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A B S T R A C T   

Context: Within-field yield variability affects crop production and management decisions. To understand and 
manage this variability, different techniques have been deployed to measure and monitor the crops (and soils) at 
various spatial scales, including manual measurements, harvester-mounted yield monitors, proximal and remote 
sensing and crop simulation modelling. The value of this increasing data availability to enhance process un
derstanding and on-ground management is unclear. 
Objective: This study aimed to investigate the value of the increasingly available spatial data from different 
sources to understand important soil-plant processes amenable to improvement in both simulation modelling and 
for better management decisions for dryland cropping. 
Methods: We collected three types of measurement data (manual sampling, sensed data from satellite and drone, 
and yield maps) over a 10 ha field and conducted simulations using the process-based soil-plant model APSIM at 
different spatial scales (varied from 1 m2 up to 10 ha). We assessed the agreement between ground measurements 
and yield maps, analysed the potential to use remotely sensed vegetation indices to estimate yield, and the scale 
at which process-based modelling could be reliable. 
Results: Wheat yield extracted from yield map at 1 m2 spatial resolution only explained 30% of the variation in 
yield measured from 1 m2 manual sampling, with better agreement when data was aggregated to 1 ha strip-scale 
(R2 = 0.66, NRMSE = 9.1%). Remotely sensed vegetation indices (VI) were better correlated with the yield map 
when aggregating images to coarse spatial resolution (> 50 m × 50 m), while high-resolution drone VI increased 
the correlation at finer scales. However, the relationship and the timing of the highest correlation differed be
tween years. APSIM simulated point-based yield measured from manual samples with NRMSE of 19.4%, but it 
was difficult to capture spatial variation in yield due largely to uncertainties in input data. However, APSIM 
simulations captured the average crop growth dynamics and yield well at 1 ha strip- and 10 ha whole field scales. 
Conclusions: The results highlight the need for caution when using yield maps and remote sensing data to 
quantify spatial variability and inform spatially explicit management decisions at a fine resolution (e.g., 1 m2). In 
our case, remote sensing data and yield maps only became consistent and process-based modelling became skilful 
at scales larger than a 1 ha strip. 
Implications: Despite an increasing amount of high-resolution spatial data, the usefulness at fine resolution needs 
further investigation, particularly under heterogeneous field conditions. Such data need to be analysed in 
conjunction with the landscape, soil and climate data to understand the drivers of spatial variability and inform 
process understanding and modelling. This further implies potential problems in developing spatial management 
practices at finer scales using such data.   
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1. Introduction 

Quantification of yield variation within fields is essential to under
standing the key biophysical drivers of the spatial variation underpin
ning crop growth and yield, which is fundamental to effective crop 
management and resource allocation. With the advances in digital soil 
and plant sensors, earth observation and mapping technologies, crop 
canopy characteristics, crop yields, soil attributes and their changes can 
now be sensed and mapped over different spatial and temporal scales 
(Godwin and Miller, 2003; Schuster et al., 2023). The spatial resolutions 
and the accuracy of such data vary with the technology used, causing 
potential problems in using the data to analyse crop performance and 
inform farm management. 

Manual measurements such as in-season crop biomass and soil 
sampling are regarded as a gold standard to describe soil and plant 
properties for a given sampling area. However, the representativeness of 
sample-based results for larger areas (upscaling) limits the extrapolation 
of manual measurements to describe within-field spatial variability of 
crop growth and yield at different scales (Jordan et al., 2003; Kos
mowski et al., 2021). Yield monitoring and mapping is by far the 
quickest and most convenient way to both collect and document yield 
and its spatial variability (Kharel et al., 2019). Yield maps generated 
from yield monitoring are valuable sources of spatial data for precision 
agriculture. Yield monitors are often calibrated against a reference yield, 
but the level of agreement between ground measurements and yield 
maps across various spatial scales has not received sufficient enquiry. 

