 

15E1 3218  

J.P. Moloney et al.                                                                                                                                                                                                                              



Geoderma 439 (2023) 116651

6

allows for quantification of the uncertainty of a prediction, through the 
generation of a distribution of model outcomes for each sample from 
which confidence intervals can be computed (Malone et al., 2022; Vis
carra Rossel et al., 2015), though these uncertainties are not explored 
within this work. Models were trained on 50 samples selected through 
conditioned Latin hypercube sampling (cLHS) (Minasny and McBratney, 
2006) of the spectral space, using the cLHS package in R (Roudier, 
2011). Where soil property data were skewed or non-normal, as was the 
case for all but our pH observations, a natural log transformation were 
applied. A series of goodness of fit metrics were reported on the back 

transformed predicted values from out bootstrap model for both the 
calibration dataset, and the remaining 150 unused data points as a 
validation set. Model evaluation metrics included the coefficient of 
determination (R2), root mean square error (RMSE) and bias as well as 
the Lin’s concordance correlation coefficient (LCCC) (Lin, 1989) and the 
ratio of performance to interquartile range (RPIQ) (Bellon-Maurel et al., 
2010). 

Fig. 5. A comparison of absorbance spectra treated with a standard normal variance transformation for both an ASD Fieldspec 3 and a Hone Lab Red spectrometer 
for an example soil specimen, displaying the difference in spectral region covered by each spectrometer between 500 and 2450 nm and the obscuration of features by 
the lower-resolution Hone Lab Red. 

Fig. 4. Facetted maps displaying spatial distribution of entries in the CSIRO national Australian Vis-NIR soil spectral library for a variety of soil properties examined 
within this work. Samples located in Australian overseas territories have been omitted for clarity. 
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2.7. Library constraining approaches used for large spectral library 
selection for the local situation 

To identify solutions for leveraging large spectral libraries under 
disparate spectral and sample conditions, two approaches which 
constrain a spectral library to a local observed situation were imple
mented, each utilising varying amounts of local data for prediction 

model generation, to evaluate the utility of supplementary large spectral 
library samples (Fig. 6). 

2.7.1. Adapted RS-Local 
The first method, an adapted implementation of the RS-Local 

approach (Lobsey et al., 2017) is designed to select those samples 
from amongst a large spectral library that perform the best when 

Fig. 6. Workflow diagram demonstrating the treatment of spectra and execution and evaluation of the two library constraining approaches examined.  
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predicting the response variable for a training set m. To that end, the 
method generates many spectroscopic models based on random small 
subsets of a spectral library and assesses the performance of those 
models against the training set m. For each of these random models, 
errors are then recorded alongside the selected samples. Following a 
sufficiently large number of randomly sampled models, a distribution of 
residuals is created, and samples from amongst the library included 
consistently in those models with the lowest residuals selected out from 
amongst the greater library. This approach localises the library to 
observed conditions. 

From amongst the local BARS LTT soil spectral library (i.e. samples 
that were selected for laboratory analysis that hold a spectral response 
and corresponding soil analyte values), a series of site-specific com
parison sets m were selected using cLHS. A total of 10 different com
parison sets m were chosen, of sizes ranging from 5 to 50 samples, 
incremented by 5 samples each time. For each of these comparison sets 
m, the RS-Local methodology was adapted, wherein k samples were 
selected from the large CSIRO national Australian Vis-NIR soil spectral 
library K, and used to construct a chemometric model to predict one of 
the nine target soil properties, with the performance of this model 
evaluated against comparison set m, and RMSE recorded. This process 
was repeated many times (B), and the RMSE values were assigned 
cumulatively to each selected sample in each k subset, and once B re
peats were finished the locations with the lowest cumulative RMSE 
values were retained. The original RS-Local method was modified 
slightly, substituting Cubist prediction models for partial least squares 
regression, and selection of the locations with the lowest median RMSE 
predictions, rather than the lowest cumulative RMSE. A consistent value 
of 300 for k was used across all nine soil properties assessed, and a B 
value of 5000. For each soil property and each unique comparison 
dataset m, a localised spectral library of the 300 samples with the lowest 
median RMSE, plus the initial selected samples m was created, and used 
to construct a bootstrapped Cubist model. Further, the addition of 
spiking samples was assessed, selected from amongst the remaining 
laboratory-analysed soils using cLHS with consideration of the region of 
spectral space currently represented by the comparison set m, and the 
RS-Local selected national spectra. Spiking samples were added to these 
assemblies of localised libraries and comparison sets m in groups of five, 
until the total number of local samples used in the construction of a 
model reached 75, and bootstrapped Cubist models were again 

produced for each of these spiked datasets. All models were validated 
using hold-out validation on the remaining laboratory analysed samples, 
i.e. if a model was generated using an m set of 5, and 10 additional local 
samples were used to spike the selected national spectra, the prediction 
performance was reported on the remaining 185 analysed samples. This 
resulted in differing validation sets for as the selected spiking samples 
were dependant on the spectral space of both the training set m and the 
identified national spectra. LCCC and RMSE values amongst from each 
of these models were reported. 

