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Abstract 
Soil color is a key indicator of soil properties and conditions, exerting influence on both agronomic and 

environmental variables. Conventional methods for soil color determination have come under scrutiny due to 
their limited accuracy and reliability. In response to these concerns, we developed an innovative system that 
leverages 35 years of satellite imagery in conjunction with in-situ soil spectral measurements. This approach 
enables the creation of a global soil color map with a fine spatial resolution of 30 m x 30 m. The system initially 
identifies bare earth areas worldwide using reflectance bands acquired from Landsat 4 through Landsat 8 be-
tween 1985 and 2020. Soil color was quantified using the CIE-XYZ coordinates, utilizing 8005 soil spectral 
measurements within the visible range (380–780 nm) as ground truth data. We established transfer functions to 
convert Landsat reflectance bands to standardized XYZ color coordinates. These transfer functions were subse-
quently applied to images of bare surfaces, covering approximately 38.5% of the Earth’s surface. We validated 
the resulting global soil color map using statistical indices derived from an independent set of ground-truth 
spectral data, demonstrating a high degree of agreement. By creating the world’s first global soil color map, 
we have set a baseline for future spatial and temporal monitoring of soil conditions, thus enhancing our un-
derstanding and management of our planet’s vital soil resources.   

1. Introduction 

Soil color is a fundamental indicator of soil characteristics and con-
ditions, reflecting soil’s chemical, physical, and biological properties 
and processes (Ibáñez-Asensio et al., 2013; Ketterings and Bigham, 
2000; Schmidt and Ahn, 2021). Key factors influencing soil color include 
organic matter (which darkens the soil), calcium carbonates (resulting 
in a white hue), iron oxide (which can give a red or yellow color), and 
the size distribution of particles and aggregates (leading to a range of 
dark and bright colors). Additionally, water affects soil color both 
directly—by absorbing light energy (Ishida et al., 1991) — and indi-
rectly, by influencing other soil properties, such as iron reduction 
(Schwertmann, 2015). Soil color is a useful indicator for understanding 
and managing various soil-related aspects. For instance, soil color can 
indicate the adsorption of nutrients and toxic compounds on iron oxy-
hydroxides (Camargo et al., 2015). It could be used to indicate pesticide 
adsorption capacity due to organic matter, thereby informing herbicide 
application rates (Fernandez et al., 1988). Soil color can signify the 
presence of iron oxides that impact soil aggregation, a key indicator of 
erosion resilience (Cañasveras et al., 2010), or even act as a photo-
catalyst influencing the fixation of nitrogen gases (NO and NO2) 
(Sánchez-Rodríguez et al., 2023). Moreover, the presence of iron oxides 
inferred from soil color can be used for paleoclimate reconstruction due 
to the pedogenic alterations of iron compounds (Jiang et al., 2022; Long 
et al., 2016). Soil color can also indicate fire severity’s impact on bio-
logical, physico-chemical, and mineralogical soil properties (Guerrero 
et al., 2007; Ketterings and Bigham, 2000). 

Soil color is measured quantitatively in standard color space systems. 
In soil science, color description is conventionally determined using the 
color plate notation from the Munsell color system (Munsell, 1907). 
Over the last century, the Munsell system was adopted by soil surveyors 
for soil classifications and is now an integral part of any field-level soil 
description. Several major classification systems, such as the USDA Soil 
Taxonomy, rely on the Munsell soil color to discriminate soil classes. 
However, the method of determining soil color by matching it with 
standard plates has drawn criticism due to concerns about the accuracy 
and repeatability of these measurements (Torrent and Barron, 1993). 
These concerns are especially pronounced when assessments are con-
ducted by inexperienced examiners and under diverse soil moisture 
conditions. 

The emergence of electro-optical sensors such as spectrophotometers 
and digital cameras has paved the way for a more objective determi-
nation of soil color. Many digital soil sensors (Barrett, 2002) and cam-
eras (Adderley et al., 2002) are sensitive to the visible range (400–759 
nm) of the electromagnetic spectrum. These devices allow quantitative 
estimates of soil color, addressing the subjectivity of human perception 

(Mouazen et al., 2007; Stiglitz et al., 2016). It has been shown (Shields 
et al., 1966) that the three indices of the Munsell color system (i.e., the 
hue, value and chroma) correlate with spectral reflectance in the visible 
spectrum. Using this principle, several studies (Gholizadeh et al., 2020; 
Mouazen et al., 2007; Ramos et al., 2020) have used visible and infrared 
reflectance spectra to estimate soil color. 

Almost all optical sensors mounted on satellite platforms record the 
data within the visible region of the electromagnetic spectrum. These 
spectral bands aid in image identification via the RGB composites 
(Escadafal, 1993). In fact, the visible bands of Landsat sensors have been 
used for estimating soil color since the 1990s (Escadafal et al., 1989; 
Mattikalli, 1997). For instance, Singh et al. (2004) mapped soil color 
using AVHRR data for modeling water erosion. Soil color maps obtained 
from NOAA/AVHRR data were also used as a proxy for estimating soil 
properties, such as organic matter content (Ben-Dor, 1997), iron content 
(Bartholomeus et al., 2007), lichens over terrain (Bechtel et al., 2002) or 
surface soil moisture (Persson, 2005). 