The high spatial and temporal resolution of sensors onboard space- 
borne platforms are being used to build a new generation of agricul
tural monitoring systems (Skakun et al., 2021). Several approaches have 
been developed to estimate or forecast crop yield from remote sensing 
data, including i) establishing an empirical relationship between yields 
and vegetation indices (VI) or metrics derived from VI time series (Hu 
et al., 2021; Skakun et al., 2021), ii) assimilation of remote sensing data 
into process-based models (Campos et al., 2019; Jin et al., 2018), and iii) 
calibration-free approaches which develop empirical models with 
process-based model simulation results without reliance on ground 
measurements (Deines et al., 2021; Lobell et al., 2015). For all those 
methods, the correlation between VI and yield at different spatial res
olutions is the basic indicator of estimation/prediction potential. If VI is 
well correlated with yield at a given scale, the VI should have great 
potential to estimate yield and its spatial variability. However, there is 
often a lack of ground-truthing data at matching resolutions. 

Agricultural systems modelling integrates measured data with un
derpinning biological and physical processes to simulate the dynamic 
changes in crop growth and soil conditions in response to climate and 
management, and how they interact to determine productivity and 
sustainability outcomes (Holzworth et al., 2014; Keating et al., 2003). 
More recently, process-based modelling has been used with new data 
layers from advanced technologies such as remote sensing, to fill data 
gaps in both spatial and temporal dimensions, to disentangle the impacts 
of confounding drivers and processes, and to predict crop and soil at
tributes that are difficult to measure. Examples include prediction of 
within-field crop yield and its variability (Gaso et al., 2021; Maestrini 
and Basso, 2018; Ziliani et al., 2022), establishment of temporal and 
spatial relationships between yield and remote/proximal sensed imag
ery (Skakun et al., 2021; Zarco-Tejada et al., 2005), analysis of the ef
fects of climate variability and resource management on the spatial 
pattern of yield (Batchelor et al., 2002; Huggins and Alderfer, 1995; 
Robertson et al., 2008), identification of causes for crop yield variability 
(Boenecke et al., 2018; Bölenius et al., 2017; Jones et al., 2022), and 
prediction of variations in soil properties from crop yields using an in
verse modelling approach (He et al., 2022, 2021). 

However, questions remain regarding how well the data and simu
lation results capture spatial heterogeneity across the field, particularly 
for data acquired from a heterogeneous field for process-based model
ling that requires a significant amount of input data. In this paper, we 

select a typical 10 ha field at CSIRO’s Boorowa Agricultural Research 
Station in the wheatbelt of Australia and use three types of measured 
data, i.e., manual sampling, remote sensing (satellite and drone-based), 
yield maps, and soil-plant modelling with the farming systems model 
APSIM (Holzworth et al., 2014) to investigate the relationships and 
reliability of data collected at different scales by different technologies, 
including 1) The agreement between point-based manual measurements 
and yield maps at different spatial scales; 2) The possibilities of using 
vegetation index (NDVI) from satellite and drone imagery to predict 
within-field yield at different scales; 3) The scale at which process-based 
soil-crop modelling can be reliably used to augment the data and 
enhance process understanding. 

2. Material and Method 

2.1. The study site 

The CSIRO Boorowa Agricultural Research Station (BARS, 290 ha) is 
a state-of-the-art agricultural research facility near the town of Boorowa 
in southern New South Wales, Australia. The Boorowa region is a 
grazing and cropping region, where the average annual rainfall (1970 – 
2021) is 645 mm and the annual average temperature is 13.6 ◦C. This 
study used a dataset collected from a long-term trial (LTT) established in 
a 10 ha field (450 m × 220 m, LTT) with 8 strips (each 450 m × 24 m) at 
BARS from 2019 and 2021 (Fig. 1). The annual rainfall at BARS in 2019, 
2020 and 2021 was 481 mm, 782 mm and 909 mm, respectively. The 
crops grown in the LTT field were winter wheat (cultivar Kittyhawk) 
sown on 10 April 2019, Timok Vetch sown on 25 April 2020 (terminated 
for brown manure) and spring wheat (cultivar Rockstar) sown on 13 May 
2021. Total fertiliser nitrogen input on wheat was 88.2 kg N/ha in 2019 
and 133.2 kg N/ha in 2021. Detailed management information was 
recorded including tillage, seeding rate, sowing and harvest dates, dates 
and amount of fertilizer applications, pesticide and herbicide applica
tions since 2016 (Table S1). 