2.7.2. Spectrum-based learning 
Leveraging the CSIRO national Australian Vis-NIR soil spectral li

brary was also explored with spectrum-based learning (Ramirez-Lopez 
et al., 2013). Spectrum-based learning uses a multiple step process to 
provide unique predictions of each point within a target set (m), by first 
recovering the k most spectrally similar locations from a large library of 
spectra (Yr) and set of associated analytical values (Xr). Models are fit 
using these spectrally similar datapoints and associated analytical values 
for each point, and finally the predictions are generated for the unseen 
analytical values (Xu) of m. As with the adapted RS-Local approach, the 
addition of 10 different sets of local spectral information (BARS LTT soil 
spectral library) to the national set was investigated, essentially 
increasing Yr and Xr with supplementary local observations, ranging in 
size from 5 to 50 samples (XYrs) (Fig. 7). The local samples included in 
XYrs selected were identified through cLHS of the spectral space of the 
local scans, and the resemble package (Ramirez-Lopez et al., 2016) in 
the R programming language was used to iterate through a variety of 
different values of k, between 50 and 300 samples identified by low 
Mahalanobis distances, in increments of 50. PLSR models were 
employed to generate predictions of holdout local spectra for each XYrs 
and k value, as the method available within the resemble package for the 
calibration of local models with the most widespread adoption, and the 
LCCC and RMSE values from each of these different sets was reported. 

2.7.3. Assessing library constraining methodologies 
To assess their potential utility against a real-world soil spectral 

inference framework for soil stock accounting, the performance of each 
library constraining approach to select appropriate samples from the 
large CSIRO national Australian Vis-NIR soil spectral library for the 
BARS LTT local situation, was contrasted against prediction model 

Fig. 7. Conceptual model demonstrating the process of producing predictions using spectrum-based learning, and the addition of local spiking samples, XYrs, to 
investigate the use of a large spectral library for local-scale predictions. 
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performance emulating the requirements of the Australian Government 
ERF Soil Carbon Methodology 2021 spectral inference approach. The 
soil carbon method within the ERF leverages soil spectral inference, 
combined with stratified random sampling and bulk density estimation 
to produce an unbiased estimation of the soil carbon stocks over an area, 
for the purposes of identifying offset carbon emissions, and provision of 
carbon credits. A soil carbon project, can, as is the case in this study, 
consist of multiple carbon estimation areas under which different 
management practices or rates of carbon sequestration are expected to 
occur. Under the methodology, each project requires a minimum soil 
spectral library size of 50 new samples. Whilst the use of legacy soil 
spectral information is encouraged, there are no clear provisions as to 
the how within the 2021 methodology determination. At present, the 
methodology holds very few model quality requirements that relate 
specifically to the prediction model quality of the spectral inference, 
with the singular requirement that a model must have a Lin’s concor
dance correlation coefficient of 0.6 or greater. As this is a singular 
dimension of model quality assessment, and because an LCCC of 0.6 is 
not a universally achievable metric with NIR spectroscopy across all of 
the chemical analytes assessed within this work (Viscarra Rossel and 
McBratney, 2008), in addition to the requirements as of the Australian 
Government ERF Soil Carbon Methodology 2021, we report the RMSE 
values of the predictions. Model quality was primarily assessed against 
the validation performance of a 50 sample local bootstrapped Cubist 
model on the remaining 150 samples within the BARS LTT local library 
that were not used in model training. 

3. Results and discussion 

3.1. Evaluation of BARS LTT local only soil property prediction models 
generated with or without EPO transformation 

The 50 sample calibration model fits of the field condition spectral 
response to the measured soil analytical properties were generally of 
high quality, both with, and without transformation by EPO (Table 2). 
Across all properties, R2 values and LCCCs exceeded 0.8, indicating a 
high degree of fit of predicted and observed values of SOC, EC, pH in 
water and CaCl2, CEC and exchangeable cations. The RPIQ however 
demonstrates only moderate calibration performances, with relatively 
large values of RMSE to the generally narrow distributions of local soil 
properties (Fig. 8). Further, most goodness of fit metrics improved for 
the models created on field condition soil samples when spectra were 
transformed using the EPO, demonstrating that the confounding in
fluences of soil moisture and surface roughness upon the soil spectra can 
be successfully reduced. This also demonstrates that the EPO generated 

from spectra collected on the higher resolution ASD Fieldspec 3 spec
trometer and transformed toward the lower resolution Hone Lab Red 
can be used with confidence. 

The improvement in prediction quality provided by the EPO, per
sisted when the model quality was assessed under holdout validation, 
except for the exchangeable Mg predictions, where the uncorrected 
spectra provided better predictions. There was a general reduction in the 
quality of fit metrics across the holdout validation predictions compared 
to the calibration sets. The best performing models were those of CEC, 
exchangeable Ca and Mg, followed by SOC, with LCCC values exceeding 
0.6 in each of these properties, the minimum acceptable standard for use 
within a spectroscopic model under the ERF Soil Carbon Methodology 
2021. The overall model fit metrics observed in validation were mod
erate, with the greatest performing model, EPO corrected CEC, holding 
an R2 value of 0.74, and an LCCC value of 0.81 (Table 3), indicating a 
quality fit along a 1:1 observed to predicted line, but an RPIQ value of 
0.87, showing a lower consistency of the predictions. The same holds 
true for the predictions of exchangeable Mg, where both EPO treated 
and untransformed predictions held high LCCC values of 0.79 and 0.82, 
respectively, but relatively large RMSE values resulted in low RPIQ 
values of 0.25, and 0.37. All other models held RPIQ values lower than 
1, even where R2 and LCCC values remained high. This highlights per
sisting limitations in providing consistent prediction of soil properties 
from field condition soils with lower resolution, handheld miniaturised 
NIR sensors when using small training sets (50 samples). 