While remote sensing imagery has proven effective in mapping soil 
color, these endeavors often remain localized and offer limited spatial 
resolution. The primary obstacle in mapping soil color across large areas 
lies in securing satellite images unaffected by clouds, aerosols, vegeta-
tion, crop residues, soil wetness, and surface roughness. To address this 
challenge, recent advancements in digital soil mapping have introduced 
methods to generate per-pixel mosaics of bare surfaces from a collection 
of satellite images (Demattê et al., 2018; Diek et al., 2017; Roberts et al., 
2019). This fusion of images opens up new avenues for soil assessment 
via remote sensing by offering time-averaged visuals of bare surfaces. 

Remote sensing technology facilitates the extensive estimation of 
topsoil properties and provides the capability to monitor spatio- 
temporal changes (Ben-Dor et al., 2009; Padarian et al., 2022). Never-
theless, as of now, there is no comprehensive global map of topsoil color, 
despite some attempts to map soil color at a regional level (e.g., Poppiel 
et al., 2020, among others). To the best of our knowledge, past studies 
had moderate success in mapping topsoil color. This was done either by 
interpolating point soil observations in Australia (Viscarra Rossel et al., 
2010) and China (Liu et al., 2020), or by assigning a color to map units 
(polygons) corresponding to the dominant soil type in the case of USA 
(Soils, 2023). Both approaches have merits because they enable spatial 
coverage but have limitations. Maps of soil color made by point data 
interpolation rely on field data and reflect soil color at the time of ob-
servations (Liu et al., 2020) whereas polygon map units of soil colors are 
discrete surfaces and do not represent the natural continuous spatial 
variation of the soil. No study has mapped the soil (surface) color 
globally in space and time at a fine scale, which is essential for moni-
toring its conditions. 

The availability of 40 years of satellite imagery in the visible region is 

R. Rizzo et al.                                                                                                                                                                                                                                   



Remote Sensing of Environment 299 (2023) 113845

3

highly valuable for earth monitoring, as many terrestrial phenomena 
have substantially impacted topsoil properties over time. It is well- 
established that color is a reliable indicator of these temporal topsoil 
transformations. Consequently, leveraging this treasure trove of satellite 
data to track the evolution of topsoil color becomes a critical step in 
understanding both local and global shifts in surface soil conditions. 

In this study, we capitalize on the integration of remote sensing data 
and in-situ observations of soil reflectance spectra in the visible range for 
topsoil color mapping. We execute this both spatially and temporally at 
a fine scale with a grid spacing of approximately 30 m by 30 m across the 
world’s bare surface. We illustrate the process of extracting soil color 
from satellite sensors, and demonstrate how these data can elucidate the 
spatial variability of soil. This integrative approach aims to advance our 
understanding of global soil characteristics significantly. The paper is 
structured as follows: i) we define the ground-truth spectral data to es-
timate soil color, then ii) we build a mathematical transfer function to 
link the ground-truth color values with the Landsat data, iii) we use 
temporal bare surface images obtained from various Landsat sensors to 
map soil color, and, finally, iv) we validate the soil color map. 

2. Material and methods 

Estimates of the bare earth surface soil color over space and time 
were executed in four main steps: i) creating a bare surface image of the 
world between 1985 and 2020; ii) estimating color with soil spectral 
measurements in the visible range; iii) using these estimates as ground- 
truth and fitting a mathematical transfer function to convert Landsat’s 
reflectance bands into standardized CIE-XYZ color coordinates; iv) 
applying this transfer function to bare surfaces images of the world. This 
procedure enable mapping of topsoil color over time. The workflow is 
summarized in Fig. 1. In the next sections, we describe each of these 
steps in detail. 

We acquired spectra from soils of all continents to build a global soil 
spectral library. Approximately 30,000 soil sample spectra were 

compiled and evaluated. Soil spectra were provided by many re-
searchers from different regions, and consequently, measurement con-
ditions were slightly different (Supplementary 1). However, we 
considered only the samples from locations with available information 
in the bare surface image. We obtained a set of 8005 spectra that met 
these conditions, and these are hereafter referred to as the global soil 
library (GSL). 