The common soil types following the Australian Soil Classification 
(Isbell, 2021) at BARS are Yellow or Red Chromosols or Kurosols 
depending on the presence of subsoil acidity. The elevation across BARS 
ranges from 490 m to 560 m above sea level and decreases from west to 
southeast. For the LTT field, there are undulating rises across the field. 
pH stratification phenomenon occurs between 5 and 30 cm (pH < 5), 
where there is a clear decrease in soil pH from 5 to 30 cm and then an 
increase from 30 cm to deeper layers (Malone et al., 2022). 

2.2. Soil data 

A suite of 3D digital soil attribute maps were available for BARS 
including pH, soil organic carbon, cation exchange capacity (CEC), 
texture, whole soil bulk density, and soil water holding characteristics, 
namely crop lower limit (CLL) and drained upper limit (DUL) as per 
Coughlan et al. (2002). The digital soil mapping models were con
structed using the data collected through farm-wide on-the-go proximal 
soil sensing, soil sampling, and soil core scanning (visible and 
near-infrared spectrometry (visNIR) and gamma attenuation) 
(Figure S1). Details can be found in Malone et al. (2022). There are 30 
soil moisture sensors installed in the LTT field (Fig. 1a) to measure soil 
temperature and soil water content at 20 cm intervals down to 180 cm 
depth. The sensors were positioned with the dual purposes of 
geographical and soil-landscape information coverage. For geographical 
coverage, the one requirement was to have at least 3 sensors situated in 
each experimental strip. For soil-landscape information coverage, the 
conditioned Latin Hypercube sampling (cLHS; Minasny and McBratney, 
2006) algorithm was used. Input into the cLHS algorithm was the suite 
of digital soil and environmental mapping derived in Malone et al. 
(2022). Effectively a multi-dimensional data cube that the algorithm is 
designed to process through, cLHS ensures a balanced selection of sites 
across feature or data space ensuring spatial variability is covered in an 
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optimal way with the number of available sensors to be installed. A 
further nuanced spatial analysis was performed to ensure placement of 
sensors occurred outside of fixed machinery track lines. Processed soil 
moisture data has been updated in real-time on Senaps (https://senaps. 
io/dashboard/#/app/group/detail/boorowa-soil-analytics) since Jul 
2019. 

In 2021, soil samples were taken around the 30 soil sensors (Fig. 1) to 
measure mineral nitrogen and soil water contents before sowing. Soil 
cores were taken up to 155 cm in deep and 90 cm in shallow soils. Cores 
were cut into 5 cm intervals for the top layers (0 – 20 cm) and 20 cm 
intervals for the subsoil. The mineral nitrogen was extracted in 0.5 M 
KCl (50 g:100 mL). Ammonium and nitrate contents were determined 
by continuous flow colourimetry, using the Griess–Ilosvay and the 
indophenol methods (Stock, 1983). 

2.3. Crop data 

In 2021, the crop was sampled manually around each of the 30 soil 
moisture sensors (Fig. 1, at least 2 m away from sensors to avoid any 
impact on sensor reading but close enough to be similar to the crop on 
the sensor) according to the developmental stages described in Zadoks 
(Zadoks et al., 1974). Plants were cut at ground level from a 1.2 m × 1 m 
quadrat at wheat stem elongation (Zadok 30, 20 Aug 2021), flag leaf 
(Zadok 39, 6 Oct 2021), and anthesis (Zadok 60, 28 Oct 2021) stage. 
Biomass was determined after oven-drying the samples at 70◦ C for 
48 hours. Prior to drying, leaf area index (LAI) was measured using 
Li-3100 area meter (Li-COR, inc. USA) for a sub-sample of 25 tillers. 
Final sampling was collected on 14 Dec 2021 and biomass, grain yield, 
yield components and protein were measured. 

