Geoderma Regional 36 (2024) e00745

FI. SEVIER

Contents lists available at ScienceDirect

Geoderma Regional

journal homepage: www.elsevier.com/locate/geodrs

Check for

Unravelling spatial drivers of topsoil total carbon variability in tropical ol

paddy soils of Sri Lanka

T.M. Paranavithana®, S.B. Karunaratne >, N. Wimalathunge ©, B.P. Malone ", B. Macdonald ”,

T.F.A. Bishop ¢, R.R. Ratnayake **

& National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
b ¢cSIRO Agriculture and Food, Butler Laboratory, Black Mountain, Clunies Ross Street, Acton, ACT 2601, Australia
¢ Sydney Institute of Agriculture, School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia

ARTICLE INFO

Keywords:

Covariate selection
Digital soil mapping
Spatial modelling
Random forest

Area of applicability
Machine learning
Histosols

Ultisols

Luvisols

Fluvisols

Gleysols

Cambisols

ABSTRACT

This study aimed to map and identify the spatial drivers of total carbon (TC) concentration in topsoil (0-15 cm)
across paddy-growing regions in tropical climates using Sri Lanka as a case study. For model calibration, a total
of 888 sampling locations were sampled using the conditioned Latin Hypercube sampling approach with a
sample density of one sample per 11 km?. Additionally, 99 sampling sites were selected using a design-based
(probabilistic) stratified random strategy for independent evaluation of the developed models. Two distinct
spatial random forest (RF) models were developed using a variety of environmental covariates: Model 1: using all
environmental covariates without variable selection; Model 2: only incorporated covariates selected based on the
forward selection process. Evaluation of model quality using fully independent validation sites revealed that both
Model 1 and Model 2 performed similarly. Based on the spatial estimates of Model 1 across the paddy-growing
regions of Sri Lanka, the predicted TC concentration varied from 0.89% to 13.15%. The highest predicted TC
concentration range was in the Wet zone (2.06% to 13.15%), followed by the Intermediate zone (1.18% to
7.23%), and the lowest was reported in the Dry zone (0.86% to 4.30%). In the spatial estimates of Model 2, the
predicted values varied between 0.86% and 13.29% and were similar to Model 1. The highest predicted TC
concentration range was in the Wet zone (2.09% to 13.29%), followed by the Intermediate zone (1.08% to
6.99%), and the lowest was reported in the Dry zone (0.86% to 4.30%) following the similar pattern to Model 1.
In fact, this clearly showed the importance of mean annual rainfall on the dynamics of TC in tropical rice pro-
duction systems. Furthermore, the variable importance plot of the RF models revealed that out of all considered
environmental covariates, the mean annual rainfall was identified as being the most important variable in the
developed spatial prediction function. Moreover, we deployed an area of applicability (AOA) calculation to
quantify and identify regions where prediction is less reliable and quantified the prediction uncertainty using a
bootstrapping approach. Additionally, we assessed the influence of increasing the number of calibration sites on
model prediction quality and reliability using user defined sequence of calibration sites. Independent evaluations
of each model indicated that model performance quality indices were improved up to n = 400 and thereafter
stagnated. For AOA results, an improvement in model reliability is observed for Wet and Intermediate zones
when models are developed using 400 calibration sites. Derived estimates of TC can be used for regional-scale
planning to enhance the soil carbon and provide a baseline for designing a future land-based carbon account-
ing system for Sri Lanka.

1. Introduction

(UNFCCC) as an attempt to avert the impacts of climate change. It is
anticipated that soil carbon will play a vital role in keeping rise in global

The Paris Climate Agreement was produced at the 21st Conference of temperature to below 2 °C (preferably to 1.5 °C) (Minasny et al., 2017).
the United Nations Framework Convention on Climate Change Soil contains the largest terrestrial carbon pool (Scharlemann et al.,
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2014), and there are two forms of soil carbon that are prevalent: soil
organic carbon (SOC) and soil inorganic carbon (SIC) (Sreenivas et al.,
2016). Whether organic or inorganic, the global soil carbon pool is
crucial in maintaining soil ecosystem function and productivity (Raza
et al., 2020; Qadir et al., 2006).

Submerged paddy fields are recognised as an important agro-
ecosystem for global carbon cycling (Meetei et al., 2020). Rice is the
primary food source for more than half of the global population (Raj-
kishore et al., 2015). With the rising demand for rice globally (Haque
et al., 2020), attention should be paid to increasing productivity upon
the limited land resources where it is grown. As pressure on the limited
cultivable lands increases, maintaining and improving soil quality is
vital to sustaining agricultural productivity and environmental quality
in those areas. As a primary natural resource in paddy-growing eco-
systems, the soil should have sufficient physical, chemical, and biolog-
ical qualities to increase rice production, along with other management
practices (Komatsuzaki and Ohta, 2007). Rahman and Parkinson (2007)
reported that a combination of bio-physical-chemical factors are
important in increasing soil fertility, that would lead to an increase in
rice production. Soil organic carbon, which relates to soil physical,
chemical, and biological fertility, and available soil N, P, and K, all of
which limit rice yields, were included in their analysis. Furthermore,
Girsang et al. (2019) demonstrated that the soil bulk density, saturated
hydraulic conductivity, soil water-filled space and N mineralisation
significantly affect the grain yield of rice. Soil management also de-
termines the productivity of the land, with common practices including
conservation tillage (Ghimire et al., 2017; Wissing et al., 2013), manure
application, retaining crop residue (Gattinger et al., 2012; Zhang et al.,
2022) and crop rotation (Paranavithana et al., 2020; Ratnayake et al.,
2017) all improving soil carbon status by improving carbon inflows and
reduction of losses. Ratnayake et al. (2014) in the Northern region of Sri
Lanka showed that organic fertilisation that was maintained for 10 years
and minimum tillage practices significantly increased SOC and carbon
stocks in different annual cropping systems.

In submerged paddy-growing soil systems, SOC accumulation rates
are significantly high owing to some inherent mechanisms such as
subjecting soils to periodic anaerobic conditions (Xu et al., 2020), pro-
duction of microbial activity inhibitors, incomplete decomposition and
decreased humification of the organic matter (Ratnayake et al., 2017;
Sahrawat, 2004). Higher silt and clay concentrations in lowland paddy
soils also stabilise SOC because those particles act as chemical (Yan
et al., 2013) and physical (Huang et al., 2010) protectors against carbon
mineralisation. For example, Song et al. (2020), in their study in Jiangxi
Province, subtropical China, found that soil organic matter concentra-
tion in paddy soils was higher than the amount recorded in upland and
forest soils in the same region.

The current study focuses on the quantification of the spatial drivers
and landscape-scale modelling of total carbon (TC) for tropical rice
production systems. In general, the spatial variability of TC has often
been reported as quite high across landscapes due to a combination of
edaphic environmental and climatic factors together with land man-
agement practices (De Blecourt et al., 2017). Usually, under natural
environmental conditions, soil characteristics are strongly influenced by
the inter-relationships between soil parent material, climatic conditions
and landform characteristics and features (Liu and Liu, 2014). Along
with these, other environmental features, such as vegetation and related
indices such as type, density, diversity, and patterning (both spatially
and temporally), have been adopted to develop soil carbon spatial
models at different scales (Shi-Hang et al., 2011).