2.1. Color space models on the soil spectral library 

Conventional soil color measurements are done by experienced users 
under natural day light condition using the Munsell color chart. To 
simulate this condition, we used a mathematical representation of the 
average human chromatic response based on color matching functions 
x(λ), y(λ), z(λ) defined by the Commission Internationale de l’Éclairage 
(CIE). Illumination was standardized by the D65 spectral power distri-
bution (Ohta and Robertson, 2006), which corresponds to the average 
midday light. These matching functions were applied to the GSL in the 
visible range (380–780 nm) of the electromagnetic spectrum to obtain 
the tristimulus values in the CIE 1931 XYZ color space (Standard CIE 
Commission internationale de l’éclairage, 2019). These matching func-
tions were applied to our GSL as follows: 

X = K
∫ 780

380
S(λ)R(λ)x(λ)dλ (1)  

Y = K
∫ 780

380
S(λ)R(λ)y(λ)dλ (2)  

Z = K
∫ 780

380
S(λ)R(λ)z(λ)dλ (3)  

K =
100

∫ 780
380 S(λ)y(λ)dλ

(4) 

Fig. 1. Summary workflow of the procedure to obtain space and time estimates of the bare earth surface soil color. The gray shaded area relates to the temporal 
analysis of the remote sensing data. 
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where λ is the radiation wavelengths (in nm), S(λ) is the spectral dis-
tribution of the illuminant relative power, in this case, the D65 illumi-
nant standardized by CIE, R(λ) is the spectral reflectance of samples, and 
x(λ), y(λ), z(λ) are the matching functions, for a standard observer with 
2o field of view. The location of the spectra used in the GSL with their 
associated values of hue, value and chroma are shown in Fig. 2. 

2.2. Spatio-temporal analysis of Earth’s bare surface 

We analyzed the Tier 1 Collection 1 Surface Reflectance data pro-
cessed by the LEDAPS and LaSRC algorithms (USGS, 2020a, 2020b) 
from Landsat 4 Thematic Mapper (TM), Landsat 5 TM, Landsat 7 
Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational 
Land Imager (OLI) sensors. These datasets are available through the 
Google Earth Engine (GEE) cloud platform (Gorelick et al., 2017; 
Padarian et al., 2015). Due to OLI sensors’ different spectral configu-
rations, Landsat 8 images were transformed into ETM+ following the 
harmonization process described by Roy et al. (2016). 

The Geospatial Soil Sensing System (GEOS3) developed by Demattê 
et al. (2018) was used to flag bare surfaces (BS) in each available Landsat 
images from 1984 to 2020. These images have a 16-day temporal res-
olution, but bare surface reflectance cannot be retrieved regularly due to 
atmospheric conditions and vegetation coverage. The bare surfaces were 
flagged based on the greenness index (GREEN), normalized difference 
vegetation index (NDVI), normalized burn ratio index (NBR), and 
normalized burn ratio 2 index (NBR2). Bare surfaces were assigned 
when the following conditions were met: GREEN <0.65, and − 0.05 <
NDVI <0.25, and NBR > − 0.23, and − 0.05 < NBR2 < 0.15. Clouds, 

shadows, and other non-bare surface pixels were removed using the 
quality assessment band (QA band). Each pixel in the QA band contains 
a decimal value representing the surface, atmosphere, and sensor con-
ditions that can affect the data’s overall usefulness. The band is in un-
signed 16-bit format, whose values are bit-packed and provide 
information pertaining to the following pixel conditions: fill, clear, 
water, cloud, cloud shadow, and snow. We created a mask to remove 
pixels that were not flagged as “clear” in the quality band and conse-
quently did not represented the land surface reflectance. Further infor-
mation about QA band, pixel quality indexes and values can be found 
elsewhere (USGS, 2020a, 2020b). The mask was then created and 
applied to the satellite image collection, preserving only surface 
reflectance data (e.g., images not influenced by clouds, snow, among 
others). The resulting product corresponded to a space-time cube 
comprising the masked images with bare surface pixels, at 30 m spatial 
and 16-day temporal resolutions. Based on this data cube, time series of 
surface reflectance (Landsat bands 1–5, 7 and 8) were retrieved and used 
to evaluate the temporal variability of soil color (see section 2.5). 

The images within the space-time cube were then aggregated using 
the sparse spatiotemporal occurrences into a single composite product 
representing the median value of surface reflectance. This product is 
described herein as a Bare Surface Composite Image (BaSCI). In this 
case, BaSCI corresponded to natural abiotic surfaces (e.g., bare soil, sand 
and rock outcrops), where vegetation has a minor or no influence on the 
reflected signal (Demattê et al., 2020). Areas without spectral mea-
surements were usually associated with natural vegetation fragments or 
soil surfaces with frequent crop residues. 

We evaluated BaSCI by comparing the composite image with spectra 

Fig. 2. Location of soil samples from the global soil library (GSL) and histograms describing the distribuition of Munsell color coordinates.  
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from our GSL. Spectra in the visible range from the GSL were converted 
into XYZ color coordinates and later correlated to BaSCI data by 
Spearman correlation analysis. We also calculated the Euclidean dis-
tance between GSL and BaSCI spectra at each sampling location, 
analyzed the spatial distribution of possible outliers, and defined regions 
where BaSCI had higher similarity with the spectral library. 