In 2019 and 2021, wheat yield was collected using a calibrated yield 
monitor attached to a commercial grain harvester which cut 12 m x 1 m 
swathes of crop. The yield monitor is mounted on a combine harvester 
and measures in real-time the amount of grain that passes through the 
combine harvester when the crop is being harvested. The distance be

tween adjacent passes is 12 m and the distance between the consecutive 
record is 1 m. The raw data was cleaned and interpolated to 1 m x 1 m 
spatial resolution yield maps following the protocol of PAT-Precision 
Agriculture Tools (Ratcliff et al., 2019) in R software. The basic steps 
are, (1) clipping the data to a given boundary; (2) cleaning data using 3 
times standard deviation, i.e., filtering the values out of mean value ± 3 
x standard deviations; (3) using ordinary kriging to interpolate the point 
data to 1 m x 1 m raster. Based on this, we assumed that an interpolated 
yield of a larger area around the manual sampling area could be 
equivalent to the manual sampling yield. 

2.4. Remotely sensed data 

Multispectral images from the two Sentinel-2 satellites (2 A and 2B) 
for the whole growing season of wheat crops in 2019 and 2021 were 
processed and downloaded via Google Earth Engine (COPERNICUS/ 
S2_SR) (Gorelick et al., 2017). The cloud and shadows were masked, and 
the pixels with > 5% of cloud were filtered out. After processing, there 
were 39 and 23 high-quality images in 2019 and 2020 from April to 
December, respectively. 

In 2021, a quadrotor UAV system, Phantom 4 Pro (DJI Inc., Shenz
hen, China), mounted with a five-band (blue, green, red, red-edge, near- 
infrared) multi-spectral camera (Micasense RedEdge-M) was flown over 
the field covering 14.34 ha on five dates 08 Sep, 22 Sep, 6 Oct, 1 Nov and 
29 Nov corresponding with wheat development stages of stem elonga
tion (Zadok 35), flag leaf (Zadok 38), booting (Zadok 45), anthesis 
(Zadok 63), and grain filling (Zadok 80), respectively. The images were 
captured at 50 m altitude which resulted in the average ground sam
pling distance (GSD) of 4.24 cm per pixel. Radiometric corrections were 
performed using the reflectance panel for each flight campaign. Pix4D 
mapper software (Pix4D, S.A., Switzerland) was used for image stitch
ing. Georeferencing was done using 21 pre-installed ground control 
points (GCPs) with known coordinates. 

Normalised Difference Vegetation Index (NDVI) is a simple index 

Fig. 1. The CSIRO Boorowa Agricultural Research Station (BARS), Australia (a) and the wheat yield map of the study field (black rectangle in panel a) in 2021 (b). S1 
- S8 in panel (b) indicate strip 1 to strip 8. Each strip was split into 1/2 strip, 1/3 strip and 1/4 strip to create different spatial extent for evaluating the usefulness of 
techniques to measure crop yield, and panel (c) shows the diagram. The black dots in (b) and (c) show manual crop sampling points (in 2021) which are around the 
soil moisture sensors in panel (a). 
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that measures the difference-sum ratio between near-infrared and red 
light reflected by plant leaves (Eq. 1), which is used to describe the 
canopy cover for spatial variations and temporal dynamics based on the 
fact that chlorophyll absorbs red whereas the mesophyll leaf structure 
scatters NIR (Pettorelli et al., 2005). 

NDVI = (NIR − RED)/(NIR+RED) (1)  

where NIR and RED are the amounts of near-infrared and red light, 
respectively, reflected by the vegetation and captured by the sensors of 
the satellite and drone. 

2.5. Yield from manual sampling and yield maps 

We aimed to address two questions using this wheat yield dataset. 
The first question was whether wheat yield extracted from the yield 
mapping agreed with the yield measurements from manual sampling. 
The second question was whether point-based manual measurements 
can be used to estimate yield at different spatial scales, such as sub-strip, 
strip or multiple strips. To answer these questions, we compared the 
yield extracted from yield maps and manual sampling at different spatial 
scales. First, wheat yield extracted from a yield map was compared with 
manual measurements at 1 m x 1 m spatial scale. We used coordinates of 
the 30 soil moisture sensors to extract yield from the yield map to get the 
1 m x 1 m yield data, then compared them with manual measurements. 
Then in order to create different spatial scales, each strip (8 strips in 
Fig. 1b) was split into 1/2 strip, 1/3 strip, and 1/4 strip (Fig. 1c). Two 
strips, 3 strips, 4 strips and 5 strips were created through 2-, 3-, 4- and 5- 
combinations of 8 strips (i.e., 28, 56, 70, 56 repetitions for 2, 3, 4, 5 
strips, respectively). For a given target area, yield from the yield maps 
and manual sampling were calculated as the mean of that area. 
Normalized root mean square error (NRMSE) was used to assess the 
agreement between them and the regression-based coefficient of deter
mination (R2) was used to assess the correlation. 

