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A B S T R A C T   

This study aimed to map and identify the spatial drivers of total carbon (TC) concentration in topsoil (0–15 cm) 
across paddy-growing regions in tropical climates using Sri Lanka as a case study. For model calibration, a total 
of 888 sampling locations were sampled using the conditioned Latin Hypercube sampling approach with a 
sample density of one sample per 11 km2. Additionally, 99 sampling sites were selected using a design-based 
(probabilistic) stratified random strategy for independent evaluation of the developed models. Two distinct 
spatial random forest (RF) models were developed using a variety of environmental covariates: Model 1: using all 
environmental covariates without variable selection; Model 2: only incorporated covariates selected based on the 
forward selection process. Evaluation of model quality using fully independent validation sites revealed that both 
Model 1 and Model 2 performed similarly. Based on the spatial estimates of Model 1 across the paddy-growing 
regions of Sri Lanka, the predicted TC concentration varied from 0.89% to 13.15%. The highest predicted TC 
concentration range was in the Wet zone (2.06% to 13.15%), followed by the Intermediate zone (1.18% to 
7.23%), and the lowest was reported in the Dry zone (0.86% to 4.30%). In the spatial estimates of Model 2, the 
predicted values varied between 0.86% and 13.29% and were similar to Model 1. The highest predicted TC 
concentration range was in the Wet zone (2.09% to 13.29%), followed by the Intermediate zone (1.08% to 
6.99%), and the lowest was reported in the Dry zone (0.86% to 4.30%) following the similar pattern to Model 1. 
In fact, this clearly showed the importance of mean annual rainfall on the dynamics of TC in tropical rice pro
duction systems. Furthermore, the variable importance plot of the RF models revealed that out of all considered 
environmental covariates, the mean annual rainfall was identified as being the most important variable in the 
developed spatial prediction function. Moreover, we deployed an area of applicability (AOA) calculation to 
quantify and identify regions where prediction is less reliable and quantified the prediction uncertainty using a 
bootstrapping approach. Additionally, we assessed the influence of increasing the number of calibration sites on 
model prediction quality and reliability using user defined sequence of calibration sites. Independent evaluations 
of each model indicated that model performance quality indices were improved up to n = 400 and thereafter 
stagnated. For AOA results, an improvement in model reliability is observed for Wet and Intermediate zones 
when models are developed using 400 calibration sites. Derived estimates of TC can be used for regional-scale 
planning to enhance the soil carbon and provide a baseline for designing a future land-based carbon account
ing system for Sri Lanka.   

1. Introduction 

The Paris Climate Agreement was produced at the 21st Conference of 
the United Nations Framework Convention on Climate Change 

(UNFCCC) as an attempt to avert the impacts of climate change. It is 
anticipated that soil carbon will play a vital role in keeping rise in global 
temperature to below 2 ◦C (preferably to 1.5 ◦C) (Minasny et al., 2017). 
Soil contains the largest terrestrial carbon pool (Scharlemann et al., 
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2014), and there are two forms of soil carbon that are prevalent: soil 
organic carbon (SOC) and soil inorganic carbon (SIC) (Sreenivas et al., 
2016). Whether organic or inorganic, the global soil carbon pool is 
crucial in maintaining soil ecosystem function and productivity (Raza 
et al., 2020; Qadir et al., 2006). 

Submerged paddy fields are recognised as an important agro- 
ecosystem for global carbon cycling (Meetei et al., 2020). Rice is the 
primary food source for more than half of the global population (Raj
kishore et al., 2015). With the rising demand for rice globally (Haque 
et al., 2020), attention should be paid to increasing productivity upon 
the limited land resources where it is grown. As pressure on the limited 
cultivable lands increases, maintaining and improving soil quality is 
vital to sustaining agricultural productivity and environmental quality 
in those areas. As a primary natural resource in paddy-growing eco
systems, the soil should have sufficient physical, chemical, and biolog
ical qualities to increase rice production, along with other management 
practices (Komatsuzaki and Ohta, 2007). Rahman and Parkinson (2007) 
reported that a combination of bio-physical-chemical factors are 
important in increasing soil fertility, that would lead to an increase in 
rice production. Soil organic carbon, which relates to soil physical, 
chemical, and biological fertility, and available soil N, P, and K, all of 
which limit rice yields, were included in their analysis. Furthermore, 
Girsang et al. (2019) demonstrated that the soil bulk density, saturated 
hydraulic conductivity, soil water-filled space and N mineralisation 
significantly affect the grain yield of rice. Soil management also de
termines the productivity of the land, with common practices including 
conservation tillage (Ghimire et al., 2017; Wissing et al., 2013), manure 
application, retaining crop residue (Gattinger et al., 2012; Zhang et al., 
2022) and crop rotation (Paranavithana et al., 2020; Ratnayake et al., 
2017) all improving soil carbon status by improving carbon inflows and 
reduction of losses. Ratnayake et al. (2014) in the Northern region of Sri 
Lanka showed that organic fertilisation that was maintained for 10 years 
and minimum tillage practices significantly increased SOC and carbon 
stocks in different annual cropping systems. 

In submerged paddy-growing soil systems, SOC accumulation rates 
are significantly high owing to some inherent mechanisms such as 
subjecting soils to periodic anaerobic conditions (Xu et al., 2020), pro
duction of microbial activity inhibitors, incomplete decomposition and 
decreased humification of the organic matter (Ratnayake et al., 2017; 
Sahrawat, 2004). Higher silt and clay concentrations in lowland paddy 
soils also stabilise SOC because those particles act as chemical (Yan 
et al., 2013) and physical (Huang et al., 2010) protectors against carbon 
mineralisation. For example, Song et al. (2020), in their study in Jiangxi 
Province, subtropical China, found that soil organic matter concentra
tion in paddy soils was higher than the amount recorded in upland and 
forest soils in the same region. 

The current study focuses on the quantification of the spatial drivers 
and landscape-scale modelling of total carbon (TC) for tropical rice 
production systems. In general, the spatial variability of TC has often 
been reported as quite high across landscapes due to a combination of 
edaphic environmental and climatic factors together with land man
agement practices (De Blecourt et al., 2017). Usually, under natural 
environmental conditions, soil characteristics are strongly influenced by 
the inter-relationships between soil parent material, climatic conditions 
and landform characteristics and features (Liu and Liu, 2014). Along 
with these, other environmental features, such as vegetation and related 
indices such as type, density, diversity, and patterning (both spatially 
and temporally), have been adopted to develop soil carbon spatial 
models at different scales (Shi-Hang et al., 2011). 

Machine Learning (ML) techniques have been used in digital soil 
mapping (DSM) by enabling the inference of relationships between soil 
properties and environmental covariates (Khaledian and Miller, 2020; 
Wadoux et al., 2020). Several ML techniques have emerged that could 
potentially facilitate greater predictive power despite the complexity of 
the variation in soil carbon. The ML approaches utilised in soil carbon 
modelling encompass a diverse array of techniques and applications. 

These include the use of support vector machines (Song et al., 2022; 
Peng et al., 2014), artificial neural networks (Tiwari et al., 2015), 
regression trees (Rentschler et al., 2019), random forests (RF) (Wang 
et al., 2023; Zhang et al., 2017; Hengl et al., 2015), extreme gradient 
boosting (Taghizadeh-Mehrjardi et al., 2020; Forkuor et al., 2017), and 
neural networks (Aitkenhead and Coull, 2016) for advancing prediction 
models of soil carbon. Out of all those different algorithms RF algorithm 
is the most widely used ML algorithm for soil carbon modelling work 
(Lamichhane et al., 2019). As a result, linear regression models can 
easily be replaced with ML algorithms to account for more complex soil- 
environment relationships (Hengl et al., 2015). 