2.3. Transfer functions with Landsat data 

Conversions between different color space models are well estab-
lished in the literature (e.g., Viscarra Rossel et al., 2006a, 2006b), 
including the ones related to RGB - XYZ - Munsell systems. The visible 
bands from Landsat roughly correspond to the blue, green, and red 
spectral ranges, and if they were directly converted to other space 
models, the results would be overly saturated or even unrealistic (Sovdat 
et al., 2019). Therefore, we built a new transfer function to convert 
Landsat surface reflectance data (all bands) into CIE 1976 XYZ color 
coordinates. To fit the transfer functions, we used XYZ (from our GSL, 
see Figs. 1 and 2) as dependent variables and the corresponding 
reflectance data (from the median composite image called BaSCI) as 
independent variables. We also considered near infrared (NIR) and 
shortwave infrared (SWIR) spectral bands in the transfer function due to 
good results observed in previous studies (Horvath et al., 1984; Poppiel 
et al., 2020; Post et al., 1994). 

We used the random forest (RF) algorithm (Breiman, 2001) to build 
transfer functions for each color variable (X, Y, and Z). Tuning of the RF 
parameters consisted of a grid search examining a range of values of the 
hyperparameters: the number of independent variables randomly 
selected at each node (called mTry) was tested at 2, 4, 6; the minimum 
number of samples the terminal nodes for further splitting of a tree 
(called the minimum node size) was tested as 10, 30, and 50. We fixed 
the number of trees at 500 to obtain stable estimates (Probst et al., 
2019). During the process, we validated the models with a 10-fold cross- 
validation, which has been described as an adequate method when 
dealing with spatial datasets (Wadoux et al., 2022). We calculated the 
mean absolute error (MAE), the root mean squared error (RMSE), the 
coefficient of determination (R2) and the concordance correlation co-
efficient (CCC). Both MAE and RMSE have an optimal value as close to 
zero as possible. The MAE and RMSE represent the magnitude of the 
error. The R2 and CCC evaluate the deviation from the line of equality 
and have an optimal value of 1. 

2.4. Global soil color maps 

The transfer functions were applied to each pixel in BaSCI, resulting 
in color maps. The resulting XYZ tristimulus values of color were further 
converted to the CIELab and Munsell parameters. These systems are 
commonly used in soil science. We did not perform direct conversion 
and mapping from Landsat bands to CIELab and Munsell because the 
process is time-consuming and would require a large space to store all 
information. Instead, all calculations were implemented on a cloud 
computing system (i.e., Google Earth Engine), so conversion between 
XYZ and other color systems could be done in real-time, according to 
users’ specifications. 

2.5. Time-series of soil color 

Reflectance time series of bare surfaces were retrieved from the 
space-time cube (obtained by the GEOS3 system) at a specific location in 
Brazil. Then, we applied the transfer functions to these time series to 
estimate the temporal variation of topsoil color. The color time series 
were then converted to CIELab and Munsell systems and used in a 
temporal analysis. We calculated the CIELab distances (CIE76) between 
the temporal median (calculated by GEOS3) and each color prediction in 
our time series. The CIE76 allowed us to evaluate differences between 
single-date predictions and the multitemporal median. Because this 

color space is constructed in a cartesian coordinate system, the distance 
between colors is calculated as: 

ΔE⋆
ab(c1, c2) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
L⋆

2 − L⋆
1

)2
+ (a⋆

2 − a⋆
1 )

2
+
(
b⋆

2 − b⋆
1

)2
√

, (5)  

where ΔE⋆
ab is the measure of change in visual perception between color 

c1 and c2; L⋆, a⋆ and b⋆ correspond to the color coordinates from 
CIELab. The reported just-noticeable difference (JND) for this metric is 
2.3 (Sharma et al., 2002), which means that the human eye does not 
detect differences lower than 2.3 and, consequently, cannot be consid-
ered an error. 

3. Results and discussion 

3.1. World bare surface composite image vs. GSL 

We created the BaSCI by evaluating each pixel, aggregating the 
barest soil conditions from 1985 to 2020 and calculating its pixel-wise 
median to obtain a soil color map. Fig. 3 shows the global BaSCI 
related to arable lands (exposed by tillage practices), deserts, and rocks. 
Gaps in the image were mostly associated with natural vegetation or no- 
till agriculture. We could cover 38.5% of the earth’s surface and 82.2% 
(1.53 billion ha) of the croplands mapped by Thenkabail et al. (2021). 

Correlation coefficients between BaSCI and XYZ color coordinates 
derived from our GSL (Table 1) were all significant (p < 0.0001) and 
indicated moderate to strong linear relationships between the two 
datasets. Higher values of correlation coefficients were observed be-
tween XYZ color and BaSCI visible bands (B1, B2 and B3), where most r 
values range from 0.7 to 0.8. The NIR band (B4) were correlated with 
color coordinates, with values ranging between 0.64 and 0.7. SWIR 
bands (B5 and B7) had a moderate correlation with r values varying 
between 0.50 and 0.55. Such independent comparison indicates that the 
composite image adequately represents the variability of soil color at a 
relatively fine scale (e.g., 30 m resolution pixels). 