Machine Learning (ML) techniques have been used in digital soil
mapping (DSM) by enabling the inference of relationships between soil
properties and environmental covariates (Khaledian and Miller, 2020;
Wadoux et al., 2020). Several ML techniques have emerged that could
potentially facilitate greater predictive power despite the complexity of
the variation in soil carbon. The ML approaches utilised in soil carbon
modelling encompass a diverse array of techniques and applications.
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These include the use of support vector machines (Song et al., 2022;
Peng et al., 2014), artificial neural networks (Tiwari et al., 2015),
regression trees (Rentschler et al., 2019), random forests (RF) (Wang
et al., 2023; Zhang et al., 2017; Hengl et al., 2015), extreme gradient
boosting (Taghizadeh-Mehrjardi et al., 2020; Forkuor et al., 2017), and
neural networks (Aitkenhead and Coull, 2016) for advancing prediction
models of soil carbon. Out of all those different algorithms RF algorithm
is the most widely used ML algorithm for soil carbon modelling work
(Lamichhane et al., 2019). As a result, linear regression models can
easily be replaced with ML algorithms to account for more complex soil-
environment relationships (Hengl et al., 2015).

In the development of a spatial prediction function for soil carbon,
key elements in model development include not only a set of environ-
mental covariates that are used as model drivers but also the distribution
of model calibration sites across the landscape and the number of sites
required to develop an optimum model with higher model quality. Due
to the associated cost of field data collection and the need to capture the
inherent variation of environmental covariates through sampling sites,
algorithms such as conditioned Latin hypercube sampling (cLHS)
(Minasny and McBratney, 2006) are commonly deployed. Somarathna
et al. (2017) stated that the uncertainty of model predictions decreases
with increasing calibration sample size. Furthermore, prediction un-
certainty in soil carbon modelling can be significantly influenced by
various factors, including the spatial heterogeneity of soil carbon, the
choice of modelling algorithm (Somarathna et al., 2017), and environ-
mental and landscape characteristics (Sun et al., 2022). Additionally,
Mishra et al. (2022) and Saurette et al. (2022) emphasized the impor-
tance of the selection and inclusion of environmental covariates, which
also could control the uncertainty of soil carbon prediction. Therefore, it
is imperative for soil carbon modelling studies to carefully consider and
address these factors to improve the robustness and reliability of
predictions.

The current study aims to understand the drivers of total carbon
concentration in tropical paddy-growing soils. Annually Sri Lanka cul-
tivates approximately 708,000 ha of paddy soils across the country (two
primary seasons), accounting for 34% of the country's total agricultural
land extent. Currently, there is no consistent baseline dataset on TC
concentrations across the major paddy cultivation regions in Sri Lanka.
One exception is the regional-scale study conducted by Ratnayake et al.
(2016), one of the first spatially explicit studies carried out to estimate
SOC concentration in the Northern paddy-growing region of Sri Lanka.
Furthermore, a national-scale study conducted by Vitharana et al.
(2019) focused on the spatial distribution of SOC stocks throughout the
country with a limited number of ground truth data locations scattered
across a large land extent (n = 122, area = 64,610 km?). Therefore, the
current study aims to:

1. Undertake a detailed field sampling campaign to collate ground truth
datasets covering paddy-growing soils in Sri Lanka

2. Develop spatially explicit machine learning model/s to identify
drivers of TC in tropical rice production systems and assess the
quality of the model using a fully independent dataset

3. Evaluate the reliability of the generated models across the landscape
using Area of Applicability (AOA), as outlined by Meyer and
Pebesma (2021). The AOA provides guidance on the applicability of
model extension across entire mapping extent.

4. Assess the relative impact of sample site number on model evaluation
perfromance.

2. Materials and methods
2.1. Description of the study area
Sri Lanka is located between 5.9° and 9.87° North and 79.65° and

81.88° East. There are three major climatic zones in the country, which
are essentially defined on the basis of annual rainfall; Dry zone (<1750
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mm); Intermediate zone (1750-2500 mm); and Wet zone (>2500 mm)
(Mapa, 2020). The Wet zone experiences relatively high mean annual
rainfall without any pronounced dry periods, whereas the Dry zone
experiences relatively lower mean annual rainfall, with a distinct dry
season from May to September. Compared to the Dry zone, there is a
short and less prominent dry season in the Intermediate zone (Punya-
wardena, 2020). A large proportion of paddy-growing lands are located
in the country's Dry zone, which contains two-thirds of the country's
entire paddy-growing area. Compared to other paddy-growing coun-
tries, Sri Lanka cultivates paddy under various hydrogeological regimes,
climatic conditions, terrain conditions (e.g., under significant variations
in altitude/elevation and slope) and soil types that differ throughout the
country. The maximum annual rainfall in the Wet zone of the country
has been recorded as 6000 mm, while values as low as 600 mm have
been reported for the dry and arid regions. The altitude of the country
ranges from mean sea level (MSL) to 2575 m above MSL, and the average
temperature values vary within a range of 15-30 °C across the elevation
gradient. Paddy is cultivated across all agro-ecological regions except
the high massif areas above 1200 m (Dhanapala, 2007). Two different
cultivation seasons prevail within the country, depending on the mon-
soon's rainfall patterns. The two main seasons are known as ‘Maha
kannaya’ (falling during the second inter-monsoon and northeast
monsoon season from September to February) and ‘Yala kannaya’
(falling during the first inter-monsoon and southwest monsoon season
between March and August (Sathischandra et al., 2014). This study
covers current paddy-growing areas in all 25 administrative districts of
Sri Lanka.

2.2. Designing soil sampling schemes for model calibration and validation

Two distinct sampling strategies were used to collate soil samples for
model calibration and validation. The cLHS strategy was used to
determine the model calibration sites. The cLHS algorithm selects
sample sites from a Latin hypercube in the feature space (Minasny and
McBratney, 2006). For example, for k continuous variables, each X
component is divided into n (sample sites) equally probable strata based
on their distributions, and x is a sub-sample of X. The cLHS algorithm is
based on heuristic rules with an annealing schedule (Minasny and
McBratney, 2006). The cLHS sampling design is an effective sampling
technique for identifying sampling locations that represent the variation
of different environmental covariates. In this study, a variety of envi-
ronmental covariates were used to capture the inherent variability of the
landscape that affects the carbon inflows and out-flows (Table 1). Hence,
the considered environmental covariates directly or indirectly affect the
TC concentrations in the study region. Additionally, a fully independent
validation dataset using design-based sampling principles was collated
to assess the model prediction quality (Brus et al., 2011). As a design-
based sampling scheme, the stratified random sampling (SRS)
approach was adopted. For stratification, the same environmental
covariates listed in Table 1 were clustered (using the k-means clustering
algorithm). In each stratum, simple random sampling was performed,
with each stratum being considered as a sampling zone.

In total, 1000 sampling sites were selected as model calibration and
validation sites. Among them, 800 sampling locations were allocated
across the landscape using the cLHS algorithm. In addition to those 800
calibration sampling sites, another 100 soil samples were taken at an
approximate distance of 100-150 m away from the main sampling sites,
similar to the approach described by Karunaratne et al. (2014). The
additional calibration sampling sites were used to capture the inherent
short-range soil variability. For the independent validation of the model,
100 sampling sites were randomly assigned across strata generated
using the SRS strategy. In the SRS approach, a set of environmental
covariates (Table 1) is stratified into 25 strata, and four samples are
allocated for each stratum. Despite the sampling locations being pre-
determined, reaching the exact sampling location was quite challenging
during the sampling stage due to practical issues such as site
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Table 1
Summary of the environmental covariates used for the study.