3.2. Evaluation of the soil property and spectral range present in the 
BARS LTT local and compared to the CSIRO national Australian Vis-NIR 
soil spectral library 

The samples analysed from the BARS LTT had an analytical value 
range that was generally well represented within the CSIRO national 
Australian library, with all values falling well within the range of 
existing soil observations across the almost 40,000 combined spectra 
and analytical values (Fig. 8, Table 1). Most soil properties saw a large 
overlap between the 1st and 3rd quartiles of the local and CSIRO na
tional Australian libraries, with exceptions generally occurring for the 
exchangeable cations, where the local and national values of 
exchangeable Mg and Na were quite different, with very low 
exchangeable Na observations in the local BARS LTT dataset with many 
samples below detection limit, and large exchangeable Mg values, with a 
median value of 0.56 cmol + kg− 1 compared to the national median of 
0.09 cmol + kg− 1. 

Spectral similarity was assessed using the principal component space 
of a combined dataset of both the transformed, field condition Hone Lab 

Table 2 
Calibration goodness of fit metrics for 50 sample local Cubist models generated on field condition scans of soils sampled from the BARS LTT, both corrected and 
uncorrected by external parameter orthogonalization.  

Property Units Moisture Correction R2 LCCC RMSE* Bias* RPIQ 

Carbon % EPO  0.90  0.91  0.10  0.00  0.81 
Carbon % Untransformed  0.87  0.86  0.12  − 0.01  0.66 
EC dSm− 1 EPO  0.93  0.92  0.01  0.00  1.36 
EC dSm− 1 Untransformed  0.90  0.90  0.01  0.00  1.22 
pH water  EPO  0.90  0.84  0.30  0.01  0.93 
pH Water  Untransformed  0.88  0.79  0.33  − 0.01  0.82 
pH CaCl2  EPO  0.88  0.87  0.29  − 0.01  1.36 
pH CaCl2  Untransformed  0.84  0.80  0.35  − 0.02  1.14 
CEC cmol + kg− 1 EPO  0.96  0.95  0.82  0.05  1.65 
CEC cmol + kg− 1 Untransformed  0.95  0.94  0.89  − 0.08  1.51 
Exch Ca cmol + kg− 1 EPO  0.94  0.92  0.70  − 0.07  1.14 
Exch Ca cmol + kg− 1 Untransformed  0.91  0.89  0.83  − 0.09  0.97 
Exch K cmol + kg− 1 EPO  0.88  0.86  0.08  0.00  1.02 
Exch K cmol + kg− 1 Untransformed  0.84  0.88  0.07  0.01  1.05 
Exch Mg cmol + kg− 1 EPO  0.97  0.95  0.35  − 0.03  0.56 
Exch Mg cmol + kg− 1 Untransformed  0.97  0.93  0.41  − 0.05  0.47 
Exch Na cmol + kg− 1 EPO  0.93  0.88  0.06  0.00  0.00 
Exch Na cmol + kg− 1 Untransformed  0.90  0.85  0.06  0.00  0.00  
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Fig. 8. Boxplots of the distribution of the nine soil properties investigated at the BARS LTT, and the distributions of the same properties within the CSIRO national 
Australian Vis-NIR soil spectral library. All properties except pH in water and pH in CaCl2 are presented in Log10 transformation. 

Table 3 
Hold-out validation goodness of fit metrics for 50 sample local Cubist spectral models generated on field condition scans of soils sampled from the BARS LTT, for SOC, 
EC, pH, CEC and exchangeable cations contrasting the use of an EPO transformation.  