In past years, some studies have derived bare surface images and 
evaluated their agreement with vis-NIR-SWIR reflectance spectra 
(350–2500 nm) measured in laboratory conditions. These studies were 
performed for smaller areas in Brazil or European countries, and used 
standardized libraries (e.g., Demattê et al. (2018); Safanelli et al. (2020) 
and Tziolas et al. (2020)). They found correlation coefficients between 
0.49 and 0.88, and the highest values were reached in a local-scale study 
(Demattê et al., 2018) with highly controlled soil sampling and labo-
ratory measurements. 

The correlation analysis provided insights into the relationship be-
tween datasets, but the method is not very sensible to outliers and does 
not describe their geographical distribution. Therefore, we evaluated 
the Euclidean distance (dissimilarity) between GSL and BaSCI at each 
sampling location. Samples with higher dissimilarity are mostly likely 
related to outliers in GSL or poor performance of BaSCI at the local scale 
(Fig. 4). Euclidean distances were between 0.005 and 0.11 for 87% of 
sampling points. Samples with higher dissimilarities (> 0.11) had a 
sparse occurrence in the globe but were most frequently observed in 
Brazil, India and Australia (Fig. 4b,c,d). 

Dissimilarity had a clear spatial pattern, particularly in India, which 
may be related to BaSCI limited potential to detect bare pixels in some 
specific environmental conditions. Samples in a semi-arid northern India 
region (Rajasthan state; Santra et al., 2015) (Fig. 4c) had the lowest 
dissimilarity between GSL and BaSCI. Higher dissimilarity values 
occurred in eastern India (West Bengal and Northern Odisha), where the 
monsoon climate favors the surface coverage by crops, residues or grass. 
Roberts et al. (2019) compared a bare surface image of Australia and a 
national spectral library and found better results in sparsely vegetated 
areas from semi-arid regions. 

Different sampling protocols and equipment may also influence 
dissimilarities in Indian data. This study’s soil samples originated from 
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three datasets and multiple field surveys (Sarathjith et al., 2014; Santra 
et al., 2015). Errors in the measurements could be related to different 
sampling tools and users. This problem has been extensively discussed in 
the literature (van Leeuwen et al., 2022; Batjes et al., 2017) and it is an 
issue that affects all samples from our GSL, as well as other works that 
used data from multiple sources. 

3.2. Monitoring Earth’s topsoil color 

While BaSCI spectral bands were related to the CIE XYZ data, there 
were still mismatches. Thus, we created a model to convert reflectance 
bands into CIE XYZ color coordinates using the RF machine learning 
model. Using a 10-fold cross-validation, we achieved a good agreement 
between predicted and observed values, as shown by a R2 close to 0.66 
and a CCC close to 0.8 (Fig. 5). This is similar to or better than soil color 
models derived at continental scales in past studies (e.g., Viscarra Rossel 
et al., 2010; Liu et al., 2020). These models were then applied to BaSCI to 
obtain the topsoil XYZ maps. We also derived maps using the Munsell 
color system, which is standard in soil science. 

The Munsell color maps for hue, value and chroma are shown in 
Fig. 6. Low values are usually due to the presence of organic matter or 
Mn oxides. Reddish, yellowish, and orange hues (in some cases with 
high chroma) are typically caused by oxyhydroxides as hematite, 
goethite, lepidocrocite or ferrihydrite (Schwertmann, 1993). Grayish 
colors (low chroma) are related to the absence of the pigments 

mentioned above or mixture with light or whitish components (high 
value), such as carbonates (calcite, dolomite) and soluble salts (gypsum, 
tenardite, epsomite, halite). Consequently, most key processes in the 
genesis include melanization, clay illuviation, rubefaction, braunifica-
tion, redox, pseudogleyzation, carbonation or salinization (Bockheim 
and Gennadiyev, 2000) which are reflected in soil color. 

Most soil classification systems are based on the morphogenetic of 
soils. We, therefore, compared our topsoil color map with the soil map of 
the world (FAO-UNESCO, 1974) (Fig. 7). Similarities between both 
maps indicated a consistent spatial pattern of color predictions and 
demonstrated the capacity of such a product to support the development 
of thematic maps at finer resolution, such as soil types, carbon pools or 
even lithology (Demattê et al., 2020). The visual comparison over South 
America, Africa, India, Australia and the European continent showed 
consistencies of soil color variation with soil types (Fig. 7). 

In South America, the predicted chroma allowed the discrimination 
between Yermosols and Regosols in the Argentinian temperate grassland 
region, where areas with low chroma agree with the regional light- 
colored topsoil (Fig. 7a). In Southern Africa, Arenosols were correctly 
discriminated from chromic Luvisols and Fluvisols by Munsell hue and 
chroma, presenting a relatively abrupt transition in the map (Fig. 7b). A 
large area in India was accurately described by hue, value and chroma 
(Fig. 7c). In this case, the soils corresponded to Vertisols and Inceptisols 
derived from basaltic parent material, which can be detected by the low 
value and chroma. 