Scorpan Environmental variable Units Reference/ data source

factor

Climate (c) Mean annual rainfall mm Wordclim
http://www.worldclim.
org/

Temperature (annual °C Wordclim

average mean, annual http://www.worldclim.

average maximum, annual org/

average minimum)

Vapour Pressure Deficient K pa Wordclim

(VPD) http://www.worldclim.
org/

Relief (r) Elevation m NASA SRTM data
http://www.cgiar-csi.
org/data/srtm-90m-di
gital-elevation-database
v4-1

SAGA Wetness Index (WI) Unit Derived from NASA
less STRM (secondary terrain
attribute)
Slope Degrees  Derived from NASA
STRM (primary terrain
attribute)
Organism MODIS Enhanced Vegetation ~ Unit NASA
(0) Index (EVI) less https://modis.gsfc.nasa.

gov/data/dataprod/
mod13.php. Derived
from taking mean annual
EVI data from 2005 to
2014.

accessibility. Therefore, 888 calibration samples out of 900 sites and 99
validation samples out of 100 sites were sampled. Fig. 1 depicts the
spatial distribution of sampling locations and paddy-growing areas
within the country across the major climatic zones, namely Wet, Inter-
mediate and Dry zones. The soil samples were collected at a soil depth of
0-15 cm soil depth level using a soil augur with a diameter of 5 cm. At
each sampling site, soil samples were collected from three points in a
triangular path with a distance of approximately 10 m between sampling
points and composited to form a representative sample. The GPS loca-
tions of all the sampling sites were recorded using a Garmin eTrex 30
handheld GPS receiver.

2.3. Soil sample analysis

All visible organic debris, plant roots, and stones were removed by
handpicking prior to the analysis of the composited soil samples. The
moist soil samples from the field were analysed for soil pH (1:2.5 soil:
water suspension) (Anderson and Ingram, 1993). The remaining soil
samples were air-dried and sieved using a sieve with a 2 mm mesh. Soil
samples were then ground to size of <0.15 mm to obtain a uniform
particle size. Before determination of the soil carbon concentration,
another portion of powder with a size <0.15 mm was again ground and
sieved through a 42-pm mesh sieve. Then, soil carbon concentration (%)
was analysed using an automated dry combustion method via a 2400
Series II CHN Elemental Analyser (Fadeeva et al., 2008; Skeen, 1994).
The measured TC concentrations are reported as oven-dry equivalent
(ODE) using the following equations (Egs. (1) and (2)).

ODE correction factor (6,) is given by:

~ Mw

= (€3]

where Mw = mass of water in the air-dried sample and Ms. = the total
mass of the oven-dried soil.
gocC }

@

TCop =TCup x (1+ ) [kg ODsoil
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Fig. 1. The paddy-growing areas of Sri Lanka (green shaded areas) and sampling sites with overlapping major climatic zones: calibration sample sites are indicated in
black colour, while validation sample sites are indicated in red colour (coordinate system: Kandawala Sri Lanka Grid).

where TCgp total carbon concentration in g C/kg oven-dried (OD) soil;
and TCyp total carbon concentration in g C/kg air-dried (AD) soil.

2.4. Preparation of environmental covariates for spatial modelling of total
carbon

The development of the spatial model was performed based on the
scopan digital soil mapping framework (Eq. (3)), as outlined by
McBratney et al. (2003). The scopan model describes the quantitative
relationships prevailing among TC and environmental covariates by
developing a spatial soil prediction function. A variety of environmental
covariates are considered in the current study including slope, the SAGA
wetness index (WI)) (Bohner and Selige, 2006), and other terrain attri-
butes such as hydrologically corrected elevation data derived from
NASA Shuttle Radar topographic mission, MODIS Enhanced Vegetation
Index (EVI), Vapour Pressure Deficit (VPD), annual average mean tem-
perature, annual average maximum temperature, annual average

minimum temperature and mean annual rainfall. All environmental
covariates were standardised (resampled) to a spatial resolution of 100
m prior to spatial analysis. A summary of the environmental covariates
used in this study is presented in Table 1, the details of which were
presented in Rajapaksha et al. (2020).

Sf=(s,c;o,r,p,a,n)+e 3

where, S represents TC concentration, soil (s), climate(c), organisms (0),
relief (r), parent materials (p), age (a), and spatial position (n); and
where e is the error. A random forest modelling framework represents
the f in the current study.

2.5. Geospatial modelling

The RF model can be used either as a classifier or for regression. For
the current modelling work, a regression RF model was adapted in
which the importance of each predictor variable was determined by a
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regression loss function on the basis of mean square error (MSE) (Dewi
and Chen, 2019). The RF algorithm is capable of handling both linear
and nonlinear complex relationships and multicollinearity among the
considered parameters (Karunaratne et al., 2020). At each binary split, a
random subset of covariates is selected to provide the best split. The
number of variables available for splitting at each tree node is referred to
as the myy parameter. Heung et al. (2014) reported that the myy
parameter in the RF model is the main tuning parameter that requiring
optimisation. In the current study, the RF model's my, parameter was
optimised using repeated 10-fold cross-validation. The best model
parameter for the myy was determined using the return value with the
lowest RMSE value obtained via 10-fold cross-validation. The cross-
validation was based on the calibration dataset.

Two different forms of RF model were tested in the current study.
The only difference between Model 1 and Model 2 is that the latter used
forward selection of the variables, as described by Meyer et al. (2019). In
summary, Model 2 is trained with all possible pairs of predictor variables
and keeps the best pair as the initial model. Then, each of the remaining
predictor variables is iteratively added and tested for improvement with
the best model. The process stops if none of the remaining variables
increases the model performance when added to the current best model
(Meyer et al., 2018). The purpose of utilising forward selection for
Model 2 is to overcome model overfitting issues by removing highly
correlated variables (Meyer et al., 2019). A summary of the two RF
models tested in the current study is provided in Table 2.

2.5.1. Evaluation of model quality

The model performances were evaluated using the Nash-Sutcliffe
model efficiency coefficient (NSE) (Eq. (4)), Root- Mean Square Error
(RMSE) (Eq. (5)) and Lin's Concordance Correlation Coefficient (LCCC)
(Eq. (6)). The NSE measures the improvement made by the model based
on the magnitude of the residual variance compared to the measured
data variance. The RMSE provides an indicator for the accuracy of the
model, while the LCCC indicates how well the measured and predicted
values deviate from a 1:1 line (i.e., a 45-degree line). The best models
are those with the lowest RMSE values and comparatively higher LCCC
and NSE values. Models with LCCC and NSE values close to 1 are
considered to be those with the best performance. The models were
validated using independent datasets collated using a design-based
sampling strategy, as explained in Section 2.2. A schematic diagram of
the TC measurement and data modelling pipeline is presented in Fig. 2.

> (p o)
NSE=1-2L C))
(0— o)
i=1
where p is the difference between predicted(p) and observed(o) values,
0-0 is the difference between the observed (0) value and the mean of the
observed (0) values and n refers to the number of observations.

l n
RMSE = 4 /;Ziz] (p — o)’ (5)

where p, o refer to predicted and observed values, and n refers to the
number of observations.

2pox 0y

- 6)
o2x + 0%y (py — /4}')2

LCCC (pe) =

Table 2
Summary of the specific techniques employed in model development.

Model name RF model optimisation Cross-validation Variable selection

Model 1
Model 2

10-fold CV NA
10-fold CV Forward selection

My parameter
Myry parameter
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where p¢ is the estimated LCCC, uyand u, are the means for the
measured and predicted parameters, and o2x and o2, are the corre-
sponding variances of the measured and predicted parameters. p is the
Pearson's correlation coefficient between the measured and predicted
values.