Property Units Moisture Correction R2 LCCC RMSE* Bias* RPIQ 

Carbon % EPO  0.49  0.62  0.25  − 0.02  0.44 
Carbon % Untransformed  0.48  0.53  0.27  − 0.06  0.41 
EC dSm− 1 EPO  0.34  0.50  0.03  0.00  0.39 
EC dSm− 1 Untransformed  0.24  0.40  0.03  − 0.01  0.36 
pH water  EPO  0.28  0.39  0.62  − 0.09  0.92 
pH Water  Untransformed  0.32  0.38  0.62  − 0.15  0.92 
pH CaCl2  EPO  0.30  0.47  0.66  − 0.12  0.87 
pH CaCl2  Untransformed  0.34  0.47  0.64  − 0.12  0.89 
CEC cmol + kg− 1 EPO  0.74  0.81  2.07  0.07  0.87 
CEC cmol + kg− 1 Untransformed  0.70  0.80  2.15  − 0.09  0.84 
Exch Ca cmol + kg− 1 EPO  0.57  0.66  1.64  0.04  0.72 
Exch Ca cmol + kg− 1 Untransformed  0.53  0.64  1.69  − 0.08  0.69 
Exch K cmol + kg− 1 EPO  0.35  0.41  0.21  − 0.01  0.53 
Exch K cmol + kg− 1 Untransformed  0.35  0.52  0.21  0.01  0.55 
Exch Mg cmol + kg− 1 EPO  0.64  0.79  1.07  0.17  0.25 
Exch Mg cmol + kg− 1 Untransformed  0.73  0.82  0.85  0.00  0.32 
Exch Na cmol + kg− 1 EPO  0.33  0.49  0.21  0.01  0.00 
Exch Na cmol + kg− 1 Untransformed  0.33  0.38  0.21  − 0.01  0.00  
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Red BARS LTT local spectra, and the CSIRO national Australian Vis-NIR 
soil library spectra. Using the first 8 principal components, which rep
resented more than 95% of the variance of the combined spectral li
brary, the Mahalanobis distances were calculated, and outliers assessed 
as falling above the 97.5 % quantile of the chi2 distribution. Of those 
outliers, only 8 were located within the BARS LTT spectral library, 
indicating a decent overlap between the spectral space of each of the two 
EPO transformed spectral libraries (Fig. 9). 

3.3. Evaluation of leveraging the CSIRO national Australian Vis-NIR soil 
spectral library using the adapted RS-Local approach 

Predictions generated from the various localised libraries (i.e. 
selected national and differing amounts of local library data combined), 
and associated Cubist models generated through RS-Local were gener
ally quite proficient at predicting SOC. Predictions showed a general 
trend of increasing quality, as the amount of available local data 

Fig. 9. Biplot of the first two principal components generated from the EPO treated spectra from both the local, field condition spectra, and laboratory condition 
spectra from the CSIRO national Australian Vis-NIR soil spectral library. Spectra originating from the national library are presented in grey, and local spectra in black. 
Outliers from amongst this combined distribution which originate from the local spectra are identified in red. 

Fig. 10. LCCC and RMSE values for RS-Local selected national and local combined model predictions of soil organic carbon generated from the filtered and EPO- 
transformed CSIRO national Australian Vis-NIR soil spectral library using differing sizes of comparison set m, represented by differing colours and additional local 
data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are presented as a dashed black line. 
Highlighted here is the smallest m sets which, when supplemented with additional spiking samples, consistently achieves LCCC higher, and RMSE values lower than 
the 50 sample local only reference model (i.e. the brown line with an m set of 10 and 5 local samples). 
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increased, with decreases in RMSE, and increases in LCCC. Only 6 
models displayed LCCC values below the 0.62 (Fig. 10) of the BARS LTT 
local only EPO transformed and moisture corrected 50 sample model 
(Table 3), with national and local combined models sourced from RS- 
Local libraries trained on m values of 5, 10 and 40 local samples. 
RMSE values also largely fell below the values from the BARS LTT local 
only 50 sample, moisture corrected model, with 11 models exceeding 
0.27 % (Table 3). Generally, the BARS LTT local only model was quickly 
surpassed, with a national and local combined model employing an m of 
10 samples showing a surpassing of the BARS LTT local only model at 5 
additional spiking samples, and achieving an LCCC of 0.72 with 10 
additional spiking samples. This resultant LCCC showed a high fit of 
observed and predicted SOC values, using only 20 local samples. Of 
interest, some larger values of m seemed to hold higher RMSE when 
there were few or no additional spiking samples, seen in m values of 30 
and 40 where national and local combined models constructed with up 
to 20 additional local samples in addition to those used in m held RMSE 
values greater than the 50 sample BARS LTT local only model. This lag in 
the reduction of RMSE may suggest that larger values for m require 
larger amounts of additional local data to overcome overfitting in the 
selection of appropriate spectra and corresponding analytical values 
through RS-Local. 

For the models of pH in water and CaCl2 from the RS-Local localised 
libraries, similar improvement in LCCC and RMSE values to the BARS 
LTT local only 50 sample models as seen when using smaller amounts of 

local observations in the SOC predictions were not observed. For pH in 
CaCl2, a similar prediction quality to the BARS LTT local only 50 sample 
model was approached using fewer local observations. The first RS-Local 
selected national and local combined model to approach the quality of 
the BARS LTT local only model was constructed using an m set of size 35 
spiked with an additional 5 samples, for a total of 40 local observations. 
Here, an LCCC of 0.45 and an RMSE of 0.63 were achieved (Fig. 11), 
each just below those values seen in the BARS LTT local only model for 
pH in CaCl2 (Table 3). Whilst this does represent a reduction in fit of 
observed to predicted pH values along the 1:1 line, this RS-Local selected 
national and local combined model holds slightly higher accuracy than 
the BARS LTT local only model. Unlike the pH in CaCl2 models, no pH in 
water model approached the goodness of fit metrics of the 50 sample 
BARS LTT local only model using fewer local observations. The first pH 
in water RS-Local selected national and local combined model to 
approach the fit metrics of the 50 sample BARS LTT local only model was 
constructed again using an m set of size 35, but here with 20 additional 
spiking samples, for a total of 55 local observations. The LCCC of this 
model was slightly above that of the 50 sample local only model, at 0.39, 
and the RMSE was slightly lower at 0.6, however, as the total number of 
local observations exceeded those of the corresponding local model, this 
is somewhat expected. 