In Eastern to Central Australia, Yermosols (soils under arid regions, 
Arenosols, Technosols and Kandosols in the Australian soil classification 
system) were highlighted by higher Munsell value (Fig. 7d), which is in 
agreement with the color characteristics according to the WRB classifi-
cation criteria (IUSS Working Group WRB, 2015). 

In Brazil, soils with red hue were observed in the Southern part of the 
country, while in the Northern region, yellow hue soils were detected 
(Fig. 7e). Originating from volcanic rocks, areas in Southeastern Brazil 
are closely related to Ferralsols, with a darker red-colored topsoil. On 
the other hand, Regosols and Yermosols in arid regions had higher al-
bedo and brighter colors. 

Another interesting pattern detected by our maps is the soil color 
transition from Africa to the European continents. Areas with lower 

Fig. 3. BaSCI true color composite (R = Band 3; G = Band 2; B = Band 1) of the world’s bare surfaces, and the Munsell color chips.  

Table 1 
Spearman correlation coefficients between soil reflectance measured in the 
laboratory and by Landsat sensors (spectral ranges according to TM). Laboratory 
spectra are represented by XYZ color parameters.  

Landsat bands Spectral range (nm) Soil color coordinates (laboratory) 

X Y Z 

B1 (Blue) 450–520 0.79 0.80 0.81 
B2 (Green) 520–600 0.78 0.79 0.77 
B3 (Red) 630–690 0.69 0.69 0.64 
B4 (NIR) 770–900 0.71 0.71 0.67 
B5 (SWIR1) 1550–1750 0.65 0.65 0.62 
B7 (SWIR2) 2090–2350 0.55 0.54 0.51  
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Fig. 4. Euclidean distance (dissimilarity) between GSL and BaSCI at each sampling location.  

Fig. 5. Scatterplot of the results from the10-fold cross validation of the X, Y and Z color coordinates prediction models using locations (≈8000) that matched the GSL 
and the BaSCI. 
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Munsell value were observed in soils with higher organic carbon (e.g., 
Chernozems), while sandy soils (Yermosols) from dry regions (North of 
Africa) had higher value. 

The similarity between soil color and soil types demonstrates the 
cogency of the global map. Remote sensing measurements only interact 
with a few millimetres of soil surface, while soil class maps are based on 
our conceptual understanding of the whole soil profile. This 

corroborates past studies, which found that it is possible to obtain 
valuable information on subsurface variability from surface measure-
ments (Lagacherie et al., 2013). This is especially true if remotely sensed 
spectra are combined with variables related to relief or other drivers (e. 
g., terrain attributes, climate, land use, and water table regime), that 
have been influencing pedogenetic processes and resulting in variability 
on deeper layers (Mendes et al., 2019). 

Fig. 6. Maps of the Munsell color coordinates.  
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Fig. 7. Comparisons between predictions of soil color (hue, value, chroma) and the soil map in South of South America (a), South of Africa (b), India (c), Australia 
(d), Brazil (e) and Europe, North of Africa and Middle East (f). 
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Soil color maps proved to be not only suitable for global analysis, but 
they also delivered good results at a local scale (Figs. 8, 9 and 10). For 
example, in the Brazilian municipality of Luís Eduardo Magalhães 
(Bahia state) (Fig. 8), soil colors had high spatial variability, with topsoil 
colors transitioning from 2.5YR (in the western area) to 10YR in the 
eastern part of the site. Previous soil surveys of this region (Cooper et al., 
2005) indicated that yellow hues are related to Arenosolos, while the 
reddish topsoil corresponded to Ferralssols. 

Fig. 9 shows the topsoil color variability in an arid region on the 
border between Jordan and Syria. In this case, soils at the northern of the 
site were allocated to Vertic Cambisols, while in the south, there were 
Calcic Xerosols (FAO-UNESCO, 1974). An important characteristic of 
many Xerosols is the Ochric horizon, which resulted in a light-colored 
topsoil. Our color maps correctly discriminate such characteristics, 
indicating yellow Munsell hue (~10YR) and high values in areas 
dominated by the Xerosols. 

3.3. Temporal variability of soil color 

Topsoil variability in time is related to natural or human-induced 
changes on the earth’s surface, and depending on the local conditions, 
it can greatly impact color predictions. This is exemplified in an area 
with two locations, 200 m apart, in Southeastern Brazil. The soils at the 
two sites are the same (i.e., Ferralsol) but had contrasting land uses 
(Fig. 10). The first site was always bare while the second site was under 
sugarcane, which was only occasionally bare. The greatest difference in 

these time series was the number of available data. While soil in the 
sugarcane field had color estimated on 52 dates in the last 20 years, time 
series from the bare site had 244 observations. Color time series in crop 
fields are only available when the soil was tilled, which, in this case, 
corresponds to the period of transition between dry and wet seasons in 
Brazil (September–December). Besides, for both sites, cloud coverage is 
an important factor limiting data acquisition (Demattê et al., 2018). This 
further reduced the number of dates at which the bare surface image 
could be acquired. 