2.5.2. Spatial estimates of total carbon

The area of applicability (AOA) of the two models was calculated, as
explained by Meyer and Pebesma (2021). The AOA provides a quanti-
tative assessment of the reliability of current prediction quality using the
existing measurement datasets, and the function can be found in the
CAST R package (Meyer et al., 2020). The AOA approach identifies the
areas in which the model is likely to be problematic as a result of the
dataset used in the modelling not capturing the environmental and
spatial features of the area in which the model is being applied. The AOA
is determined on the basis of the dissimilarity index (DI), which is a
unitless measurement for detecting the deviation of new data cases (a
prediction location) from the training data. The DI is calculated by
considering the cross-validation folds and using a threshold, which is by
default is the 95% quantile of the DI of all training data, and then returns
the AOA statistics. The patterns in the DI are in general agreement with
the true prediction error, i.e., very high DI values indicate areas that are
not covered by the training data. For prediction areas in which the DI
values are over the threshold, the predictions are assumed to be unre-
liable. They should be excluded from further analysis, as the values of
the predictors at the locations of the training data do not represent the
values of the predictors where the prediction is being made (Meyer and
Pebesma, 2021).

Furthermore, if distances were calculated based on the standardised
covariates, all variables would be treated as being equally important.
However, distances are not equally relevant within the predictor space;
some variables are more important than others (as indicated by the
variable importance in machine learning algorithms). Therefore, scaled
variables are multiplied by the weighting estimate derived from the
variable importance of the RF model for each variable before distance
calculation. The training data set is created for our 888 sampling loca-
tions on the basis of the environmental covariate dataset (Appendix,
Fig. Al). In addition to AOA analysis as a measure of the reliability of
current prediction quality, 100 bootstrapped models, resulting from 100
possible mapped outputs, were used to generate the lower (5%) and
upper (95%) predictions (Gray et al., 2019). The thus-obtained predic-
tion intervals were used to calculate the 90% prediction interval (Ap-
pendix, Fig. A2).

2.6. Impact of number of calibration sites used for model training: model
performance and reliability

Considering the advantage of having a large number of calibration
sites (n = 888), we evaluated the impact of model prediction quality and
reliability with increased calibration sites in a sequence. To assess the
effect of the number of calibration sites, sequentially increasing numbers
of data cases were used for model calibration, starting at n = 200 and
then increasing by 100 each time up to 800. Samples for each configu-
ration were selected using the cLHS algorithm and selecting from the
888 sampling locations available for model development. For each of
these chosen sequences, Section 2.5 was repeated, and each of these
models was independently evaluated. The individual model quality was
performed using the validation sites (n = 99), as noted above, enabling
an unbiased comparison of the model prediction quality. Finally, the
percentage of AOA was calculated for each model to identify the model
reliability.
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Fig. 2. A schematic diagram for the measurement and modelling of the soil total carbon adopted in the current study.

3. Results and discussion

3.1. Descriptive analysis of the total carbon concentrations in paddy-
growing soils

The descriptive statistics for TC% in paddy-growing soils of Sri Lanka
are presented in Table 3. The summary of the statistics reveals that the
mean TC% of the paddy soil was 2.44 + 1.73%. The reported skewness
value was 3.53, which is indicative of the positively skewed, unimodal
distribution of the measured TC concentrations. This implies that high
concentrations of TC are stored in a few locations, whereas only a
relatively small amount of carbon is stored in most of the other locations
on the landscape (Delgado-Baquerizo et al., 2018). Further analysis
considering the different climatic zones reported mean TC% values of
5.21 + 2.78, 2.24 £ 0.75, and 1.89 & 0.79 for the Wet, Intermediate,

and Dry zones, respectively. In contrast to the other two zones in the
country, TC% values for the Wet zone are significantly higher, and the
associated soil pH values are significantly lower, as shown in the box
plots (Fig. 3). At higher soil pH, the bonds between organic constituents
and clay particles in the soil can be easily broken (Neina, 2019), leading
to an increase in soil carbon mineralisation, whereas the decarboxyl-
ation of organic acid anions during the organic matter decomposition
could lead to an increase in soil pH, as explained by Ding et al. (2019).

3.2. Relationships between total soil carbon concentration and
environmental covariates

The analysis of the Pearson's correlation coefficient is summarised in
Fig. 4. The Pearson's correlation coefficient was calculated in agreement
with the linear relationships between TC concentrations and

Table 3

Descriptive statistics for total carbon in paddy soils across the country and in major climatic zones of Sri Lanka.
Variable n Mean SD Median Min Max Skewness SE Q1 Q3
Whole country
TC% 987 2.44 1.73 2.04 0.30 17.85 3.53 0.06 1.47 2.69
Wet Zone
TC% 145 5.21 2.78 4.63 1.36 17.85 1.93 0.23 3.19 6.45
Intermediate Zone
TC% 176 2.24 0.75 2.21 0.78 5.04 0.81 0.06 1.76 2.65
Dry Zone
TC% 666 1.89 0.79 1.77 0.30 5.33 1.15 0.03 1.34 2.31

Note: n: number of samples; SD: Standard Deviation; Min: minimum; Max:

: maximum; SE: Standard Error; Q1: first quartile; Q3: third quartile.
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Fig. 3. Distribution of the measured total carbon concentration (Fig. 3a) and pH (Fig. 3b) values with respect to major climatic zones, abbreviated as D: Dry zone; I:

Intermediate zone; and W: Wet zone.

Note: The solid horizontal line in the boxplots indicates estimated median TC concentrations. The ends of the boxes indicate the inter-quartile range, while the
whiskers represent the maximum and minimum values, excluding any outliers, and outliers are depicted as ‘dots’, the red-coloured triangles indicate the cate-

gory means.

environmental covariates. A strong positive correlation was observed
between TC concentration and mean annual rainfall (r = 0.64).
Furthermore, positive correlations were observed between TC concen-
tration and MODIS EVI (r = 0.34) and TC concentration and the slope of
the landscape position (r = 0.09). Negative correlations were observed
between TC concentration and annual average maximum temperature
(r = —0.36), annual average mean temperature (r = —0.22) and annual
average minimum temperature (r = —0.07).

Climate variables are among the key drivers of TC concentration in
paddy-growing soils. In general, higher rainfall and lower temperature
provide the conditions necessary for increasing soil carbon levels (Fan-
tappie et al., 2011). However, water availability during the rainy season
affects both carbon accumulation through primary production and
carbon loss through decomposition, which ultimately balances the long-
term storage of soil carbon, which also depends on the rate of carbon
inflows into the system. Furthermore, MODIS EVI data showed a positive
correlation with the soil TC concentrations. In fact, MODIS EVI acts as a
proxy for land productivity (biomass production), and the quantitative
connection between the amounts of carbon added to soils.

3.3. Identification of the drivers of soil total carbon concentration across
paddy-growing soils

The environmental covariates that explain the TC concentration

across the landscape are divided into three main categories: climatic
(rainfall, temperature, VDP), relief (elevation, WI, slope degree), and
organism (MODIS EVI). The variable importance plot (VIP) obtained
using the RF model was used to identify the key model drivers (Fig. 5). A
summary of the fitted RF model with all covariates (Model 1) is pre-
sented in Fig. 5a, while a summary of the forward-selected variables
employed in Model 2 is presented in Fig. 5b. Rainfall was the key
environmental driver affecting the spatial distribution of TC concen-
trations, as observed by the VIP plots for both models (Fig. 5). The slope
angle was the least important variable in both Model 1 and Model 2
when predicting TC concentrations. This may be due to the lower
prevalence of land variability in the flat terrain areas used in rice pro-
duction. Emphasising the smaller degree of variability in the relatively
flat landscapes of paddy-growing paddocks, >90% of the paddy-
growing areas were scattered within the narrow range of 0° to 2.5°.
However, in Model 2, which used forward selection of the variables, as
explained by Meyer et al. (2019), MODIS EVI, elevation and WI were not
selected in the final model.