Generally, similar patterns were seen in the prediction of EC 
(dS m− 1) to that seen in the prediction of pH in CaCl2, with RS-Local 
selected national and local combined model quality only approaching 

Fig. 11. LCCC and RMSE values for RS-Local selected national and local combined model predictions of pH in water and pH in CaCl2 generated from the filtered and 
EPO-transformed CSIRO national Australian Vis-NIR soil spectral library using differing sizes of comparison set m, represented by differing colours and additional 
local data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are presented as a dashed black line. 
Highlighted here are the smallest m sets which, when supplemented with additional spiking samples, achieve LCCCs higher, and RMSE values lower than the 50 
sample BARS LTT local only reference model (i.e. for pH in water blue line with m 35 and 20 local samples; and for pH in CaCl2 blue line with m 35 and 5 
local samples). 
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that of the 50 sample BARS LTT local only model at around 40 local 
observations. As with pH in CaCl2, the first RS-Local selected national 
and local combined model to approach the prediction quality of the 50 
sample BARS LTT local only model consisted of an m set of size 35, and 
an additional 5 spiking samples (Fig. 12). The RMSE was again lower 
than the 50 sample BARS LTT local only model, at 0.02 dSm− 1 and the 
LCCC was equivalent to that seen in the 50 sample BARS LTT local only 
model (Table 3). These metrics demonstrate a minor improvement in 
accuracy to the 50 sample BARS LTT local only model, but greater im
provements were seen in the RS-Local selected national and local com
bined models generated using 45, or 50 local samples, seen in m values 
of 5 and 15. The model which held the best performance metrics with 
50, or fewer samples was a model with an m value of 15, and an addi
tional 35 spiking samples, which held an LCCC of 0.57, and an RMSE of 
0.02 dSm− 1. The overall model quality of the EC models was much more 
variable when compared to the SOC, or pH models, with several models 
with RMSE values greater than 0.2 dSm− 1, in the case of the model with 
an m set of 15 observations, and no additional local spikes, the RMSE 
value was 28.19 dSm− 1. 

The RS-Local selection approach for CEC and exchangable cation 
predictions on field condition soils using the existing CSIRO national 
Australian Vis-NIR soil spectral library again did not rapidly exceed the 
prediction quality of their corresponding 50 sample BARS LTT local only 
model. For CEC, the first model to approach the quality of the 50 sample 
BARS LTT local only model used an m of size 10, and an additional 30 
samples, achieving an LCCC of 0.79, and an RMSE of 2.34 cmol + kg− 1 

(Fig. 13), displaying a slightly poorer fit of observed to predicted than 
the BARS LTT local only model, at an LCCC of 0.81 (Table 3), and a 
worse accuracy, against the local RMSE of 2.07 cmol + kg− 1. As with EC, 
there is a model which leverages 50 local samples, and an selected subset 
of spectra from the existing CSIRO national Australian Vis-NIR soil 
spectral library with superior prediction quality to the BARS LTT local 
only 50 sample model, featuring an m set of size 25, and 25 additional 
local observations. This model reported an LCCC of 0.83 and an RMSE of 
1.94 cmol + kg− 1, showing a strong improvement over the BARS LTT 

local only model. As for individual exchangable cations, for exchange
able Ca, the 50 sample BARS LTT local only model was exceeded at 40 
local samples, in a model constructed using an m of 5 samples, and an 
additional 35 local samples. This model reported an LCCC of 0.69, and 
an RMSE of 1.52 cmol + kg− 1, exceeding the BARS LTT local only model, 
but this was the only combination of m sizes and additional samples to 
achieve this using 50 or fewer local observations. No exchangable K 
model surpassed the 50 sample BARS LTT local only model, with the 
closest model using 50 local observations, a combination of 25 spiking 
samples, and an m set of 25, achieving an LCCC of just 0.39, lower than 
the 0.41 of the BARS LTT local only model (Table 3). RS-Local selected 
national and local combined exchangable Mg models similarly did not 
exceed the BARS LTT local only model using 50 or fewer samples. The 
closest model used 45 local observations, and had an m of 20 samples, 
and an additional 25 spiking samples, but the LCCC was just 0.69. The 
exchangable Na RS-Local selected national and local combined models 
all held quite poor fits, with none approaching the quality of the 50 
sample BARS LTT local only model. Even using as many as 75 local 
samples, the greatest LCCC achieved was 0.39, well below the 0.49 of 
the BARS LTT local only model. 