The time series presented similarities in Munsell coordinates’ tem-
poral variability and median values (Fig. 10). Hue and value were one 
unit higher in the crop field than in the bare site, while the median 
chroma was 1.5 units higher in the bare area. Chroma on the bare site 
(Fig. 10f) also had the largest temporal variation, ranging from 3 to 10. 
Measurements on the bare site were acquired during the whole year and 
consequently at very different soil moisture conditions. Coelho and Audi 
(1964) evaluated the influence of water content on soils and found a 
variation of 2 units in chroma. Similarly, Post et al. (1994) indicated that 
soil wetting significantly influences chroma and variations can be pos-
itive or negative, depending on the soil types. 

We calculated the CIE76 metric indicating noticeable differences in 
color (Fig. 11) to compare single-date color estimates and a long-term 
median. The results indicated that in nearly all cases, the variations 
were sufficient to be perceived by the human eye (Fig. 11). CIE76 dis-
tance in the dry (Fig. 11a, c) and wet (Fig. 11b, d) seasons did not have 
large differences, suggesting that soil moisture was not the only factor 

Fig. 8. High resolution satellite image (Google Earth) (a), bare surface image (true color composite) (b), and Munsell hue (c), value (d) and chroma (e) from the 
Municipality of Luís Eduardo Magalhães. 
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influencing reflectance data in these soils. According to Diek et al. 
(2017), the temporal variability and deviation from the central measures 
might be associated not only with moisture, but also to differences be-
tween the Landsat sensors, atmospheric correction algorithms and 
changes in surface roughness (Diek et al., 2017). This finding indicates 
the importance of employing GEOS3, or similar methods to derive a 
central measure (e.g., median or mean) from multitemporal image col-
lections instead of predicting soil attributes from unitemporal data. 
Averaging satellite images over a specific time frame provides a stable 
measurement (Safanelli et al., 2020), less affected by external factors, 

such as surface conditions and uncertainties in sensors’ measurements or 
image pre-processing algorithms. 

3.4. Assumptions and limitations 

We hypothesized that discrepancies between the BaSCI and the GSL 
stemmed from surface-related attributes, such as surface roughness, soil 
crust, and moisture, which likely impact measurements from space- 
borne sensors (Prudnikova and Savin, 2021; Savin and Vindeker, 
2021). The GSL measurements were conducted in a laboratory under 

Fig. 9. High resolution satellite image (Google Earth) (a), bare surface image (true color composite) (b), and Munsell hue (c), value (d) and chroma (e) from a site at 
the border between Jordan and Syria. 
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standardized conditions with dry soils, while space-borne sensors 
gathered soil data under field conditions (Francos and Ben-Dor, 2022). 
In addition, the remote sensing signal is also influenced by residual at-
mospheric conditions even after corrections (Anderson et al., 2005), 
bidirectional reflectance distribution, sensor spectral resolutions, geo-
metric distortions, and the spectral mixture of features (Mulder et al., 
2011; Richter and Schläpfer, 2002). Differences may also be related to 
the scale or support of measurements because satellite-based pixels 
averaged the signals over an area, while GSL measurements were per-
formed on a soil aliquot in the order of a volume of a few cm3. 

Another issue is related to BaSCI and the methodology used to flag 
bare surface pixels. The vegetation indexes and their thresholds have 
been tested and adapted to many countries and their different climate, 
land uses and soils. In our work, broad thresholds were used to produce a 
bare surface image at the global scale. Therefore BaSCI might not fully 
represent the soil spatial variability at regional or local scales. External 
factors influencing the quality of spectral data are primarily related to 
moisture, surface roughness and crop residues (Mulder et al., 2011). An 
increase in soil moisture results in higher light absorption due to the 
refraction index of water molecules (Nolet et al., 2014). Consequently, 
when soils are wet, they exhibit lower reflectance at all visible spectrum 

wavelengths and, thus, lower Munsell values. The effect on the hue 
parameter is more complex, and the trend depends on the mineral 
composition (Bedidi et al., 1992). Roughness is related to irregularities 
in soil surface, which produce shadow areas, where light does not 
directly reach the surface. The reflectance spectrum of ploughed soils, 
characterized by a rough surface, exhibits lower values compared to the 
reflectance associated with sunlit fragments (Cierniewski and Guliński, 
2010). In some situations, the soil surface might decrease by 25% in 
reflectance after being ploughed (Matthias et al., 2000). 