Among the most important model drivers used for spatial prediction,
rainfall, temperature, and evapotranspiration are considered as the
primary climatic covariates involved in SOC storage fluctuations (Del-
gado-Baquerizo et al., 2018). Both the rainfall and temperature unde-
niably regulate the soil TC dynamics of ecosystems. The VPD is closely
related to the evapotranspiration rate in the area of interest (Zheng
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Fig. 4. Pearson's correlation coefficient matrix of soil total carbon concentra-
tion and climatic, terrain, and imaging attributes of paddy-soils in Sri Lanka.
Abbreviations: TC: total carbon concentration; Rainfal N: mean annual rainfall;
Temp_Min_ N: annual average minimum temperature; DEM _N: elevation;
VDP_N: vapour pressure deficient; Temp_N: annual average mean temperature;
Temp_Max_N: annual average maximum temperature; Modis N: MODIS EVI;
Slope_d_N: slope; SAGA_WI_N: SAGA wetness index.

et al., 2014). Accordingly, the increased temperature levels lead to
enhanced evapotranspiration rates resulting in a nonlinear rise in VPD.
Furthermore, the higher VPD increases soil evapotranspiration, affecting
plant growth and soil productivity (Breshears et al., 2013). Elevation
plays a crucial role among topographic variables in determining soil
carbon distribution by altering the micro- and macro-environmental
conditions (Martin et al., 2014; Tsui et al., 2013). The MODIS EVI
(MODIS-Terra sensor) is an important time series vegetation index
capable of monitoring substantial changes in the ecosystem, providing
new insight into the mechanisms of the carbon cycle (inflows of carbon
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into the soil system). The MODIS EVI data are directly related to plant
productivity and act as a proxy for the carbon inflows into the soils.

Several previous studies conducted in tropical climatic regions have
reported similar results corroborating with the current research. For
example, Hinge et al. (2018) predicted SOC stocks using an RF model
with climatic and remotely sensed datasets in India covering different
land use types, including croplands and forest areas. They found that,
although the topographic parameters, slope, and multi-resolution index
of valley bottom flatness were relevant to surface SOC distribution, the
most important factors were elevation and land use. Furthermore, Hinge
et al. (2018) reported that the decrease in temperature with rising
elevation, as well as changes in rainfall distribution, might affect the
decomposition rate of soil organic matter. Therefore, the combined
contribution of elevation, rainfall and temperature towards the regula-
tion of plant productivity and organic matter decomposition is empha-
sized. Dharumarajan et al. (2017), in their study, performed spatial
prediction of SOC in the semi-arid tropics of India, incorporating five
major land use types (single crop, double-crop, fallow land, scrub and
forest), and showed that EVI and normalised different vegetation index
(NDVI) were the most critical determiners of SOC distribution. In
addition to productivity, the contribution of vegetation in controlling
high-temperature levels through evapotranspiration may be the under-
lying reason for the preservation of high levels of carbon in soil.

3.4. Independent model evaluation

A summary of the fully independent model validation is presented in
Table 4. The NSE values of models 1 and 2 were 0.29 and 0.27,
respectively. The RMSE (%) and LCCC values of the two distinct pre-
dictive models reported identical values of 1.35 (%) (Table 4). The high
LCCC value of 0.75 for the two fitted models indicated considerable
agreement between measured and predicted TC concentrations. In
summary, it can be concluded that the NSE, RMSE, and LCCC values
related to the performance of the two models were more-or-less similar.

Table 4
Performance of predicted soil carbon models according to fully independent
validation.

Model NSE RMSE (%) LCCC
Model 1 0.29 1.35 0.75
Model 2 0.27 1.35 0.75
(b)
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Fig. 5. Relative importance of variables of each soil carbon model on the basis of the random forest algorithm: (a) Variable Importance Plot of Model 1, (b) Variable
Importance Plot of Model 2 Abbreviations: Rainfall N: mean annual rainfall; Temp_Min_N: annual average minimum temperature; DEM_N: elevation; VDP_N: Vapour
pressure Deficient; Temp_N: annual average mean temperature; Temp_Max_N: annual average maximum temperature; Modis N: MODIS EVI; slope_d_N: slope;
SAGA_WIN: SAGA Wetness Index. Variable groups: red colour: climatic; green colour: organism; blue colour: relief.
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Scatter plots for the observed TC vs. predicted TC concentrations are
predicted in Fig. 6. On the basis of results of the independent validation,
Model 1 and Model 2 can be concluded to exhibit the same model
quality. However, Model 2 incorporates a smaller number of environ-
ment covariates relative to Model 1 (Fig. 5), thus having lower
computational requirements when performing predictions across the
landscape.

Hengl et al. (2015) used the RF modelling approach to model and
map a variety of soil properties, including soil carbon across the African
continent, at a spatial resolution of 250 m. Random Forest was proved to
be a more accurate prediction approach than comparatively simpler
multiple linear regression models, with an average improvement of
mapping accuracy of 20% when performing predictions across a range of
climatic conditions from tropical wet climates to hyper-arid climates
(Hengl et al., 2015). Similarly, Taghizadeh-Mehrjardi et al. (2016)
identified the efficacy of the RF Model for the prediction of the SOC
topsoil (0-15 c¢m) in semi-arid regions in Iran with an LCCC value of
0.66. Dharumarajan et al. (2017), in the semi-arid tropics of India, re-
ported an LCCC value for SOC prediction of 0.38, for a model developed
for use within a depth range of 0-30 cm. In comparison, in the current
study, both models tested for TC reported much higher LCCC values than
those in the studies carried out by Taghizadeh-Mehrjardi et al. (2016)
and Dharumarajan et al. (2017).

The sampling density used in the current study for calibration was
one site per 11 km? (n = 888), and the sampling density for validation
was one site per 96 km? (n = 99), where the paddy extent was around
9516 km?. The sample densities calculated for calibration and validation
in different climatic zones in Sri Lanka are depicted in Table 6. Keskin
et al. (2019) reported a calibration sampling density of one site per 211
km? (n = 710), and a validation sampling density of one site per 493 km?
(n = 304) in a study performed across an area of 150,000 km? in Florida,
United States. Martin et al. (2011) reported a sampling density of one
site per 247 km? (n = 2200) in a study performed across an area of
543,965 km? in France. Moreover, Bui et al. (2009), in their study across
Australian agricultural zones (2,765,000 km?), reported a sampling
density of one site per 250 km?. Therefore, the sample density employed
in the current study is considerably better than those used in previous
studies.

3.5. Mapping the total soil carbon concentrations across the paddy-
growing regions in Sri Lanka

The distribution of the predicted TC concentrations is depicted in
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Fig. 7, overlaid across the major climate zones (Wet, Intermediate, and
Dry), as derived from both Model 1 and Model 2. A high TC concen-
tration was recorded for paddy fields of the southwestern part that
belong to the Wet zone (Table 5). Theoretically, the equilibrium be-
tween carbon inputs and decomposition basically governs the seques-
tration or degradation of organic substances in the soil systems. The high
organic-matter soils or Histosols found in general across the paddy-
growing soils in the Wet zone form as permanently waterlogged soils.
Sahrawat (2004) reported that the loss rate of organic matter in Histo-
sols is slower than its accumulation. Ultisols are the dominant soil type
in the Wet zone of Sri Lanka, both in the lowlands and in the central
highlands. Ultisols are also found in the Intermediate zone of the country
(Moorman and Panabokke, 1961). Despite this, the depressions common
to this soil group have been naturally displaced by hydromorphic soil
types or Histosols, which create a more suitable environment for paddy
cultivation. Furthermore, the Wet zone placed on the windward side of
the country receives a high amount of rainfall during the southeast
monsoon. Relatively low temperatures prevail throughout the year, and
a long period of anoxic conditions resulting in low pH values and
associated low decomposition rates may also contribute to the accu-
mulation of high TC concentration in this region, as previously reported
by Delgado-Baquerizo et al. (2018). High plant productivity and litter
decomposition rates are also seen in areas with high mean annual
rainfall, eventually contributing to high atmospheric carbon-fixation
rates and SOC accumulation (Garcia-Palacios et al., 2013).