3.4. Evaluation of leveraging the CSIRO national Australian Vis-NIR soil 
spectral library using the memory-based learning spectrum-based learning 
approach 

Spectrum based learning (SBL) selected national and local combined 
model predictions for the nine studied soil properties also demonstrated 
a large potential for producing attribute predictions of similar quality to 
the BARS LTT local only models using equivalent or reduced numbers of 
laboratory analysed samples. SOC predictions showed LCCC values 
ranging from 0.57, at a k value of 250, and XYrs of 40 samples, to 0.79, 
with a k of 50, and XYrs of 65 (Fig. 14). RMSE values were also similar to 
the BARS LTT local only model (Table 3), and generally decreased with 
an increasing number of supplemented local samples, with the lowest 
RMSE also at a k of 50 and an XYrs of 65. Generally, lower k values held 

Fig. 12. LCCC and RMSE values for RS-Local selected national and local combined model predictions of EC from the filtered and EPO-transformed CSIRO national 
Australian Vis-NIR soil spectral library using differing sizes of comparison set m, represented by differing colours and additional local data gathered in field condition. 
The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are presented as a dashed black line. Highlighted here is the smallest m set 
which, when supplemented with additional spiking samples, achieves an LCCC higher, and an RMSE lower than the 50 sample BARS LTT local only Cubist reference 
model (i.e. blue line with m 35 and 5 local samples). 
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Fig. 13. LCCC and RMSE values for RS-Local selected national and local combined model predictions of CEC and exchangeable Ca, K, Mg, and Na from the filtered 
and EPO-transformed CSIRO national Australian Vis-NIR soil spectral library using differing sizes of comparison set m, represented by differing colours and additional 
local data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are presented as a dashed black line. 
Highlighted here are the smallest m sets which, when supplemented with additional spiking samples, achieve LCCCs higher, and RMSE values lower than the 50 
sample BARS LTT local only reference model (i.e. for CEC brown line with m 10 and 30 local samples; for exch Ca red line with m 5 and 35 local samples; for exch K 
dark green line with m 25 and 25 local samples; for exch Mg light green line with m 20 and 25 local samples). 
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LCCC values larger than larger values of k, for predictions with the same 
XYrs set. All predictions generated with a k of 50 samples exceeded the 
LCCC of the BARS LTT local only SOC model, however, it must be 
acknowledged that as the supplemented XYrs values approached and 
exceeded the value of k, these models may have approached local only 
predictions. Spectra collected from a geographically close region, under 
the same conditions and pre-treatment, may share similar spectral fea
tures, and be clumped in a multivariate space, as seen when comparing 
the local and national datasets used in this study (Fig. 2), leading to 
primarily local samples being selected through SBL. Regardless, many 
SBL predictions were of equal quality to the 50 sample BARS LTT local 
only SOC model, using fewer local observations, most visible at an XYrs 
of 25. 

Unlike SOC, predictions of pH in water and CaCl2 did not surpass the 
quality of the BARS LTT local only models with small values of XYrs, 
even with low k values. Only one SBL configuration provided national 
and local combined model predictions which surpassed the LCCC of a 
BARS LTT local only model for pH in water, with an XYrs set 40 with a k 
value of 50 nearest neighbours (Fig. 15). This configuration did provide 
an LCCC of 0.43, marginally above the 0.39 of the BARS LTT local only 
model (Table 3), but the RMSE of the SBL never reached a value lower 
than the BARS LTT local only model. SBL selected national and local 
combined pH in CaCl2 prediction models were of similar quality to the 
pH in water predictions, with no predictions with an RMSE lower than 
the BARS LTT local only model and a peak LCCC of 0.42 with a k of 50 
and XYrs of 40, but as the BARS LTT local only predictions of pH in CaCl2 
were superior to those of pH in water, no SBL selected national and local 
combined model predictions surpassed the quality of the BARS LTT local 
only model. 

SBL selected national and local combined EC model predictions, 
were not of quality approaching the BARS LTT local only model, even 
when available local data surpassed the 50 samples used in the local only 
model. An LCCC of 0.32 and RMSE of 0.04 dSm− 1 were both optimised 
in predictions generated with a k of 50, and a XYrs of 75 (Fig. 16). These 
predictions are quite poor, but unlike with the RS-Local selection 
method, RMSE and LCCC values were clustered relatively close together. 

Whilst predictions of soil EC by NIR and Vis-NIR spectroscopy are not 
expected to be of the highest standard (Viscarra Rossel and McBratney, 
2008), the low-quality predictions of the national and local combined 
models selected with both library constraining methods may be 
enhanced by the highly disordered nature of the EC dataset within the 
CSIRO national Australian Vis-NIR soil spectral library. Many of the data 
points either with high spectral similarity selected using SBL or 
randomly selected for use when identifying a subset through RS-Local 
may be incomparable to observed values of EC at the BARS LTT, 
causing large leverage in the models, even post transformations, due to a 
very high population of outliers. This difficulty in generating a consis
tent, suitable prediction reinforces the need for these library con
straining methods to only be employed for predictions in cases where 
the reference libraries used to select from are of high quality, and ob
servations held within are trusted. 