It is generally challenging to find completely bare soils in the field. 
The soil surface is usually partially or completely covered by vegetation 
and organic and inorganic debris. Bartholomeus et al. (2007) indicated 
that a more than 20% vegetation cover prevents accurate soil properties 
estimation with remote sensing. In other cases, only a few percent 
fractional vegetation cover was sufficient to decrease the accuracy of 
predictions dramatically (Bartholomeus et al., 2007). Dry vegetation 
greatly influences the albedo of the vis-NIR region, due to the presence 
of cellulose and lignin (Ben-Dor et al., 2018). Murphy and Wadge (1994) 
found that crop residues greatly impact soil spectra. 

The influence of external factors on BaSCI spectra was reduced by 
defining the median bare surface signal over long periods. In our case, 

Fig. 10. Temporal comparison between the Munsell hue, value and chroma from an agricultural land occasionally bare (a,c,e) and from a constant bare surface (b,d, 
f). Locations are 200 m apart from each other and have the same soil type. 
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we used a Landsat collection with data from the last 35 years. Some 
studies have indicated that working with large image collections im-
proves bare surface coverage, increasing the mapped area and the 
quality of topsoil reflectance (Shi et al., 2022; Zepp et al., 2023). The 
problem with a long-term BaSCI is the temporal mismatch with the soil 
samples. GSL samples represent soil conditions at a specific date, while 
BaSCI reflectance is a median value that may or may not correspond to 
the same dates of field sampling campaigns. Several earth surface pro-
cesses, e.g., soil erosion, can rapidly change topsoil conditions. While 
these changes could be easily observed in an early soil survey and 
sampling, BaSCI could not detect this change immediately. 

While our approach facilitated a comprehensive characterization of 
soil’s spatial variability, certain issues warrant consideration. One sig-
nificant concern pertains to the primary database, the Global Spectral 
Library (GSL). The GSL library has a limited spatial coverage, and 
consequently there are topsoil conditions that are not represented by our 
data. In the American continent, soil samples are concentrated in two 
countries, the United States and Brazil. There are no samples in the 
southern Africa and Sahara desert, and only a few observations in the 
Middle Eastern. Asian soils are represented by samples from India and 
eastern China, while in the Australian continent there are no informa-
tion in the northern and central regions. According to FAO’s world soil 
map, 67% of GSL samples correspond to 4 soil classes, i.e., Ferralsols, 
Arenosols, Luvisols and Acrisols (Supplementary 2). A fundamental 
problem in global soil mapping is the lack of well distributed point ob-
servations within the soil property geographic and features space 
(Poggio et al., 2021). In general, least sampled areas tend to have highest 
prediction uncertainties. This can be explained by the models perform-
ing less accurately within areas that area under-represented by the 
calibration dataset. This is specially true in regions with large spatial 
variation, imposing difficulties for predictions. Besides that, the GSL 
consolidates data from a multitude of field surveys conducted over the 
years. Despite our efforts to include only samples (and spectra) that met 
specific criteria in the GSL, soil sampling protocols were not 

standardized. Consequently, methods such as individual or composite 
sampling, depth, date and time of sampling, tools used, and georefer-
encing precision varied across locations. Given the considerable varia-
tion in the GSL samples, which seldom align with the spectral data in 
BaSCI, this inconsistency might have impacted the performance of our 
predictive models. 

4. Conclusions 

This study showcased the capability of integrating topsoil spectral 
data collected from both ground-based and orbital sensors with machine 
learning techniques to create high-resolution global digital soil maps. 
The validation of the models demonstrated strong agreement with 
ground-truth data, despite several limitations. These limitations 
included the lack of representativeness in the database, challenges 
associated with non-standardized soil sampling and spectral measure-
ments, and, most notably, the considerable spatiotemporal variability of 
the soil measurements. 

The intrinsic relationship between electromagnetic spectrum 
reflectance and soil chromophores underpins the positive outcomes 
obtained in this study. This connection ensures the reliability of our 
proxy, BaSCI, for digitally mapping topsoil color, along with other 
crucial environmental attributes. Moreover, the fine-scale, time-aver-
aged soil color maps can also serve as covariates for digital soil mapping, 
offering comprehensive insights into the soil’s chemical, physical, and 
biological properties. 

Our methodology and analysis provide reliable knowledge that could 
benefit national and continental-level soil assessments. By performing 
temporal analysis and monitoring changes in soil color over time, one 
could identify areas experiencing rapid changes and raise alerts for 
potential soil degradation or other environmental risks. This under-
standing can help inform decisions about land management, agriculture, 
environmental protection, and urban planning. 

Fig. 11. CIE76 metric indicating the just-noticeable differences in color measurements from an agricultural land in wet (a) and dry (b) season and from a constantly 
bare surface in wet (c) and dry (d) season. 
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Demattê, R Poppiel, J. L. Safanneli, H. Belllinaso, F. Terra, N.E.Q. Sil-
vero, M.V. Ballester, P.R. Fiorio; writing-review and editing, A. Wadoux, 
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