In the Dry zone, high maximum temperatures would contribute to-
wards the storage of less TC compared to in the Wet and Intermediate
zones of the country (Fig. 7, Table 5). In addition, in the Dry zone
experiencing high evapotranspiration or high VPD often results in a
decrease in plant productivity, thereby restricting carbon inflows into
the soil system, resulting in low soil carbon storage (Delgado-Baquerizo
et al., 2013). Reddish-brown earths are the dominant great soil group in
the Dry zone climatic region (USDA Taxonomy: Alfisols; WRB legend:
Luvisols). These soils experiences free drainage, and in the geographical
depressions or valley areas, this great soil group is substituted by hy-
dromorphic soils such as alluvial soils (USDA Taxonomy: Entisols; WRB
legend Fluvisols) and Low-Humic Gley soils (USDA Taxonomy: Alfisols;
WRB legend: Gleysols) (Moorman and Panabokke, 1961). To facilitate
rice production, low-lying paddy-growing areas in the Dry zone mostly
consist of Alfisols and hydromorphic associations, inheriting poorly
drained soil characteristics. Eastern Sri Lanka (i.e., the Ampara and
Batticaloa administrative units) exhibits lower TC distributions than
other paddy-growing areas. According to Moorman and Panabokke
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Fig. 6. Scatter plots of observed TC values vs. predicted TC values: Model 1 (a); and Model 2 (b). Observed TC values are related to the independent valida-

tion dataset.
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Fig. 7. Spatial distribution of predicted TC concentrations (%) in paddy-growing soils across Sri Lanka with the major climatic zone boundaries. The areas remaining
as white colour patches are non-paddy areas, (a) spatial distribution of TC according to Model 1, and (b) spatial distribution of TC according to Model 2.

(1961), the Low-Humic Gley soils associated with the Non-Calcic Brown
soils (USDA Taxonomy: Alfisols; WRB legend: Cambisols and Gleysols)
in the eastern province have a coarser texture, which can commonly be
recognised as being a sandy loam to loamy sand texture and exhibits
moderately well-drained characteristics. Those soil characteristics
reduce carbon retention ability (mineral-associated carbon) compared
to the other soil types in the Dry zone. The predicted values were higher
in the North, Northeast, East, and Northwest coastal regions compared
to the other areas in the Dry zone. The soils of these areas are formed
from recent and older marine sand, lagoons, and shallow seabed de-
posits. Furthermore, these coastal areas, which are vulnerable to high
tide submergence from previous events, are rich in marine clay with the
previous decomposition materials of calcareous contents (Dassanayake
et al., 2020).
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3.6. How reliable are the spatial estimates of the soil total carbon
concentrations?

The AOA analysis aided in determining the reliability of current TC
predictions (Fig. 8). The AOA function demarcates and shows us the
area/land extent to which the predicted model can successfully be
applied (Meyer and Pebesma, 2021). The percentages of AOA in each
primary climatic zone of Sri Lanka, considering both models, are
depicted in Table 6. It can be observed that the Model 1 predictions were
reliable for 89.56% of paddy-growing areas across Sri Lanka and unre-
liable for only 10.44%. Furthermore, the Model 2 predictions were
reliable for 89.62% of the area and unreliable for 10.38%. Similar reli-
ability was reported across all paddy-growing regions for both tested
models. The spatial predictions of soil TC concentration in the Dry zone
can be considered more reliable, followed by the Intermediate and Wet
zones, respectively (Table 6). However, Model 1 achieved slightly
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Fig. 7. (continued).
Table 5
Summary of predicted total carbon % values in paddy soils across the country and in major climatic zones of Sri Lanka.
Model 1 Model 2

Variable Mean Min Max SD Q1 Q3 Mean Min Max SD Q1 Q3
Whole country 2.44 0.89 13.15 1.35 1.74 2.46 2.43 0.86 13.29 1.38 1.71 2.44
Wet 5.27 2.06 13.15 1.84 3.97 6.55 5.32 2.09 13.29 1.91 3.95 6.48
Intermediate 2.43 1.18 7.23 0.71 2.01 2.65 2.37 1.08 6.99 0.71 1.96 2.55
Dry 1.91 0.86 4.30 0.40 1.63 2.14 1.91 0.86 4.30 0.40 1.63 2.14

Note: Min: minimum; Max: maximum; SD: standard deviation; Q1: first quartile; Q3: third quartile.

higher reliability for the Wet zone than Model 2. The Wet zone of Sri
Lanka possesses a unique topography and higher temperature variation
due to the elevation gradient and annual cumulative rainfall. The report
of a less reliable area is most likely due to the current sampling scheme
not being able to capture this inherent variability of the environmental
covariates that govern the variation of the soil TC concentration in the
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Wet zone. The AOA results show higher unreliable TC estimates across
the Wet zone, which is further supported by the higher model uncer-
tainty values for the same region as depicted by the calculated 90%
prediction interval (Appendix, Fig. A2, Table Al). The highest uncer-
tainty of the prediction was recorded in the Wet zone of the country
while the lowest was recorded in the Dry zone.
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Fig. 8. Area of applicability (AOA) of the soil carbon prediction for the paddy-growing areas across Sri Lanka estimated using Model 1 and Model 2.

In previous studies on paddy soils in the tropical and subtropical
regions of the world, Xu et al. (2020) used different multivariate tech-
niques to compare their ability to estimate SOC across soil profiles. As
per the superior model prediction, shale contained the highest SOC
concentration ranging from 29.42 to 1.73 g kg ™! from top to bottom, and
quaternary red clay exhibited the lowest, from 22.45 to 0.27 g kg™ ..
Song et al., 2020 stated that SOC stock at soil depths of 0-20 cm was
27.6 g kg~! in Jiangxi Province, China. Furthermore, several other
studies in subtropical and tropical climatic regions studying different
soil carbon pools of paddy-growing soils are summarised below, and
their results compared with those of current study (Table 7). Relatively
lower values of TC concentration were reported in paddy soils in the
southeastern part of China recorded relatively lower values of 0.5-1.5%
for the depths of 0-15 cm. The mean TC concentration in the Wet zone of
Sri Lanka was relatively higher than the soil carbon values reported in
other countries, except for Selangor Malaysia, at the same depth level
(Aishah et al., 2010). The range of SOC values reported for Lombok Is-
land, Indonesia was quite similar to the values reported for both the Dry
and Intermediate zones of Sri Lanka. The TC pool of paddy soil in
Madagascar was recorded to be 2.18 + 1.16% (Kawamura et al., 2017),
and this value is greater than the Dry zone mean value in Sri Lanka and
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less than the mean soil TC concentration in the Wet zone. Furthermore,
the recorded SOC% in the Bara district, Nepal, is indicated to be 2.13%
(£1.5) (Panday et al., 2018); this value is in accordance with the paddy
soils in the Intermediate zone of Sri Lanka.