In the development of a spatial prediction function for soil carbon, 
key elements in model development include not only a set of environ
mental covariates that are used as model drivers but also the distribution 
of model calibration sites across the landscape and the number of sites 
required to develop an optimum model with higher model quality. Due 
to the associated cost of field data collection and the need to capture the 
inherent variation of environmental covariates through sampling sites, 
algorithms such as conditioned Latin hypercube sampling (cLHS) 
(Minasny and McBratney, 2006) are commonly deployed. Somarathna 
et al. (2017) stated that the uncertainty of model predictions decreases 
with increasing calibration sample size. Furthermore, prediction un
certainty in soil carbon modelling can be significantly influenced by 
various factors, including the spatial heterogeneity of soil carbon, the 
choice of modelling algorithm (Somarathna et al., 2017), and environ
mental and landscape characteristics (Sun et al., 2022). Additionally, 
Mishra et al. (2022) and Saurette et al. (2022) emphasized the impor
tance of the selection and inclusion of environmental covariates, which 
also could control the uncertainty of soil carbon prediction. Therefore, it 
is imperative for soil carbon modelling studies to carefully consider and 
address these factors to improve the robustness and reliability of 
predictions. 

The current study aims to understand the drivers of total carbon 
concentration in tropical paddy-growing soils. Annually Sri Lanka cul
tivates approximately 708,000 ha of paddy soils across the country (two 
primary seasons), accounting for 34% of the country's total agricultural 
land extent. Currently, there is no consistent baseline dataset on TC 
concentrations across the major paddy cultivation regions in Sri Lanka. 
One exception is the regional-scale study conducted by Ratnayake et al. 
(2016), one of the first spatially explicit studies carried out to estimate 
SOC concentration in the Northern paddy-growing region of Sri Lanka. 
Furthermore, a national-scale study conducted by Vitharana et al. 
(2019) focused on the spatial distribution of SOC stocks throughout the 
country with a limited number of ground truth data locations scattered 
across a large land extent (n = 122, area = 64,610 km2). Therefore, the 
current study aims to:  

1. Undertake a detailed field sampling campaign to collate ground truth 
datasets covering paddy-growing soils in Sri Lanka  

2. Develop spatially explicit machine learning model/s to identify 
drivers of TC in tropical rice production systems and assess the 
quality of the model using a fully independent dataset  

3. Evaluate the reliability of the generated models across the landscape 
using Area of Applicability (AOA), as outlined by Meyer and 
Pebesma (2021). The AOA provides guidance on the applicability of 
model extension across entire mapping extent.  

4. Assess the relative impact of sample site number on model evaluation 
perfromance. 

2. Materials and methods 

2.1. Description of the study area 

Sri Lanka is located between 5.9◦ and 9.87◦ North and 79.65◦ and 
81.88◦ East. There are three major climatic zones in the country, which 
are essentially defined on the basis of annual rainfall; Dry zone (<1750 
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mm); Intermediate zone (1750–2500 mm); and Wet zone (>2500 mm) 
(Mapa, 2020). The Wet zone experiences relatively high mean annual 
rainfall without any pronounced dry periods, whereas the Dry zone 
experiences relatively lower mean annual rainfall, with a distinct dry 
season from May to September. Compared to the Dry zone, there is a 
short and less prominent dry season in the Intermediate zone (Punya
wardena, 2020). A large proportion of paddy-growing lands are located 
in the country's Dry zone, which contains two-thirds of the country's 
entire paddy-growing area. Compared to other paddy-growing coun
tries, Sri Lanka cultivates paddy under various hydrogeological regimes, 
climatic conditions, terrain conditions (e.g., under significant variations 
in altitude/elevation and slope) and soil types that differ throughout the 
country. The maximum annual rainfall in the Wet zone of the country 
has been recorded as 6000 mm, while values as low as 600 mm have 
been reported for the dry and arid regions. The altitude of the country 
ranges from mean sea level (MSL) to 2575 m above MSL, and the average 
temperature values vary within a range of 15-30 ◦C across the elevation 
gradient. Paddy is cultivated across all agro-ecological regions except 
the high massif areas above 1200 m (Dhanapala, 2007). Two different 
cultivation seasons prevail within the country, depending on the mon
soon's rainfall patterns. The two main seasons are known as ‘Maha 
kannaya’ (falling during the second inter-monsoon and northeast 
monsoon season from September to February) and ‘Yala kannaya’ 
(falling during the first inter-monsoon and southwest monsoon season 
between March and August (Sathischandra et al., 2014). This study 
covers current paddy-growing areas in all 25 administrative districts of 
Sri Lanka. 

2.2. Designing soil sampling schemes for model calibration and validation 

Two distinct sampling strategies were used to collate soil samples for 
model calibration and validation. The cLHS strategy was used to 
determine the model calibration sites. The cLHS algorithm selects 
sample sites from a Latin hypercube in the feature space (Minasny and 
McBratney, 2006). For example, for k continuous variables, each X 
component is divided into n (sample sites) equally probable strata based 
on their distributions, and x is a sub-sample of X. The cLHS algorithm is 
based on heuristic rules with an annealing schedule (Minasny and 
McBratney, 2006). The cLHS sampling design is an effective sampling 
technique for identifying sampling locations that represent the variation 
of different environmental covariates. In this study, a variety of envi
ronmental covariates were used to capture the inherent variability of the 
landscape that affects the carbon inflows and out-flows (Table 1). Hence, 
the considered environmental covariates directly or indirectly affect the 
TC concentrations in the study region. Additionally, a fully independent 
validation dataset using design-based sampling principles was collated 
to assess the model prediction quality (Brus et al., 2011). As a design- 
based sampling scheme, the stratified random sampling (SRS) 
approach was adopted. For stratification, the same environmental 
covariates listed in Table 1 were clustered (using the k-means clustering 
algorithm). In each stratum, simple random sampling was performed, 
with each stratum being considered as a sampling zone. 

In total, 1000 sampling sites were selected as model calibration and 
validation sites. Among them, 800 sampling locations were allocated 
across the landscape using the cLHS algorithm. In addition to those 800 
calibration sampling sites, another 100 soil samples were taken at an 
approximate distance of 100–150 m away from the main sampling sites, 
similar to the approach described by Karunaratne et al. (2014). The 
additional calibration sampling sites were used to capture the inherent 
short-range soil variability. For the independent validation of the model, 
100 sampling sites were randomly assigned across strata generated 
using the SRS strategy. In the SRS approach, a set of environmental 
covariates (Table 1) is stratified into 25 strata, and four samples are 
allocated for each stratum. Despite the sampling locations being pre
determined, reaching the exact sampling location was quite challenging 
during the sampling stage due to practical issues such as site 

accessibility. Therefore, 888 calibration samples out of 900 sites and 99 
validation samples out of 100 sites were sampled. Fig. 1 depicts the 
spatial distribution of sampling locations and paddy-growing areas 
within the country across the major climatic zones, namely Wet, Inter
mediate and Dry zones. The soil samples were collected at a soil depth of 
0–15 cm soil depth level using a soil augur with a diameter of 5 cm. At 
each sampling site, soil samples were collected from three points in a 
triangular path with a distance of approximately 10 m between sampling 
points and composited to form a representative sample. The GPS loca
tions of all the sampling sites were recorded using a Garmin eTrex 30 
handheld GPS receiver. 

2.3. Soil sample analysis 

All visible organic debris, plant roots, and stones were removed by 
handpicking prior to the analysis of the composited soil samples. The 
moist soil samples from the field were analysed for soil pH (1:2.5 soil: 
water suspension) (Anderson and Ingram, 1993). The remaining soil 
samples were air-dried and sieved using a sieve with a 2 mm mesh. Soil 
samples were then ground to size of <0.15 mm to obtain a uniform 
particle size. Before determination of the soil carbon concentration, 
another portion of powder with a size <0.15 mm was again ground and 
sieved through a 42-μm mesh sieve. Then, soil carbon concentration (%) 
was analysed using an automated dry combustion method via a 2400 
Series II CHN Elemental Analyser (Fadeeva et al., 2008; Skeen, 1994). 
The measured TC concentrations are reported as oven-dry equivalent 
(ODE) using the following equations (Eqs. (1) and (2)). 