Predictions of CEC and exchangeable cations generated through SBL 
selected national and local combined models were, as with RS-Local, 
generally of quality approaching the BARS LTT local only model. The 
best performing CEC predictions were seen at a k of 150 and an XYrs of 
65, where a LCCC of 0.85 and an RMSE of 1.93 cmol + kg− 1 were 
achieved (Fig. 17). No single prediction set below a XYrs of 50 surpassed 
both the LCCC (0.81) and RMSE (2.07 cmol + kg− 1) of the BARS LTT 
local only predictions (Table 3), but with a k of 150 and XYrs of 35, 
produced predictions only marginally poorer, at an LCCC of 0.79, and an 
RMSE of 2.2 cmol + kg− 1. Predictions for exchangeable Ca using SBL 
selected national and local combined models were poorer than those 
seen using RS-Local, with no prediction using 50 or less local spectra 
producing predictions surpassing the BARS LTT local only model. Pre
diction qualities began to stabilise around LCCs of 0.52–0.54 at an XYrs 
of 20 samples, and RMSE values similarly stabilised between 0.2 and 
0.25 cmol + kg− 1. Predictions do not improve until XYrs values of 65, 
and did not surpass BARS LTT local only prediction metrics, a LCCC of 
0.66 and RMSE of 1.64 cmol + kg− 1. Exchangeable K predictions 
showed more promising potential for the application of SBL, with pre
dictions surpassing the BARS LTT local only LCCC with 0.41, and 
approaching the RMSE of 0.21 cmol + kg− 1. The best predictions below 

Fig. 14. LCCC and RMSE values for SBL selected national and local combined model predictions for soil organic carbon from the filtered and EPO-transformed CSIRO 
national Australian Vis-NIR soil spectral library, constructed using a range of spectral nearest neighbours (k) represented by differing colours and supplemented with 
additional local data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are presented as a dashed 
black line. 
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Fig. 15. LCCC and RMSE values for SBL selected national and local combined model predictions for pH in water and pH in CaCl2 from the filtered and EPO- 
transformed CSIRO national Australian Vis-NIR soil spectral library, constructed using a range of spectral nearest neighbours (k) represented by differing colours 
and supplemented with additional local data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are 
presented as a dashed black line. 
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a XYrs of 50, were seen at a k of 250, and an XYrs of 45, where a LCCC of 
0.48 and RMSE of 0.22 cmol + kg− 1 were achieved. Exchangeable Mg 
predictions show the greatest quality of all cations observed under SBL, 
with a LCCC of 0.89 and RMSE of 0.64 cmol + kg− 1, both improvements 
over the 50 sample BARS LTT local only model, using a XYrs of only 30 
samples, and predictions built off 250 nearest neighbours. Predictions of 
exchangeable Na, whilst better than those generated using RS-Local for 
the national and local combined model selection, were still poor under 
the SBL approach tested. Most predictions generated did not approach 
the quality of the BARS LTT local only model, except those with an XYrs 
of 65 samples, where predictions using 100 nearest neighbours showed 
an LCCC of 0.4, and an RMSE 0.232 cmol + kg− 1, approaching the LCCC 
of 0.49 and RMSE of 0.21 cmol + kg− 1 seen in the BARS LTT local only 
predictions. 

3.5. Advantages, limitations and further research 

Both library constraining methods investigated here demonstrate 
capacity to leverage an existing large spectral library to produce na
tional and local combined model predictions that were of equal quality 
to a 50 sample BARS LTT local only Cubist model, also using fewer local 
observations in some scenarios. Predictions of SOC, CEC and 
exchangeable Ca and Mg were of equal or superior prediction quality 
using one, or both selection methods. These results indicate that the li
brary constraining methods explored here are suitable tools for selection 
of laboratory condition spectra from large spectral libraries to apply to 
field condition spectra, after filtering and the removal of the influence of 
field conditions on spectral responses through EPO transformation. 
Furthermore, the observed reduction in the amount of local analytical 
data required for high quality predictions, can provide large cost savings 
for soil monitoring programs such as SOC accounting. For this work, if 
the adapted RS-Local selection approach for the prediction of SOC is 
employed as an example for cost savings (Fig. 10), at a laboratory 
analysis cost of up to $40 AUD per sample, effective employment of the 
adapted RS-Local implementation can provide a total saving of $1200 

AUD, through reducing laboratory analysis needs to only 20 local 
samples, compared to the 50 recommended local samples under the 
Australian Government ERF Soil Carbon Methodology 2021. Having 
stated this, any spectral library used for soil spectral inference should be 
appropriate to adequately describe the soil variability of the target area 
(Viscarra Rossel et al., 2008). As the degree to which a given site is 
represented within a large spectral library will vary, it is important to 
test the suitability of these approaches for different agro-ecosystems and 
different large spectral libraries. As such, it may be unwise to advocate 
for a reduction in local sampling within monitoring programs such as the 
Australian Government ERF Soil Carbon Methodology 2021 without 
first establishing that a site is well covered by data within an existing soil 
library, and that the relative improvement provided by the library 
significantly exceeds that provided by further local data collection. 

The library constraining methods were not particularly good at 
selecting useful spectra from the CSIRO national Australian Vis-NIR soil 
spectral library when the local relationship between a given soil prop
erty and spectral response was poor. This was seen in the predictions of 
pH, EC and exchangeable Na, likely due to the adapted RS-Local method 
optimising for an already poor local relationship between soil property 
and spectral response (Table 3), or identifying spectrally similar, but 
poorly predicting local spectra as nearest neighbours in the case of SBL. 
EC predictions generated with the adapted RS-Local method demon
strate the need for quality spectral libraries as a prerequisite for library 
constraining techniques, with poor quality analytical data driving highly 
stochastic prediction qualities. These poor-quality results reinforce that 
data curation and cleaning must be an essential component of any 
workflow intending to use these methods in practical applications. 