NRMSE was calculated as follows: 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(Pi − Si)

2
/

n

√
√
√
√

/

S (2)  

Pi is the manual measurement of yield and Si is the wheat yield derived 
from the yield map, S is the average yield. R2 was calculated directly in R 
software (R Core Team, 2022) with function lm(). lm() is a function to fit 
linear regression models. 

The variability of yield was quantified using the coefficient of vari
ation: 

CV = σ/μ (3)  

CV is the coefficient of variation, σ is the standard deviation and μ is the 
mean. σ was calculated directly in R software (R Core Team, 2022) with 
function sd(). 

2.6. Remotely sensed vegetation index and yield 

Spatial correlation between remotely sensed vegetation index (VI) 
and crop yield is the basic indicator to assess the potential of using VI to 
estimate yield at different spatial scales. The NDVI is the most widely 
used index to estimate crop yield, which has been used to predict wheat 
yield at a within-field scale in the northern grain-growing region of 
Australia with moderate predictive accuracy (RMSE = 790 kg/ha) (Lai 
et al., 2018). Here correlation coefficients between NDVI and yield maps 
were calculated for each observation date at the original spatial reso
lution, i.e., 10 m x 10 m for Sentinel-2 imagery and 1 m x 1 m for drone 
imagery. The dates where the highest correlation coefficients emerged 
were pinpointed. The images of those dates (Sentinel-2: 6 Nov 2019 and 

31 Oct 2021, drone: 1 Nov 2021) were used to calculate the correlation 
coefficients at different spatial scales or spatial extents of 10 m x 10 m, 
20 m x 20 m, 30 m x 30 m, 40 m x 40 m, 1/4 strip, 1/3 strip, 1/2 strip 
and whole strip. The images were aggregated to 10 m (for drone im
ages), 20 m, 30 m and 40 m using the function terra::aggregate() in R 
software (Hijmans et al., 2023). For the correlation coefficients at 1/4 
strip, 1/3 strip, 1/2 strip and strip levels, the average of NDVI and yield 
from both maps for the given area were used. For drone images, as the 
original spatial resolution was 1 m x 1 m, we also calculated the corre
lation coefficients between NDVI and yield maps at spatial resolution 
higher than 10 m x 10 m, which was from 1 m x 1 m to 10 m x 10 m with 
1 m interval. 

Pearson correlation coefficient was calculated as follows: 

r =

∑
(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

(xi − x)2∑
(yi − y)2

√ (4) 

xi is the value of NDVI at each grid cell or spatial extent, x is the mean 
of NDVI values. yi is the value of yield at each grid or spatial extent, y is 
the mean of yield values. The basic function cor() in R software was used 
to calculate the Pearson correlation coefficients. The variability of NDVI 
was quantified by the coefficient of variation (Eq. 3). 

2.7. Modelling crop growth and yield with APSIM 

APSIM is a farming systems model that simulates crop development, 
biomass growth and grain yield at a daily time step in response to cli
matic and soil conditions and any management intervention (Holzworth 
et al., 2014). APSIM has been thoroughly tested across Australia for 
simulation of wheat phenology, biomass dynamics and yield (He and 
Wang, 2019; Zhao et al., 2022). The APSIM Classic Version 7.10 was 
used in this study to simulate the dynamics of soil water and nitrogen, 
wheat growth and yield in 2021. 

The APSIM model was set up with the individual soil profiles at each 
of the 30 points in the LTT where soil sensors were located and manual 
crop measurements were made. Soil attributes of each point were 
extracted from the digital maps. The model was initialised with the 
initial soil water and mineral nitrogen measured at each soil depth in the 
30 sites at the start of the season on 13 May 2021. Crop management was 
applied according to recorded sowing date, plant density, cultivar and 
fertilizer applications. 