ODE correction factor (θm) is given by: 

θm =
Mw
Ms

(1)  

where Mw = mass of water in the air-dried sample and Ms. = the total 
mass of the oven-dried soil. 

TCOD = TCAD ×(1+ θm)

[
g OC

kg ODsoil

]

(2) 

Table 1 
Summary of the environmental covariates used for the study.  

Scorpan 
factor 

Environmental variable Units Reference/ data source 

Climate (c) Mean annual rainfall mm Wordclim 
http://www.worldclim. 
org/ 

Temperature (annual 
average mean, annual 
average maximum, annual 
average minimum) 

◦C Wordclim 
http://www.worldclim. 
org/ 

Vapour Pressure Deficient 
(VPD) 

K pa Wordclim 
http://www.worldclim. 
org/ 

Relief (r) Elevation m NASA SRTM data 
http://www.cgiar-csi. 
org/data/srtm-90m-di 
gital-elevation-database 
v4-1 

SAGA Wetness Index (WI) Unit 
less 

Derived from NASA 
STRM (secondary terrain 
attribute) 

Slope Degrees Derived from NASA 
STRM (primary terrain 
attribute) 

Organism 
(o) 

MODIS Enhanced Vegetation 
Index (EVI) 

Unit 
less 

NASA 
https://modis.gsfc.nasa. 
gov/data/dataprod/ 
mod13.php. Derived 
from taking mean annual 
EVI data from 2005 to 
2014.  
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where TCOD total carbon concentration in g C/kg oven-dried (OD) soil; 
and TCAD total carbon concentration in g C/kg air-dried (AD) soil. 

2.4. Preparation of environmental covariates for spatial modelling of total 
carbon 

The development of the spatial model was performed based on the 
scopan digital soil mapping framework (Eq. (3)), as outlined by 
McBratney et al. (2003). The scopan model describes the quantitative 
relationships prevailing among TC and environmental covariates by 
developing a spatial soil prediction function. A variety of environmental 
covariates are considered in the current study including slope, the SAGA 
wetness index (WI)) (Bohner and Selige, 2006), and other terrain attri
butes such as hydrologically corrected elevation data derived from 
NASA Shuttle Radar topographic mission, MODIS Enhanced Vegetation 
Index (EVI), Vapour Pressure Deficit (VPD), annual average mean tem
perature, annual average maximum temperature, annual average 

minimum temperature and mean annual rainfall. All environmental 
covariates were standardised (resampled) to a spatial resolution of 100 
m prior to spatial analysis. A summary of the environmental covariates 
used in this study is presented in Table 1, the details of which were 
presented in Rajapaksha et al. (2020). 

S f = (s, c, o, r, p, a, n)+ e (3)  

where, S represents TC concentration, soil (s), climate(c), organisms (o), 
relief (r), parent materials (p), age (a), and spatial position (n); and 
where e is the error. A random forest modelling framework represents 
the f in the current study. 

2.5. Geospatial modelling 

The RF model can be used either as a classifier or for regression. For 
the current modelling work, a regression RF model was adapted in 
which the importance of each predictor variable was determined by a 

Fig. 1. The paddy-growing areas of Sri Lanka (green shaded areas) and sampling sites with overlapping major climatic zones: calibration sample sites are indicated in 
black colour, while validation sample sites are indicated in red colour (coordinate system: Kandawala Sri Lanka Grid). 
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regression loss function on the basis of mean square error (MSE) (Dewi 
and Chen, 2019). The RF algorithm is capable of handling both linear 
and nonlinear complex relationships and multicollinearity among the 
considered parameters (Karunaratne et al., 2020). At each binary split, a 
random subset of covariates is selected to provide the best split. The 
number of variables available for splitting at each tree node is referred to 
as the mtry parameter. Heung et al. (2014) reported that the mtry 
parameter in the RF model is the main tuning parameter that requiring 
optimisation. In the current study, the RF model's mtry parameter was 
optimised using repeated 10-fold cross-validation. The best model 
parameter for the mtry was determined using the return value with the 
lowest RMSE value obtained via 10-fold cross-validation. The cross- 
validation was based on the calibration dataset. 

Two different forms of RF model were tested in the current study. 
The only difference between Model 1 and Model 2 is that the latter used 
forward selection of the variables, as described by Meyer et al. (2019). In 
summary, Model 2 is trained with all possible pairs of predictor variables 
and keeps the best pair as the initial model. Then, each of the remaining 
predictor variables is iteratively added and tested for improvement with 
the best model. The process stops if none of the remaining variables 
increases the model performance when added to the current best model 
(Meyer et al., 2018). The purpose of utilising forward selection for 
Model 2 is to overcome model overfitting issues by removing highly 
correlated variables (Meyer et al., 2019). A summary of the two RF 
models tested in the current study is provided in Table 2. 

2.5.1. Evaluation of model quality 
The model performances were evaluated using the Nash-Sutcliffe 

model efficiency coefficient (NSE) (Eq. (4)), Root- Mean Square Error 
(RMSE) (Eq. (5)) and Lin's Concordance Correlation Coefficient (LCCC) 
(Eq. (6)). The NSE measures the improvement made by the model based 
on the magnitude of the residual variance compared to the measured 
data variance. The RMSE provides an indicator for the accuracy of the 
model, while the LCCC indicates how well the measured and predicted 
values deviate from a 1:1 line (i.e., a 45-degree line). The best models 
are those with the lowest RMSE values and comparatively higher LCCC 
and NSE values. Models with LCCC and NSE values close to 1 are 
considered to be those with the best performance. The models were 
validated using independent datasets collated using a design-based 
sampling strategy, as explained in Section 2.2. A schematic diagram of 
the TC measurement and data modelling pipeline is presented in Fig. 2. 

NSE = 1 −

∑n

i=1
(p − o)2

∑n

i=1
(o − ō)2

(4)  

where p is the difference between predicted(p) and observed(o) values, 
o-ō is the difference between the observed (o) value and the mean of the 
observed (ō) values and n refers to the number of observations. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(p − o)2

√

(5)  

where p, o refer to predicted and observed values, and n refers to the 
number of observations. 

LCCC (ρC) =
2ρσXσY

σ2
X + σ2

Y(μX − μY)
2 (6)  

where ρC is the estimated LCCC, μX and μy are the means for the 
measured and predicted parameters, and σ2

X and σ2
y are the corre

sponding variances of the measured and predicted parameters. ρ is the 
Pearson's correlation coefficient between the measured and predicted 
values. 

2.5.2. Spatial estimates of total carbon 
The area of applicability (AOA) of the two models was calculated, as 

explained by Meyer and Pebesma (2021). The AOA provides a quanti
tative assessment of the reliability of current prediction quality using the 
existing measurement datasets, and the function can be found in the 
CAST R package (Meyer et al., 2020). The AOA approach identifies the 
areas in which the model is likely to be problematic as a result of the 
dataset used in the modelling not capturing the environmental and 
spatial features of the area in which the model is being applied. The AOA 
is determined on the basis of the dissimilarity index (DI), which is a 
unitless measurement for detecting the deviation of new data cases (a 
prediction location) from the training data. The DI is calculated by 
considering the cross-validation folds and using a threshold, which is by 
default is the 95% quantile of the DI of all training data, and then returns 
the AOA statistics. The patterns in the DI are in general agreement with 
the true prediction error, i.e., very high DI values indicate areas that are 
not covered by the training data. For prediction areas in which the DI 
values are over the threshold, the predictions are assumed to be unre
liable. They should be excluded from further analysis, as the values of 
the predictors at the locations of the training data do not represent the 
values of the predictors where the prediction is being made (Meyer and 
Pebesma, 2021). 