3.7. Model performances due to number of data cases used for model
calibration

The summary of the model performance quality using NSE, RMSE
and LCCC for the sequence of calibration models tested with varying
calibration sites and the full calibration sites is demonstrated in Fig. 9.
As denoted by the model performance quality (Fig. 9), there is an in-
crease in the NSE and LCCC values, and a reduction of RMSE value can
be observed for n = 400. Beyond this point, the model performance
quality indices are stagnated. The NSE values for Model 1 exhibited a
slight improvement from 0.30 to 0.40, and for Model 2, the respective
values increased from 0.35 to 0.42 as the calibration sample size
increased from 400 to 800. Simultaneously, the LCCC values for Model 1
showed enhancement from 0.75 to 0.79, whereas for Model 2, the value
remained unchanged at 0.76. The RMSE values ranged from 1.36 to 1.31
in Model 1 and from 1.36 to 1.39 in Model 2 when the calibration sample
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Fig. 8. (continued).

Table 6
Summary of sampling densities and percentage area of applicability.

Climatic Area of No. of calibration No. of validation Calibration density of Validation density of AOA% (Model 1) AOA% (Model 2)
ddy/km? ling locati i i it li it
zone paddy/km sampling locations samp. ing samg ing/one site per sampzlng/ onesiteper o e  Unrelisble  Reliable  Unreliable
locations xkm x km
Wet 1201.94 128 17 9 71 60.74 39.26 53.75 46.25
Intermediate ~ 1760.77 158 18 11 98 76.47 23.53 76.74 23.26
Dry 6562.25 602 64 11 102 98.65 1.35 99.60 0.40

size increased from 400 to 800, as presented in Fig. 9.

As demonstrated by Lagacherie et al. (2020) and Somarathna et al.
(2017), the increasing sample size leads to a rise in prediction accuracy
at a decreasing rate, irrespective of the specific model employed for the
analyses. Morgan et al. (2003) utilised a decision tree-based data mining
tool to investigate the impact of sample size on modelling accuracy,
revealing that the rate of improvement in model accuracy reaches a
plateau after a certain point. Moreover, Saurette et al. (2022) compared
Cubist and RF models to ordinary Kriging, and their findings indicated
that all three models showed a similar pattern of improvement with
increasing sample size aligning with the findings of Morgan et al.
(2003). Therefore, the results of the current study are consistent with
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those of previous studies. However, as Sun et al. (2022) and Long et al.
(2020) suggested, the improvement of model performances with
increasing sampling sites could also be specific to the landform char-
acteristics of the region.

When developed models are applied across the landscapes, the reli-
ability of models also varies with the number of sites chosen to develop
calibration models using cLHS strategy. Technically, selected sites for
each calibration model using the cLHS strategy should represent the
marginal distribution of global calibration datasets (n = 888). Never-
theless, the increasing number of sites within calibration sites has
influenced capturing the complex variation across the landscape fea-
tures. At the country scale comparison, whether the variable selection is
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Table 7
Summary of relevant studies on the modelling and mapping of soil carbon.
Region Land use Soil depth(cm) No: of samples Model Soil carbon Soil Mean soil carbon References
predictor carbon stocks/
pool concentration in
paddy soil

Yujiang County, Paddy 100 + 5 (vertical 306 PLSR, ANN, Cubist, SOC In different parent (Xuetal.,
Jiangxi distribution from (calibration = GPR, and SVMR materials: 2020)
Province, top to bottom) 214, validation with the CARS
China =92) e Red sandstone:

24.76-0.51 g
kg!

e Shale
29.42-1.73 g
kg!

e River alluvium:
26.61-0.65 g
kg™!

e Quaternary red
clay: 22.45-0.27
gkg!

Jiangxi Province, Paddy, 0-20 256 MLR, RK Land use, Elevation, SOC 0-20:27.6 g kg’1 (Song et al.,
China Upland soil, 20-40 Parent material 20-40:12.11 g 2020)

Forest kg™!

Jinjing woodlands, 0-20 1033 GWR, OK, IDW, Elevation, Slope, SOC 3.50 kg’2 (Liu et al.,
catchment, paddy fields LMR, LMM, TWI, Land use 2017)
China and tea fields

South eastern Paddy 0-15 212 MLR, OK, SK, RK NDVI, Elevation, TC 0.5-1.5% (Sumfleth and
part of China Elevation above Duttmann,

nearest drainage 2008)
path, TWI

Selangor, Paddy 0-20 138, 30 extra K - SOC 3-5% (Aishah et al.,
Malaysia points for 2010)

validation

Lombok Island, Paddy 0-10 150 PLSR - SOC 0.90-2.98% (Kusumo
Indonesia et al., 2018)

Central highland Paddy 0-10 (mainly) 59 Vis-NIR diffuse - TC 2.18% (+1.16) (Kawamura
of Madagascar, reflectance et al., 2017)
Sothern Africa spectroscopy, PLS

Bara district, Paddy 0-15 109 OK - SOC 2.13% (+1.5) (Panday et al.,
Nepal 2018)

Sri Lanka, Paddy 0-15 83 LMM DEM, WI, ARF, MT, SOC 0-15: 1.78% (Ratnayake
Northern 15-30 NDVI (+0.78) et al., 2016)
Province 15-30:1.03%

(4+0.47)

Current study Paddy 0-15 987 RF Rainfall, TC Wet zone: 5.36% Current study
(whole Sri temperature, VPD. (£2.07)

Lanka) MODIS EV], slope, Intermediate zone:

TWI

2.40% (£0.0.74)

Dry zone: 1.89%
(+0.41)

Note: Soil carbon pool abbreviations: Soil organic carbon (SOC), total carbon (TC); Model name abbreviations: Partial Least Square Regression (PLSR), Artificial Neural
Network (ANN), Gaussian process regression (GPR), Support Vector Machine Regression (SVMR), Competitive Adaptive Reweighted Sampling (CARS), Multiple Linear
Regression (MLR), Regression Kriging (RK), kriging (K), Ordinary Kriging (OK), Simple Kriging (SK), Geographically Weighted Regression (GWR), Inverse Distance
Weighted (IDW), visible and near-infrared (Vis-NIR), Linear Mixed-effects Model (LMM), Random Forest (RF); SOC predictor abbreviations: laboratory-based hyper-
spectral imaging (HSI), topographic wetness index (TWI), normalised difference vegetation Index (NDVI), digital elevation model (DEM), wetness index (WI), annual
rainfall (ARF), mean temperature (MT), vapour pressure deficient (VPD), enhanced vegetation index (EVI).

performed (Model 2) or not (Model 1) resulted in similar reliability but
model 2 was more stable. Notably, the Dry zone of Sri Lanka, which has
undulating terrain with less variability with landscape and climatic
variation, resulted in almost no change in the estimates' reliability with
an increase of the calibration sites for the two tested models (Fig. 10).
The model reliability decreases for the Intermediate and Wet zones with
the increasing number of model calibration sites after n > 400 sites. This
coincides with the calibration model quality evaluated using the fully
independent dataset also revealed the model prediction quality stag-
nated after n > 400 calibration sites (Fig. 9).