In addition, we also set up 9 additional APSIM runs, 8 for the 8 strips 
(Fig. 1b) using an average soil profile for each strip, and one for the 
entire 10 ha LTT field with an average whole field soil profile. For the 8 
×1 ha and entire 10 ha simulations, the soil profile data (i.e., bulk 
density, CLL, DUL, soil organic carbon, pH) were derived by averaging 
the data from the digital soil maps. The simulated wheat biomass dy
namics and final yield were compared with the yield from the yield map 
and manual sampling to test the confidence of the spatially explicit 
point-based APSIM modelling. The range and variation of key functional 
soil properties for both point and strip scales are in Table 1. 

The agreement between APSIM simulated yield and yield measured 

Table 1 
The value range, mean and coefficient of variation of key functional soil prop
erties for APSIM.  

Soil property Spatial scale Value range Mean CV 

PAWC* (mm) Point 119–206  177  14.1% 
Strip 153–193  179  8.4% 

AWC** (mm) Point 55–212  131  32.8% 
Strip 109–164  133  14.3% 

Soil mineral N (kg/ha) Point 65–230  124  34.7% 
Strip 85–147  133  15.0% 

*PAWC is the plant available water holding capacity, i.e., the maximum amount 
of water held between crop lower limit and drained upper limit **AWC is the 
available water content for wheat at sowing. CV is the coefficient of variation. 
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from manual sampling or yield derived from yield maps was assessed by 
normalized root mean square error (NRMSE) and the regression-based 
coefficient of determination (R2). The calculation method is like that 
in Section 2.5. The variability of simulated yield across the field was 
quantified using the coefficient of variation (Eq. 3). 

3. Results 

3.1. Agreement between manual measurements and yield maps 

Based on the 30 manual samplings of wheat in 2021, wheat yield 
ranged from 5.3 to 10.0 t/ha. Yields derived from the yield map in 
2021 had a slightly lower value ranging from 4.7 to 8.2 t/ha. The 
variability of the manually measured wheat yields was 16%, slightly 
larger than that for wheat yields from the yield map (12%). Both co
efficients of variation are relatively small, similar to the average varia
tion (13.3%) in wheat yields around the mean in field experiments 
(Taylor et al., 1999). 

Wheat yields from the manual sampling (1 ×1.2 m2) explained only 
30% of the within-field variations reflected in the yield map in 2021 (R2 

= 0.30), with NRMSE of 20% (Fig. 2). Aggregating to the scale of a 1 ha 
strip, the average of the manual measurements explained 66% of the 
variation in strip-averaged yields from the yield maps (R2 = 0.60), with 
a significantly reduced NRMSE of 9.1%. For the entire 10 ha field, the 
average of the 30 manual measurements was 8.29±1.34 t ha− 1, which is 
close to the average yield of 7.76±1.19 t ha− 1 from the yield map. In 
general, the manual measurements of wheat yields were higher than 
those from yield maps. This may be due to mechanical harvesters being 
set up to discard small seeds that have no commercial value. 

By splitting the field into equal rectangle areas (Fig. 1c), spatial ex
tents with different sizes and containing different numbers of sampling 
points were created. The agreement between manually measured wheat 
yield and yield derived from yield maps at different spatial scales is 
shown in Fig. 3. When the spatial extent increased from 1/4 strip 
(0.25 ha) to a whole strip (1 ha), the R2 increased from 0.29 to 0.66 and 
NRMSE declined from 15.0% to 9.1%. However, as the spatial extent 
further increased, both NRMSE and R2 remained relatively constant. 
Results indicate that the average of manual measurements from 3 to 5 

sampling points as replicates in the strip could adequately represent the 
yield variation at the strip scale. The representativeness of manual 
measurements at finer scales was significantly lower. 