Furthermore, if distances were calculated based on the standardised 
covariates, all variables would be treated as being equally important. 
However, distances are not equally relevant within the predictor space; 
some variables are more important than others (as indicated by the 
variable importance in machine learning algorithms). Therefore, scaled 
variables are multiplied by the weighting estimate derived from the 
variable importance of the RF model for each variable before distance 
calculation. The training data set is created for our 888 sampling loca
tions on the basis of the environmental covariate dataset (Appendix, 
Fig. A1). In addition to AOA analysis as a measure of the reliability of 
current prediction quality, 100 bootstrapped models, resulting from 100 
possible mapped outputs, were used to generate the lower (5%) and 
upper (95%) predictions (Gray et al., 2019). The thus-obtained predic
tion intervals were used to calculate the 90% prediction interval (Ap
pendix, Fig. A2). 

2.6. Impact of number of calibration sites used for model training: model 
performance and reliability 

Considering the advantage of having a large number of calibration 
sites (n = 888), we evaluated the impact of model prediction quality and 
reliability with increased calibration sites in a sequence. To assess the 
effect of the number of calibration sites, sequentially increasing numbers 
of data cases were used for model calibration, starting at n = 200 and 
then increasing by 100 each time up to 800. Samples for each configu
ration were selected using the cLHS algorithm and selecting from the 
888 sampling locations available for model development. For each of 
these chosen sequences, Section 2.5 was repeated, and each of these 
models was independently evaluated. The individual model quality was 
performed using the validation sites (n = 99), as noted above, enabling 
an unbiased comparison of the model prediction quality. Finally, the 
percentage of AOA was calculated for each model to identify the model 
reliability. Table 2 

Summary of the specific techniques employed in model development.  

Model name RF model optimisation Cross-validation Variable selection 

Model 1 mtry parameter 10-fold CV NA 
Model 2 mtry parameter 10-fold CV Forward selection  
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3. Results and discussion 

3.1. Descriptive analysis of the total carbon concentrations in paddy- 
growing soils 

The descriptive statistics for TC% in paddy-growing soils of Sri Lanka 
are presented in Table 3. The summary of the statistics reveals that the 
mean TC% of the paddy soil was 2.44 ± 1.73%. The reported skewness 
value was 3.53, which is indicative of the positively skewed, unimodal 
distribution of the measured TC concentrations. This implies that high 
concentrations of TC are stored in a few locations, whereas only a 
relatively small amount of carbon is stored in most of the other locations 
on the landscape (Delgado-Baquerizo et al., 2018). Further analysis 
considering the different climatic zones reported mean TC% values of 
5.21 ± 2.78, 2.24 ± 0.75, and 1.89 ± 0.79 for the Wet, Intermediate, 

and Dry zones, respectively. In contrast to the other two zones in the 
country, TC% values for the Wet zone are significantly higher, and the 
associated soil pH values are significantly lower, as shown in the box 
plots (Fig. 3). At higher soil pH, the bonds between organic constituents 
and clay particles in the soil can be easily broken (Neina, 2019), leading 
to an increase in soil carbon mineralisation, whereas the decarboxyl
ation of organic acid anions during the organic matter decomposition 
could lead to an increase in soil pH, as explained by Ding et al. (2019). 

3.2. Relationships between total soil carbon concentration and 
environmental covariates 

The analysis of the Pearson's correlation coefficient is summarised in 
Fig. 4. The Pearson's correlation coefficient was calculated in agreement 
with the linear relationships between TC concentrations and 

Fig. 2. A schematic diagram for the measurement and modelling of the soil total carbon adopted in the current study.  

Table 3 
Descriptive statistics for total carbon in paddy soils across the country and in major climatic zones of Sri Lanka.  

Variable n Mean SD Median Min Max Skewness SE Q1 Q3 

Whole country 
TC% 987 2.44 1.73 2.04 0.30 17.85 3.53 0.06 1.47 2.69  

Wet Zone 
TC% 145 5.21 2.78 4.63 1.36 17.85 1.93 0.23 3.19 6.45  

Intermediate Zone 
TC% 176 2.24 0.75 2.21 0.78 5.04 0.81 0.06 1.76 2.65  

Dry Zone 
TC% 666 1.89 0.79 1.77 0.30 5.33 1.15 0.03 1.34 2.31 

Note: n: number of samples; SD: Standard Deviation; Min: minimum; Max: maximum; SE: Standard Error; Q1: first quartile; Q3: third quartile. 
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environmental covariates. A strong positive correlation was observed 
between TC concentration and mean annual rainfall (r = 0.64). 
Furthermore, positive correlations were observed between TC concen
tration and MODIS EVI (r = 0.34) and TC concentration and the slope of 
the landscape position (r = 0.09). Negative correlations were observed 
between TC concentration and annual average maximum temperature 
(r = − 0.36), annual average mean temperature (r = − 0.22) and annual 
average minimum temperature (r = − 0.07). 

Climate variables are among the key drivers of TC concentration in 
paddy-growing soils. In general, higher rainfall and lower temperature 
provide the conditions necessary for increasing soil carbon levels (Fan
tappie et al., 2011). However, water availability during the rainy season 
affects both carbon accumulation through primary production and 
carbon loss through decomposition, which ultimately balances the long- 
term storage of soil carbon, which also depends on the rate of carbon 
inflows into the system. Furthermore, MODIS EVI data showed a positive 
correlation with the soil TC concentrations. In fact, MODIS EVI acts as a 
proxy for land productivity (biomass production), and the quantitative 
connection between the amounts of carbon added to soils. 

3.3. Identification of the drivers of soil total carbon concentration across 
paddy-growing soils 

The environmental covariates that explain the TC concentration 

across the landscape are divided into three main categories: climatic 
(rainfall, temperature, VDP), relief (elevation, WI, slope degree), and 
organism (MODIS EVI). The variable importance plot (VIP) obtained 
using the RF model was used to identify the key model drivers (Fig. 5). A 
summary of the fitted RF model with all covariates (Model 1) is pre
sented in Fig. 5a, while a summary of the forward-selected variables 
employed in Model 2 is presented in Fig. 5b. Rainfall was the key 
environmental driver affecting the spatial distribution of TC concen
trations, as observed by the VIP plots for both models (Fig. 5). The slope 
angle was the least important variable in both Model 1 and Model 2 
when predicting TC concentrations. This may be due to the lower 
prevalence of land variability in the flat terrain areas used in rice pro
duction. Emphasising the smaller degree of variability in the relatively 
flat landscapes of paddy-growing paddocks, >90% of the paddy- 
growing areas were scattered within the narrow range of 00 to 2.50. 
However, in Model 2, which used forward selection of the variables, as 
explained by Meyer et al. (2019), MODIS EVI, elevation and WI were not 
selected in the final model. 

Among the most important model drivers used for spatial prediction, 
rainfall, temperature, and evapotranspiration are considered as the 
primary climatic covariates involved in SOC storage fluctuations (Del
gado-Baquerizo et al., 2018). Both the rainfall and temperature unde
niably regulate the soil TC dynamics of ecosystems. The VPD is closely 
related to the evapotranspiration rate in the area of interest (Zheng 

Fig. 3. Distribution of the measured total carbon concentration (Fig. 3a) and pH (Fig. 3b) values with respect to major climatic zones, abbreviated as D: Dry zone; I: 
Intermediate zone; and W: Wet zone. 
Note: The solid horizontal line in the boxplots indicates estimated median TC concentrations. The ends of the boxes indicate the inter-quartile range, while the 
whiskers represent the maximum and minimum values, excluding any outliers, and outliers are depicted as ‘dots’, the red-coloured triangles indicate the cate
gory means. 
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et al., 2014). Accordingly, the increased temperature levels lead to 
enhanced evapotranspiration rates resulting in a nonlinear rise in VPD. 
Furthermore, the higher VPD increases soil evapotranspiration, affecting 
plant growth and soil productivity (Breshears et al., 2013). Elevation 
plays a crucial role among topographic variables in determining soil 
carbon distribution by altering the micro- and macro-environmental 
conditions (Martin et al., 2014; Tsui et al., 2013). The MODIS EVI 
(MODIS–Terra sensor) is an important time series vegetation index 
capable of monitoring substantial changes in the ecosystem, providing 
new insight into the mechanisms of the carbon cycle (inflows of carbon 

into the soil system). The MODIS EVI data are directly related to plant 
productivity and act as a proxy for the carbon inflows into the soils. 