As the study area expands to a larger spatial scale, the soil carbon
distribution may become more heterogeneous, making capturing all
variations challenging. The relationship between sample size and
modelling performance can be influenced by various factors, such as the
spatial scale of the study and the heterogeneity of the soil carbon dis-
tribution (Stevens et al., 2013). Therefore, the relationship between
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sample size and modelling performance may not always be linear. In
some cases, the improvement in modelling performance reaches a point
beyond which further increases in sample size do not significantly
enhance the model performances (Wartini et al., 2020). This saturation
may occur when the existing sample size adequately captures the
dominant predictors used for the soil carbon modelling and additional
samples do not provide substantial new information. Therefore, these
results indicate that the locations selected in n = 400 adequately
represent the study area's soil-environment relationships under the
current modelling framework. The variable importance plot of Model 2
for n = 400 showed that almost all the variables used in Model 1 were
utilised in developing Model 2, except for the slope angle (Fig. S2). It
was also revealed that despite changing calibration sites, top three key
variables that were identified includes mean annual rainfall, annual
average maximum temperature and annual average mean temperature.
Furthermore, relatively lesser significance of the slope angle and the
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Fig. 9. Comparison of the model quality with the full calibration dataset with sequence of increase of the calibration dataset for Model 1 and Model 2, (a) Nash-
Sutcliffe model efficiency coefficient (NSE), (b) Lin's Concordance Correlation Coefficient (LCCC), (c) Root-Mean Square Error (RMSE%).

SAGA wetness index is evident.

The supplementary material includes the spatial distribution of the
calibration sites sequence used for further comparison with the full
calibration sites (Fig. S1), the site distribution with major climatic zones
(Table S1), key drivers identified using variable importance plot for
Model 1 and Model 2 (Fig. S2), and fully independent validation plots
(Fig. S3).

3.8. Model prediction uncertainty

The prediction uncertainty associated with spatial output layers
generated using ML algorithms can be assessed through variety of ap-
proaches. Commonly used methods for analysing prediction uncertainty
in ML algorithms include: (a) model-embedded quantile regression, such
as the quantile random forest estimator (Wadoux et al., 2023), enabling
the quantification of prediction interval coverage (Wadoux, 2019); (b)
ensemble model development using bootstrapping (Rossel et al., 2014);
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and more recently (c) utilising the AOA concept (Meyer and Pebesma,
2021). In the current study, two different approaches were employed to
quantify prediction uncertainties, namely bootstrapping and the AOA
concept. Both tested methods resulted in similar overall patterns of
uncertainty estimation across the landscape (Figs. 8 and A2). The AOA
concept, as presented in Meyer and Pebesma (2021), provides a sys-
tematic approach to assess the applicability and uncertainty of spatial
prediction models. The AOA function delineates regions where spatial
prediction models offer reliable and accurate estimations, enhancing our
understanding of the model's prediction limitations and associated
uncertainties.

3.9. The practical implication of the derived outputs

The derived spatial estimates across all rice production regions in Sri
Lanka provide the first-ever detailed country-scale assessment of TC
concentration. These spatial estimates can be used to formulate an
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Fig. 10. Comparison of the model percentage area of reliability using area of applicability (AOA%) concept considering broad climate zones and whole country using

two different model fitting processes.

integrated management strategy to enhance rice productivity by
increasing the TC concentration, mainly through SOC. In designing such
strategies, the best-performing lands within a given region (based on the
drivers of the TC concentrations) should be considered as determining
the practically attainable TC concentrations. Hence, management stra-
tegies should be developed using the thus-defined attainable TC con-
centrations by considering both strategic tillage and improved stubble
management. This strategy will lead to the development of other land
parcels with low levels of TC compared to existing land parcels in the
same geographic region in order to move closer towards the attainable
TC limit. This approach is important, as the values of TC concentration
are clearly distinct across the major climatic zones, being predominantly
affected by annual rainfall.

Furthermore, spatial TC concentration estimates provide a carbon
baseline for future carbon trading, which relies on greenhouse gas
emissions and subsequent storage capacity. Hence, the project can help
identify and prioritise potential locations for soil-based carbon seques-
tration projects. In fact, the generated baseline datasets will be
immensely useful for Sri Lanka to develop IPCC Tier 3 carbon ac-
counting model for the land sector in the near future. The estimated
spatial soil TC concentration values within the areas that were identified
as being less reliable through AOA should be interpreted with caution,
due to the associated uncertainty of the estimates. Furthermore, those
regions can be used to define future targeted field sampling campaigns
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to improve the reliability of the spatial estimates of the soil TC
concentrations.

3.10. Limitations of the current study

Even though the best possible environmental covariates at 100 m
resolution were used for the current predictions, there are practical
limitations to how much improvement can be achieved through their
combination. Integrating target variable data and environmental cova-
riates is crucial for accurately understanding and predicting the spatial
distribution of soil carbon. However, the combination of these data
reaches a saturation point in terms of model improvement. Beyond this
point, introducing more data can even have a counterproductive effect,
potentially leading to a decrease in model reliability. When additional
data points are introduced, they can create complex or diverse re-
lationships that the existing model structure might not be capable of
capturing. The intricacies of these new relationships may be difficult to
align with the patterns identified by the initial covariate dataset, which
can lead to an unexpected outcome in the overall performance of the
model. Therefore, some limitations associated with selected environ-
mental covariates and their combined effect could reduce the model's
performance and reliability. In such cases, introducing alternative or
new sets of covariates could be a potential strategy to address this lim-
itation. However, the success of this approach is cannot be guaranteed.
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The efficacy of these alternative covariates depends on whether the new
relationships they introduce align with the underlying dynamics of the
soil carbon in the region.

4. Conclusions

Both RF models fitted in the current study exhibited similar model
quality, while Model 2 incorporates a smaller number of environmental
covariates compared to Model 1. A series of calibration models with
varying sample sizes were evaluated, and their performances improved
until n = 400, after which they stagnated. In the country-scale com-
parison, both Model 1 and Model 2 yielded similar reliability, while
Model 2 was more stable. In the Dry zone, both models exhibited com-
parable reliability with an increasing number of calibration sites.
However, in the Wet and Intermediate zones, model reliability
decreased after, n > 400. The results suggested that the locations
selected in n = 400 adequately reflect the study area's soil-environment
relationships under the current modelling framework. The derived AOA
maps be used to target additional samples first to improve model quality,
followed by spatial estimates. In this case, recognizing the potential
challenges and intricacies of incorporating additional samples or envi-
ronmental predictors is pivotal in maintaining realistic outcomes
regarding model performance. In this study, the first-ever detailed
baseline spatial estimates of TC concentration across the paddy-growing
regions in Sri Lanka were derived. The derived maps will be pivotal for
allocating resources to enhance the TC, mainly through SOC manage-
ment with the aim of enhancing soil health and rice productivity. The
regional differences in soil carbon distribution could be helpful in Sri
Lanka for planning site-specific fertilizer recommendations for rice
cultivation. Well-demarcated AOA maps are vital to avoiding possible
deception when utilising such predictive maps to assist decision making.
Furthermore, enhancing the TC concentration will act as an offset
strategy for the mitigation of climate change.
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Table Al
Descriptive statistics for the uncertainty of total carbon prediction (%) in paddy soils across the country and in major climatic zones of Sri Lanka.
Model 1 Model 2

Variable Mean Min Max SD Q1 Q3 Mean Min Max SD Q1 Q3
Whole country 0.65 0.15 9.36 0.58 0.37 0.67 0.67 0.12 8.65 0.52 0.40 0.72
Wet 1.62 0.26 9.36 1.06 0.99 1.84 1.56 0.30 8.65 0.91 1.02 1.81
Intermediate 0.57 0.16 3.78 0.33 0.36 0.66 0.60 0.13 3.79 0.32 0.39 0.70
Dry 0.49 0.15 3.10 0.20 0.36 0.55 0.52 0.12 3.17 0.21 0.39 0.61

Note: Min: Minimum, Max: Maximum, SD: Standard Deviation, Q1: first quartile, Q3: third quartile.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.geodrs.2023.e00745.
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