3.2. Correlation between remotely sensed vegetation index and yield 

The highest correlation between the spatial distribution of NDVI 
(maps) derived from Sentinel-2 images (10 m) and wheat yields derived 
from yield maps at the same spatial resolution was around 1 November 
for both years (Fig. 4), with the correlation coefficient of 0.66 and 0.61 
in 2019 and 2021, respectively. NDVI maps derived from drone images 
in 2021 explained more variation in yield maps with the highest cor
relation coefficient of 0.81 around similar time (Fig. 4). 

The higher spatial correlation between NDVI and wheat yields 
occurred at the later wheat development stage when NDVI declined. 
After NDVI reached the peak value, the correlation coefficient with yield 
increased and then decreased in both years. In 2019, the highest cor
relation value occurred at the mid-grain filling stage, while in 2021 it 
occurred just after flowering. The spatial correlation between NDVI and 
yields increased with increasing spatial extent (Fig. 5). When spatial 
resolution changed from 10 m to 50 m, the correlation coefficient 
increased from 0.65 to 0.81 in 2019 and from 0.61 to 0.63 in 2021. At 
strip level, the correlation coefficient between strip average NDVI and 
yields reached 0.96 and 0.82 in 2019 and 2021, respectively. The cor
relation between yield maps and NDVI maps derived from drone images 
followed a similar pattern of change in response to spatial scales. 

3.3. Confidence of process-based modelling 

For point-level simulations, APSIM simulated yields only explained 
around 2% of the variation in the yield map (Fig. 6a). However, the 
simulation error was relatively low compared to the yields on yield 
maps, with NRMSE = 13.3%. At strip-level, the averages of APSIM 
simulations only explained 6% spatial variation in yield map, but the 
simulation error reduced to an NRMSE of 7.8%. For the entire field, the 
average of APSIM simulated wheat yield was almost equal to the mean 
yield from yield map (Fig. 6a). Compared to the manual measurements 
at 1 m2, APSIM simulation error was slightly higher than that derived 
from yield map. Simulation error was reduced when APSIM simulation 
changed from point-level to the whole field-level (Fig. 6b). 

APSIM simulations captured the biomass dynamics relatively well at 
the strip level, except for a slight under-prediction for Strip 6, with 
simulation error of less than 10% for final biomass and yield (from both 
manually measured yields and yield maps) (Fig. 7). There was no sig
nificant difference in yield map average among strips (Fig. 6). 

The variability of APSIM simulated final biomass and grain yields 
across strips (3% and 6%) was much smaller compared to those of the 
manual measurements (16%) and yields from yield map (12%). This is 
caused by the lack of variation in inputs of soil profile properties, e.g., 
spatial variability of PAWC was only 8% (153 mm – 192 mm), and that 
of initial mineral N content was 15% (85 kg N ha− 1 – 147 kg N ha− 1) 
(Table 1). 

4. Discussion 

There is a significant discrepancy between the manually measured 
yield and yield extracted from the yield map at 1 m2 scale. The R2 value 
less than 0.3 suggests poor correlation between those two aspects. The 
RMSE greater than 20% signifies a substantial difference between those 
two measurements. Agreement between the two increased when point- 
measured yields were aggregated to larger scales, i.e., strips (1 ha) or 
whole field (10 ha). At 1 m2 scale, the lack of correlation may be due to 
the inconsistent locations of the two (data was extracted from the yield 
map using the location of soil moisture sensors, while manual sampling 
was carried out around the sensors). Another possible reason is that the 
yield map was constructed by interpolation of point-scale data from the 

Fig. 2. Comparison of wheat yield from manual measurements and those from 
yield map at point, strip and field levels. NRMSE is the normalized root mean 
square error between manually measured yield and yield map. R2 is the coef
ficient of determination. Error bars represent the standard deviation of wheat 
yields from manual sampling and yield map at the 30 sampling points. 
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harvester after the manual sampling, so data extracted from the yield 
map represents the average condition around the 1 m2 point, while the 
crop samples on the exact location were removed manually. As these 
factors are difficult to avoid in the available yield maps and manual 
measurements, we need to keep this in mind when using this data at a 
fine resolution (e.g., 1 m2). 