Several previous studies conducted in tropical climatic regions have 
reported similar results corroborating with the current research. For 
example, Hinge et al. (2018) predicted SOC stocks using an RF model 
with climatic and remotely sensed datasets in India covering different 
land use types, including croplands and forest areas. They found that, 
although the topographic parameters, slope, and multi-resolution index 
of valley bottom flatness were relevant to surface SOC distribution, the 
most important factors were elevation and land use. Furthermore, Hinge 
et al. (2018) reported that the decrease in temperature with rising 
elevation, as well as changes in rainfall distribution, might affect the 
decomposition rate of soil organic matter. Therefore, the combined 
contribution of elevation, rainfall and temperature towards the regula
tion of plant productivity and organic matter decomposition is empha
sized. Dharumarajan et al. (2017), in their study, performed spatial 
prediction of SOC in the semi-arid tropics of India, incorporating five 
major land use types (single crop, double-crop, fallow land, scrub and 
forest), and showed that EVI and normalised different vegetation index 
(NDVI) were the most critical determiners of SOC distribution. In 
addition to productivity, the contribution of vegetation in controlling 
high-temperature levels through evapotranspiration may be the under
lying reason for the preservation of high levels of carbon in soil. 

3.4. Independent model evaluation 

A summary of the fully independent model validation is presented in 
Table 4. The NSE values of models 1 and 2 were 0.29 and 0.27, 
respectively. The RMSE (%) and LCCC values of the two distinct pre
dictive models reported identical values of 1.35 (%) (Table 4). The high 
LCCC value of 0.75 for the two fitted models indicated considerable 
agreement between measured and predicted TC concentrations. In 
summary, it can be concluded that the NSE, RMSE, and LCCC values 
related to the performance of the two models were more-or-less similar. 

Fig. 4. Pearson's correlation coefficient matrix of soil total carbon concentra
tion and climatic, terrain, and imaging attributes of paddy-soils in Sri Lanka. 
Abbreviations: TC: total carbon concentration; Rainfal_N: mean annual rainfall; 
Temp_Min_N: annual average minimum temperature; DEM_N: elevation; 
VDP_N: vapour pressure deficient; Temp_N: annual average mean temperature; 
Temp_Max_N: annual average maximum temperature; Modis_N: MODIS EVI; 
Slope_d_N: slope; SAGA_WI_N: SAGA wetness index. 

Fig. 5. Relative importance of variables of each soil carbon model on the basis of the random forest algorithm: (a) Variable Importance Plot of Model 1, (b) Variable 
Importance Plot of Model 2 Abbreviations: Rainfall_N: mean annual rainfall; Temp_Min_N: annual average minimum temperature; DEM_N: elevation; VDP_N: Vapour 
pressure Deficient; Temp_N: annual average mean temperature; Temp_Max_N: annual average maximum temperature; Modis_N: MODIS EVI; slope_d_N: slope; 
SAGA_WI_N: SAGA Wetness Index. Variable groups: red colour: climatic; green colour: organism; blue colour: relief. 

Table 4 
Performance of predicted soil carbon models according to fully independent 
validation.  

Model NSE RMSE (%) LCCC 

Model 1 0.29 1.35 0.75 
Model 2 0.27 1.35 0.75  
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Scatter plots for the observed TC vs. predicted TC concentrations are 
predicted in Fig. 6. On the basis of results of the independent validation, 
Model 1 and Model 2 can be concluded to exhibit the same model 
quality. However, Model 2 incorporates a smaller number of environ
ment covariates relative to Model 1 (Fig. 5), thus having lower 
computational requirements when performing predictions across the 
landscape. 

Hengl et al. (2015) used the RF modelling approach to model and 
map a variety of soil properties, including soil carbon across the African 
continent, at a spatial resolution of 250 m. Random Forest was proved to 
be a more accurate prediction approach than comparatively simpler 
multiple linear regression models, with an average improvement of 
mapping accuracy of 20% when performing predictions across a range of 
climatic conditions from tropical wet climates to hyper-arid climates 
(Hengl et al., 2015). Similarly, Taghizadeh-Mehrjardi et al. (2016) 
identified the efficacy of the RF Model for the prediction of the SOC 
topsoil (0–15 cm) in semi-arid regions in Iran with an LCCC value of 
0.66. Dharumarajan et al. (2017), in the semi-arid tropics of India, re
ported an LCCC value for SOC prediction of 0.38, for a model developed 
for use within a depth range of 0–30 cm. In comparison, in the current 
study, both models tested for TC reported much higher LCCC values than 
those in the studies carried out by Taghizadeh-Mehrjardi et al. (2016) 
and Dharumarajan et al. (2017). 

The sampling density used in the current study for calibration was 
one site per 11 km2 (n = 888), and the sampling density for validation 
was one site per 96 km2 (n = 99), where the paddy extent was around 
9516 km2. The sample densities calculated for calibration and validation 
in different climatic zones in Sri Lanka are depicted in Table 6. Keskin 
et al. (2019) reported a calibration sampling density of one site per 211 
km2 (n = 710), and a validation sampling density of one site per 493 km2 

(n = 304) in a study performed across an area of 150,000 km2 in Florida, 
United States. Martin et al. (2011) reported a sampling density of one 
site per 247 km2 (n = 2200) in a study performed across an area of 
543,965 km2 in France. Moreover, Bui et al. (2009), in their study across 
Australian agricultural zones (2,765,000 km2), reported a sampling 
density of one site per 250 km2. Therefore, the sample density employed 
in the current study is considerably better than those used in previous 
studies. 

3.5. Mapping the total soil carbon concentrations across the paddy- 
growing regions in Sri Lanka 

The distribution of the predicted TC concentrations is depicted in 

Fig. 7, overlaid across the major climate zones (Wet, Intermediate, and 
Dry), as derived from both Model 1 and Model 2. A high TC concen
tration was recorded for paddy fields of the southwestern part that 
belong to the Wet zone (Table 5). Theoretically, the equilibrium be
tween carbon inputs and decomposition basically governs the seques
tration or degradation of organic substances in the soil systems. The high 
organic-matter soils or Histosols found in general across the paddy- 
growing soils in the Wet zone form as permanently waterlogged soils. 
Sahrawat (2004) reported that the loss rate of organic matter in Histo
sols is slower than its accumulation. Ultisols are the dominant soil type 
in the Wet zone of Sri Lanka, both in the lowlands and in the central 
highlands. Ultisols are also found in the Intermediate zone of the country 
(Moorman and Panabokke, 1961). Despite this, the depressions common 
to this soil group have been naturally displaced by hydromorphic soil 
types or Histosols, which create a more suitable environment for paddy 
cultivation. Furthermore, the Wet zone placed on the windward side of 
the country receives a high amount of rainfall during the southeast 
monsoon. Relatively low temperatures prevail throughout the year, and 
a long period of anoxic conditions resulting in low pH values and 
associated low decomposition rates may also contribute to the accu
mulation of high TC concentration in this region, as previously reported 
by Delgado-Baquerizo et al. (2018). High plant productivity and litter 
decomposition rates are also seen in areas with high mean annual 
rainfall, eventually contributing to high atmospheric carbon-fixation 
rates and SOC accumulation (García-Palacios et al., 2013). 