As for suitability of these methods for use in soil monitoring or 
environmental incentive programs, like the Australian Government ERF 
Soil Carbon Methodology 2021, both methods appear to provide a 
working solution to integrate existing large spectral libraries like the 
CSIRO national Australian Vis-NIR soil spectral library, but each method 
holds distinct benefits, and their utility depends on the intended use case 
and application (Table 4). The adapted RS-Local method produces a 

Fig. 16. LCCC and RMSE values for SBL selected national and local combined model predictions for electrical conductivity from the filtered and EPO-transformed 
CSIRO national Australian Vis-NIR soil spectral library, constructed using a range of spectral nearest neighbours (k) represented by differing colours and supple
mented with additional local data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are presented 
as a dashed black line. 
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singular model, and localised library, making predictions and datasets 
traceable and easily repeatable, but the iterations required to run a large 
number of models to identify that localised library may limit its adop
tion by smaller scale recipients of incentive programs. Conversely, the 
applied SBL method merely supplements an existing library with local 
samples and produces a unique model for each individual target site, 

which may hold less traceability than the rigours needed in an incentive 
programme or stock accounting methodology. However, the imple
mentation of this method is comparatively much simpler, requiring 
lower computational overhead, making it a much more accessible so
lution for practical application. 

Fig. 17. LCCC and RMSE values for SBL selected national and local combined model predictions for CEC and exchangeable Ca, K, Mg and Na from the filtered and 
EPO-transformed CSIRO national Australian Vis-NIR soil spectral library, constructed using a range of spectral nearest neighbours (k) represented by differing colours 
and supplemented with additional local data gathered in field condition. The corresponding goodness of fit metrics from a 50 sample BARS LTT local only model are 
presented as a dashed black line. 
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4. Conclusions 

For the first time this research has shown how a large, laboratory 
grade spectral library, such as the CSIRO national Australian Vis-NIR soil 
spectral library can be employed in a useful manner to deliver pre
dictions on field condition soils, with low-cost, miniaturised NIR spec
trometers. This work demonstrates how condition correction matrices 
may be developed from soil spectra retrieved from high-resolution 
spectrometers, and with appropriate filtering to account for differ
ences in resolution, be applied to sensors with lower resolutions and 
smaller spectral ranges. Moreover, spectra collected in field condition 
can be transformed to remove undesired environmental influences and 
be made comparable to existing collected spectra stored in laboratory 
grade spectral libraries collected in soil laboratory condition (air-dry 
and < 2 mm). In this manner, datasets stored in laboratory grade large 
spectral libraries can be made more accessible, and essentially sensor 
and condition agnostic. 

Further, the work shows how large spectral libraries may be localised 
post filtering and transformation to identify useful predictors at field 
scale. Existing workflows utilising memory-based learning and similar 
approaches successfully identified useful sub-sets from the CSIRO na
tional Australian Vis-NIR soil spectral library, providing predictions for 
some soil properties which exceeded a 50 sample BARS LTT local only 
model. Ultimately, by enabling the meaningful use of existing soil 
spectral libraries with low-cost sensors, the barriers to entry to soil 
monitoring practices can be lowered, both in the up-front costs of 
standard laboratory grade spectrometers, and the significant analytical 
costs of establishing local spectral libraries by allowing predictions to be 
informed by a prior compiled soil spectral library. This can enable better 
uptake and engagement with soil-focussed environmental incentive 
programs, to both benefit land holders, and help legislators meet com
mitments to improve natural capital resources. 
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Beć, K.B., Grabska, J., Siesler, H.W., Huck, C.W., 2020. Handheld near-infrared 
spectrometers: Where are we heading? NIR News 31 (3–4), 28–35. https://doi.org/ 
10.1177/0960336020916815. 

Bellon-Maurel, V., Fernandez-Ahumada, E., Palagos, B., Roger, J.-M., McBratney, A., 
2010. Critical review of chemometric indicators commonly used for assessing the 
quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. 
Chem. 29 (9), 1073–1081. https://doi.org/10.1016/j.trac.2010.05.006. 

Bongiovanni, R., Lowenberg-Deboer, J., 2004. Precision Agriculture and Sustainability. 
Precis. Agric. 5 (4), 359–387. https://doi.org/10.1023/B:PRAG.0000040806.39604. 
aa. 

Bornemisza, E., Constenla, M., Alvarado, A., Ortega, E.J., Vasquez, A.J., 1979. Organic 
carbon determination by the Walkley-Black and dry combustion methods in surface 
soils and Andept profiles from Costa Rica. Soil Sci. Soc. Am. J. 43 (1), 78–83. 

Brown, D.J., Shepherd, K.D., Walsh, M.G., Mays, M.D., Reinsch, T.G., 2006. Global soil 
characterization with VNIR diffuse reflectance spectroscopy. Geoderma 132 (3–4), 
273–290. 
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