In the Dry zone, high maximum temperatures would contribute to
wards the storage of less TC compared to in the Wet and Intermediate 
zones of the country (Fig. 7, Table 5). In addition, in the Dry zone 
experiencing high evapotranspiration or high VPD often results in a 
decrease in plant productivity, thereby restricting carbon inflows into 
the soil system, resulting in low soil carbon storage (Delgado-Baquerizo 
et al., 2013). Reddish-brown earths are the dominant great soil group in 
the Dry zone climatic region (USDA Taxonomy: Alfisols; WRB legend: 
Luvisols). These soils experiences free drainage, and in the geographical 
depressions or valley areas, this great soil group is substituted by hy
dromorphic soils such as alluvial soils (USDA Taxonomy: Entisols; WRB 
legend Fluvisols) and Low-Humic Gley soils (USDA Taxonomy: Alfisols; 
WRB legend: Gleysols) (Moorman and Panabokke, 1961). To facilitate 
rice production, low-lying paddy-growing areas in the Dry zone mostly 
consist of Alfisols and hydromorphic associations, inheriting poorly 
drained soil characteristics. Eastern Sri Lanka (i.e., the Ampara and 
Batticaloa administrative units) exhibits lower TC distributions than 
other paddy-growing areas. According to Moorman and Panabokke 

Fig. 6. Scatter plots of observed TC values vs. predicted TC values: Model 1 (a); and Model 2 (b). Observed TC values are related to the independent valida
tion dataset. 
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(1961), the Low-Humic Gley soils associated with the Non-Calcic Brown 
soils (USDA Taxonomy: Alfisols; WRB legend: Cambisols and Gleysols) 
in the eastern province have a coarser texture, which can commonly be 
recognised as being a sandy loam to loamy sand texture and exhibits 
moderately well-drained characteristics. Those soil characteristics 
reduce carbon retention ability (mineral-associated carbon) compared 
to the other soil types in the Dry zone. The predicted values were higher 
in the North, Northeast, East, and Northwest coastal regions compared 
to the other areas in the Dry zone. The soils of these areas are formed 
from recent and older marine sand, lagoons, and shallow seabed de
posits. Furthermore, these coastal areas, which are vulnerable to high 
tide submergence from previous events, are rich in marine clay with the 
previous decomposition materials of calcareous contents (Dassanayake 
et al., 2020). 

3.6. How reliable are the spatial estimates of the soil total carbon 
concentrations? 

The AOA analysis aided in determining the reliability of current TC 
predictions (Fig. 8). The AOA function demarcates and shows us the 
area/land extent to which the predicted model can successfully be 
applied (Meyer and Pebesma, 2021). The percentages of AOA in each 
primary climatic zone of Sri Lanka, considering both models, are 
depicted in Table 6. It can be observed that the Model 1 predictions were 
reliable for 89.56% of paddy-growing areas across Sri Lanka and unre
liable for only 10.44%. Furthermore, the Model 2 predictions were 
reliable for 89.62% of the area and unreliable for 10.38%. Similar reli
ability was reported across all paddy-growing regions for both tested 
models. The spatial predictions of soil TC concentration in the Dry zone 
can be considered more reliable, followed by the Intermediate and Wet 
zones, respectively (Table 6). However, Model 1 achieved slightly 

Fig. 7. Spatial distribution of predicted TC concentrations (%) in paddy-growing soils across Sri Lanka with the major climatic zone boundaries. The areas remaining 
as white colour patches are non-paddy areas, (a) spatial distribution of TC according to Model 1, and (b) spatial distribution of TC according to Model 2. 
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higher reliability for the Wet zone than Model 2. The Wet zone of Sri 
Lanka possesses a unique topography and higher temperature variation 
due to the elevation gradient and annual cumulative rainfall. The report 
of a less reliable area is most likely due to the current sampling scheme 
not being able to capture this inherent variability of the environmental 
covariates that govern the variation of the soil TC concentration in the 

Wet zone. The AOA results show higher unreliable TC estimates across 
the Wet zone, which is further supported by the higher model uncer
tainty values for the same region as depicted by the calculated 90% 
prediction interval (Appendix, Fig. A2, Table A1). The highest uncer
tainty of the prediction was recorded in the Wet zone of the country 
while the lowest was recorded in the Dry zone. 

Fig. 7. (continued). 

Table 5 
Summary of predicted total carbon % values in paddy soils across the country and in major climatic zones of Sri Lanka.   

Model 1 Model 2 

Variable Mean Min Max SD Q1 Q3 Mean Min Max SD Q1 Q3 

Whole country 2.44 0.89 13.15 1.35 1.74 2.46 2.43 0.86 13.29 1.38 1.71 2.44 
Wet 5.27 2.06 13.15 1.84 3.97 6.55 5.32 2.09 13.29 1.91 3.95 6.48 
Intermediate 2.43 1.18 7.23 0.71 2.01 2.65 2.37 1.08 6.99 0.71 1.96 2.55 
Dry 1.91 0.86 4.30 0.40 1.63 2.14 1.91 0.86 4.30 0.40 1.63 2.14 

Note: Min: minimum; Max: maximum; SD: standard deviation; Q1: first quartile; Q3: third quartile. 
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In previous studies on paddy soils in the tropical and subtropical 
regions of the world, Xu et al. (2020) used different multivariate tech
niques to compare their ability to estimate SOC across soil profiles. As 
per the superior model prediction, shale contained the highest SOC 
concentration ranging from 29.42 to 1.73 g kg− 1 from top to bottom, and 
quaternary red clay exhibited the lowest, from 22.45 to 0.27 g kg− 1. 
Song et al., 2020 stated that SOC stock at soil depths of 0–20 cm was 
27.6 g kg− 1 in Jiangxi Province, China. Furthermore, several other 
studies in subtropical and tropical climatic regions studying different 
soil carbon pools of paddy-growing soils are summarised below, and 
their results compared with those of current study (Table 7). Relatively 
lower values of TC concentration were reported in paddy soils in the 
southeastern part of China recorded relatively lower values of 0.5–1.5% 
for the depths of 0–15 cm. The mean TC concentration in the Wet zone of 
Sri Lanka was relatively higher than the soil carbon values reported in 
other countries, except for Selangor Malaysia, at the same depth level 
(Aishah et al., 2010). The range of SOC values reported for Lombok Is
land, Indonesia was quite similar to the values reported for both the Dry 
and Intermediate zones of Sri Lanka. The TC pool of paddy soil in 
Madagascar was recorded to be 2.18 ± 1.16% (Kawamura et al., 2017), 
and this value is greater than the Dry zone mean value in Sri Lanka and 

less than the mean soil TC concentration in the Wet zone. Furthermore, 
the recorded SOC% in the Bara district, Nepal, is indicated to be 2.13% 
(±1.5) (Panday et al., 2018); this value is in accordance with the paddy 
soils in the Intermediate zone of Sri Lanka. 

3.7. Model performances due to number of data cases used for model 
calibration 

The summary of the model performance quality using NSE, RMSE 
and LCCC for the sequence of calibration models tested with varying 
calibration sites and the full calibration sites is demonstrated in Fig. 9. 
As denoted by the model performance quality (Fig. 9), there is an in
crease in the NSE and LCCC values, and a reduction of RMSE value can 
be observed for n = 400. Beyond this point, the model performance 
quality indices are stagnated. The NSE values for Model 1 exhibited a 
slight improvement from 0.30 to 0.40, and for Model 2, the respective 
values increased from 0.35 to 0.42 as the calibration sample size 
increased from 400 to 800. Simultaneously, the LCCC values for Model 1 
showed enhancement from 0.75 to 0.79, whereas for Model 2, the value 
remained unchanged at 0.76. The RMSE values ranged from 1.36 to 1.31 
in Model 1 and from 1.36 to 1.39 in Model 2 when the calibration sample 

Fig. 8. Area of applicability (AOA) of the soil carbon prediction for the paddy-growing areas across Sri Lanka estimated using Model 1 and Model 2.  
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size increased from 400 to 800, as presented in Fig. 9. 
As demonstrated by Lagacherie et al. (2020) and Somarathna et al. 

(2017), the increasing sample size leads to a rise in prediction accuracy 
at a decreasing rate, irrespective of the specific model employed for the 
analyses. Morgan et al. (2003) utilised a decision tree-based data mining 
tool to investigate the impact of sample size on modelling accuracy, 
revealing that the rate of improvement in model accuracy reaches a 
plateau after a certain point. Moreover, Saurette et al. (2022) compared 
Cubist and RF models to ordinary Kriging, and their findings indicated 
that all three models showed a similar pattern of improvement with 
increasing sample size aligning with the findings of Morgan et al. 
(2003). Therefore, the results of the current study are consistent with 

those of previous studies. However, as Sun et al. (2022) and Long et al. 
(2020) suggested, the improvement of model performances with 
increasing sampling sites could also be specific to the landform char
acteristics of the region. 

When developed models are applied across the landscapes, the reli
ability of models also varies with the number of sites chosen to develop 
calibration models using cLHS strategy. Technically, selected sites for 
each calibration model using the cLHS strategy should represent the 
marginal distribution of global calibration datasets (n = 888). Never
theless, the increasing number of sites within calibration sites has 
influenced capturing the complex variation across the landscape fea
tures. At the country scale comparison, whether the variable selection is 

Fig. 8. (continued). 

Table 6 
Summary of sampling densities and percentage area of applicability.  

Climatic 
zone 

Area of 
paddy/km2 

No. of calibration 
sampling locations 

No. of validation 
sampling 
locations 

Calibration density of 
sampling/one site per 
xkm2 

Validation density of 
sampling/ one site per 
x km2 

AOA% (Model 1) AOA% (Model 2) 

Reliable Unreliable Reliable Unreliable 

Wet 1201.94 128 17 9 71 60.74 39.26 53.75 46.25 
Intermediate 1760.77 158 18 11 98 76.47 23.53 76.74 23.26 
Dry 6562.25 602 64 11 102 98.65 1.35 99.60 0.40  
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performed (Model 2) or not (Model 1) resulted in similar reliability but 
model 2 was more stable. Notably, the Dry zone of Sri Lanka, which has 
undulating terrain with less variability with landscape and climatic 
variation, resulted in almost no change in the estimates' reliability with 
an increase of the calibration sites for the two tested models (Fig. 10). 
The model reliability decreases for the Intermediate and Wet zones with 
the increasing number of model calibration sites after n > 400 sites. This 
coincides with the calibration model quality evaluated using the fully 
independent dataset also revealed the model prediction quality stag
nated after n > 400 calibration sites (Fig. 9). 

As the study area expands to a larger spatial scale, the soil carbon 
distribution may become more heterogeneous, making capturing all 
variations challenging. The relationship between sample size and 
modelling performance can be influenced by various factors, such as the 
spatial scale of the study and the heterogeneity of the soil carbon dis
tribution (Stevens et al., 2013). Therefore, the relationship between 

sample size and modelling performance may not always be linear. In 
some cases, the improvement in modelling performance reaches a point 
beyond which further increases in sample size do not significantly 
enhance the model performances (Wartini et al., 2020). This saturation 
may occur when the existing sample size adequately captures the 
dominant predictors used for the soil carbon modelling and additional 
samples do not provide substantial new information. Therefore, these 
results indicate that the locations selected in n = 400 adequately 
represent the study area's soil-environment relationships under the 
current modelling framework. The variable importance plot of Model 2 
for n = 400 showed that almost all the variables used in Model 1 were 
utilised in developing Model 2, except for the slope angle (Fig. S2). It 
was also revealed that despite changing calibration sites, top three key 
variables that were identified includes mean annual rainfall, annual 
average maximum temperature and annual average mean temperature. 
Furthermore, relatively lesser significance of the slope angle and the 

Table 7 
Summary of relevant studies on the modelling and mapping of soil carbon.  

Region Land use Soil depth(cm) No: of samples Model Soil carbon 
predictor 

Soil 
carbon 
pool 

Mean soil carbon 
stocks/ 
concentration in 
paddy soil 

References 

Yujiang County, 
Jiangxi 
Province, 
China 

Paddy 100 ± 5 (vertical 
distribution from 
top to bottom) 

306 
(calibration =
214, validation 
= 92) 

PLSR, ANN, Cubist, 
GPR, and SVMR 
with the CARS  

SOC In different parent 
materials:   

• Red sandstone: 
24.76–0.51 g 
kg− 1  

• Shale: 
29.42–1.73 g 
kg− 1  

• River alluvium: 
26.61–0.65 g 
kg− 1  

• Quaternary red 
clay: 22.45–0.27 
g kg− 1 

(Xu et al., 
2020) 

Jiangxi Province, 
China 

Paddy, 
Upland soil, 
Forest 

0–20 
20–40 

256 MLR, RK Land use, Elevation, 
Parent material 

SOC 0–20: 27.6 g kg− 1 

20–40: 12.11 g 
kg− 1 

(Song et al., 
2020) 

Jinjing 
catchment, 
China 

woodlands, 
paddy fields 
and tea fields 

0–20 1033 GWR, OK, IDW, 
LMR, LMM, 

Elevation, Slope, 
TWI, Land use 

SOC 3.50 kg− 2 (Liu et al., 
2017) 

South eastern 
part of China 

Paddy 0–15 212 MLR, OK, SK, RK NDVI, Elevation, 
Elevation above 
nearest drainage 
path, TWI 

TC 0.5–1.5% (Sumfleth and 
Duttmann, 
2008) 

Selangor, 
Malaysia 

Paddy 0–20 138, 30 extra 
points for 
validation 

K – SOC 3–5% (Aishah et al., 
2010) 

Lombok Island, 
Indonesia 

Paddy 0–10 150 PLSR – SOC 0.90–2.98% (Kusumo 
et al., 2018) 

Central highland 
of Madagascar, 
Sothern Africa 

Paddy 0–10 (mainly) 59 Vis-NIR diffuse 
reflectance 
spectroscopy, PLS 

– TC 2.18% (±1.16) (Kawamura 
et al., 2017) 

Bara district, 
Nepal 

Paddy 0–15 109 OK – SOC 2.13% (±1.5) (Panday et al., 
2018) 

Sri Lanka, 
Northern 
Province 

Paddy 0–15 
15–30 

83 LMM DEM, WI, ARF, MT, 
NDVI 

SOC 0–15: 1.78% 
(±0.78) 
15–30:1.03% 
(±0.47) 

(Ratnayake 
et al., 2016) 

Current study 
(whole Sri 
Lanka) 

Paddy 0–15 987 RF Rainfall, 
temperature, VPD. 
MODIS EVI, slope, 
TWI 

TC Wet zone: 5.36% 
(±2.07) 
Intermediate zone: 
2.40% (±0.0.74) 
Dry zone: 1.89% 
(±0.41) 

Current study 

Note: Soil carbon pool abbreviations: Soil organic carbon (SOC), total carbon (TC); Model name abbreviations: Partial Least Square Regression (PLSR), Artificial Neural 
Network (ANN), Gaussian process regression (GPR), Support Vector Machine Regression (SVMR), Competitive Adaptive Reweighted Sampling (CARS), Multiple Linear 
Regression (MLR), Regression Kriging (RK), kriging (K), Ordinary Kriging (OK), Simple Kriging (SK), Geographically Weighted Regression (GWR), Inverse Distance 
Weighted (IDW), visible and near-infrared (Vis-NIR), Linear Mixed-effects Model (LMM), Random Forest (RF); SOC predictor abbreviations: laboratory-based hyper- 
spectral imaging (HSI), topographic wetness index (TWI), normalised difference vegetation Index (NDVI), digital elevation model (DEM), wetness index (WI), annual 
rainfall (ARF), mean temperature (MT), vapour pressure deficient (VPD), enhanced vegetation index (EVI). 
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SAGA wetness index is evident. 
The supplementary material includes the spatial distribution of the 

calibration sites sequence used for further comparison with the full 
calibration sites (Fig. S1), the site distribution with major climatic zones 
(Table S1), key drivers identified using variable importance plot for 
Model 1 and Model 2 (Fig. S2), and fully independent validation plots 
(Fig. S3). 

3.8. Model prediction uncertainty 

The prediction uncertainty associated with spatial output layers 
generated using ML algorithms can be assessed through variety of ap
proaches. Commonly used methods for analysing prediction uncertainty 
in ML algorithms include: (a) model-embedded quantile regression, such 
as the quantile random forest estimator (Wadoux et al., 2023), enabling 
the quantification of prediction interval coverage (Wadoux, 2019); (b) 
ensemble model development using bootstrapping (Rossel et al., 2014); 

and more recently (c) utilising the AOA concept (Meyer and Pebesma, 
2021). In the current study, two different approaches were employed to 
quantify prediction uncertainties, namely bootstrapping and the AOA 
concept. Both tested methods resulted in similar overall patterns of 
uncertainty estimation across the landscape (Figs. 8 and A2). The AOA 
concept, as presented in Meyer and Pebesma (2021), provides a sys
tematic approach to assess the applicability and uncertainty of spatial 
prediction models. The AOA function delineates regions where spatial 
prediction models offer reliable and accurate estimations, enhancing our 
understanding of the model's prediction limitations and associated 
uncertainties. 

3.9. The practical implication of the derived outputs 

The derived spatial estimates across all rice production regions in Sri 
Lanka provide the first-ever detailed country-scale assessment of TC 
concentration. These spatial estimates can be used to formulate an 

Fig. 9. Comparison of the model quality with the full calibration dataset with sequence of increase of the calibration dataset for Model 1 and Model 2, (a) Nash- 
Sutcliffe model efficiency coefficient (NSE), (b) Lin's Concordance Correlation Coefficient (LCCC), (c) Root-Mean Square Error (RMSE%). 
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integrated management strategy to enhance rice productivity by 
increasing the TC concentration, mainly through SOC. In designing such 
strategies, the best-performing lands within a given region (based on the 
drivers of the TC concentrations) should be considered as determining 
the practically attainable TC concentrations. Hence, management stra
tegies should be developed using the thus-defined attainable TC con
centrations by considering both strategic tillage and improved stubble 
management. This strategy will lead to the development of other land 
parcels with low levels of TC compared to existing land parcels in the 
same geographic region in order to move closer towards the attainable 
TC limit. This approach is important, as the values of TC concentration 
are clearly distinct across the major climatic zones, being predominantly 
affected by annual rainfall. 

Furthermore, spatial TC concentration estimates provide a carbon 
baseline for future carbon trading, which relies on greenhouse gas 
emissions and subsequent storage capacity. Hence, the project can help 
identify and prioritise potential locations for soil-based carbon seques
tration projects. In fact, the generated baseline datasets will be 
immensely useful for Sri Lanka to develop IPCC Tier 3 carbon ac
counting model for the land sector in the near future. The estimated 
spatial soil TC concentration values within the areas that were identified 
as being less reliable through AOA should be interpreted with caution, 
due to the associated uncertainty of the estimates. Furthermore, those 
regions can be used to define future targeted field sampling campaigns 

to improve the reliability of the spatial estimates of the soil TC 
concentrations. 

3.10. Limitations of the current study 

Even though the best possible environmental covariates at 100 m 
resolution were used for the current predictions, there are practical 
limitations to how much improvement can be achieved through their 
combination. Integrating target variable data and environmental cova
riates is crucial for accurately understanding and predicting the spatial 
distribution of soil carbon. However, the combination of these data 
reaches a saturation point in terms of model improvement. Beyond this 
point, introducing more data can even have a counterproductive effect, 
potentially leading to a decrease in model reliability. When additional 
data points are introduced, they can create complex or diverse re
lationships that the existing model structure might not be capable of 
capturing. The intricacies of these new relationships may be difficult to 
align with the patterns identified by the initial covariate dataset, which 
can lead to an unexpected outcome in the overall performance of the 
model. Therefore, some limitations associated with selected environ
mental covariates and their combined effect could reduce the model's 
performance and reliability. In such cases, introducing alternative or 
new sets of covariates could be a potential strategy to address this lim
itation. However, the success of this approach is cannot be guaranteed. 

Fig. 10. Comparison of the model percentage area of reliability using area of applicability (AOA%) concept considering broad climate zones and whole country using 
two different model fitting processes. 
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The efficacy of these alternative covariates depends on whether the new 
relationships they introduce align with the underlying dynamics of the 
soil carbon in the region. 

4. Conclusions 

Both RF models fitted in the current study exhibited similar model 
quality, while Model 2 incorporates a smaller number of environmental 
covariates compared to Model 1. A series of calibration models with 
varying sample sizes were evaluated, and their performances improved 
until n = 400, after which they stagnated. In the country-scale com
parison, both Model 1 and Model 2 yielded similar reliability, while 
Model 2 was more stable. In the Dry zone, both models exhibited com
parable reliability with an increasing number of calibration sites. 
However, in the Wet and Intermediate zones, model reliability 
decreased after, n > 400. The results suggested that the locations 
selected in n = 400 adequately reflect the study area's soil-environment 
relationships under the current modelling framework. The derived AOA 
maps be used to target additional samples first to improve model quality, 
followed by spatial estimates. In this case, recognizing the potential 
challenges and intricacies of incorporating additional samples or envi
ronmental predictors is pivotal in maintaining realistic outcomes 
regarding model performance. In this study, the first-ever detailed 
baseline spatial estimates of TC concentration across the paddy-growing 
regions in Sri Lanka were derived. The derived maps will be pivotal for 
allocating resources to enhance the TC, mainly through SOC manage
ment with the aim of enhancing soil health and rice productivity. The 
regional differences in soil carbon distribution could be helpful in Sri 
Lanka for planning site-specific fertilizer recommendations for rice 
cultivation. Well-demarcated AOA maps are vital to avoiding possible 
deception when utilising such predictive maps to assist decision making. 
Furthermore, enhancing the TC concentration will act as an offset 
strategy for the mitigation of climate change. 
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Fig. A1. Spatial distribution of environmental covariates (A) Mean annual Rainfall (Rainfall) (B) Annual average minimum Temperature (Min T) (C) Elevation (D) 
Vapour Pressure Deficient (VPD) (E) Annual average maximum Temperature (Max T) (F) MODIS Enhanced Vegetation Index (Modis EVI) (G) Slope angle (H) Annual 
average mean Temperature (MIT) (I) SAGA Wetness Index (WI).  
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Fig. A2. Uncertainty of TC prediction (%) in paddy-growing soils across Sri Lanka with the major climatic zone boundaries derived through a calculated 90% 
prediction interval. The areas remaining as white colour patches are non-paddy areas, (a) Uncertainty of prediction according to Model 1, and (b) Uncertainty of 
prediction according to Model 2.  

Table A1 
Descriptive statistics for the uncertainty of total carbon prediction (%) in paddy soils across the country and in major climatic zones of Sri Lanka.   

Model 1 Model 2 

Variable Mean Min Max SD Q1 Q3 Mean Min Max SD Q1 Q3 

Whole country 0.65 0.15 9.36 0.58 0.37 0.67 0.67 0.12 8.65 0.52 0.40 0.72 
Wet 1.62 0.26 9.36 1.06 0.99 1.84 1.56 0.30 8.65 0.91 1.02 1.81 
Intermediate 0.57 0.16 3.78 0.33 0.36 0.66 0.60 0.13 3.79 0.32 0.39 0.70 
Dry 0.49 0.15 3.10 0.20 0.36 0.55 0.52 0.12 3.17 0.21 0.39 0.61 

Note: Min: Minimum, Max: Maximum, SD: Standard Deviation, Q1: first quartile, Q3: third quartile. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.geodrs.2023.e00745. 
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