For the LTT trial at BARS, our results show that 3 – 5 manual samples 
could produce an average yield value to represent the yield of a 1 ha 

strip, however, one sampling point for a 1/3 strip could not represent the 
sub-strip yield well. This further implies the need for replicates to offset 
the impact of spatial heterogeneity. The 30 sampling points in the LTT 
field were selected based on the heterogeneity evident in the digital soil 
maps. As yield maps reflect what the crop senses in the field, they may be 
effective, together with digital soil maps, to determine field zones and 
the number of measurements required across heterogeneous zones. Due 
to the difference in rooting depth, crop duration, and demands for water 

Fig. 3. Agreement between wheat yield derived from yield map and by manual measurements at different spatial scales (represented by the size of target areas) (a) 
and the corresponding NRMSE between the two (b). The red star indicates the value of strip level. NRMSE is the normalized root mean square error between manually 
measured yield and yield map. R2 is the coefficient of determination. The number shows the sample size, i.e., the average number of points at each aggregation level. 

Fig. 4. Temporal dynamics of average NDVI from satellite (blue dots) and drone (red dots) sensing at full 10 ha field level in 2019 and 2021. The numbers are 
correlation coefficients of grid-level NDVI and yield maps at given dates. The spatial resolution of NDVI images from satellite and drone are 10 m x 10 m and 1 m x 
1 m, respectively. The orange dots represent the date with the highest correlation coefficient. 
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and nutrients, the yield spatial variability of other crops may be different 
from wheat for a given field. For instance, differences in soil PAWC for 
different crop species have been noted even though limited data are 
available to characterise such differences (Verburg et al., 2021). We 
need to be mindful of this when utilizing such data with a detailed focus. 

With the development of remote sensing technology, researchers are 
transitioning from destructive, time-consuming and labour-intensive 
sampling methods to non-destructive, high-throughput phenotyping 
techniques to estimate crop yield. A straightforward approach is to 
develop an empirical relationship between yield and remotely sensed 
vegetation indexes (VIs) or metrics derived from VI time series. Higher 
correlations between yield and VIs usually imply more accuracy for 
prediction. In this study, we found that aggregating fine resolution im
ages to coarser resolution or larger spatial extent improved the 

correlation coefficient between remotely sensed NDVI (both satellite 
and drone) and yield maps for a given field, e.g., correlation coefficient 
increased from 0.66 to 0.89 when spatial resolution changed from 10 ×
10 m pixel level to 0.25 ha 1/4 strip-level (satellite images of 2019). 
This was mainly due to many variances in the relationship between 
NDVI and yield at a finer resolution, and the variance was averaged out 
at larger pixel sizes or spatial extents (Figure S2). At a national scale, 
Deines et al. (2021) also demonstrated that satellite yield mapping ac
curacy with Landsat increased when spatial scales increased from 
pixel-level to county-level (R2 increased from 0.40 to 0.69). Further 
work is warranted to investigate the usefulness of remote sensing data 
for yield predictions at different spatial scales (Donohue et al., 2018; 
Lobell et al., 2015; Maestrini and Basso, 2018; Ziliani et al., 2022). 

NDVI derived from drone images had a higher correlation with yield 

Fig. 5. The correlation coefficient between satellite/drone sensed NDVI and yield map at different spatial extents. The NDVI images on 6 Nov 2019 (Sentinel-2), 31 
Oct 2021 (Sentinel-2) and 1 Nov 2021 (drone) were used as the highest spatial correlation between NDVI and yield occurred at these dates. The red dots indicate the 
coefficients at 1/4 strip, 1/3 strip, 1/2 strip and whole strip levels. 

Fig. 6. Comparison of APSIM simulated wheat yield and those from yield map (a) and manual measurements (b) at point, strip and field scales. NRMSE is the 
normalized root mean square error between manually measured yield and yield map. R2 is the coefficient of determination. Error bars represent the standard de
viation of the sampling points. 
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maps than NDVI derived from satellite images at the same spatial res
olution (Fig. 5). This is likely due to the greater detail provided by higher 
spatial resolution (4.24 × 4.24 cm) of the original drone images than 
satellite images (10 × 10 m). The ability of drones to acquire data close 
to the surface also reduces image contamination by clouds and atmo
sphere (Alvarez-Vanhard et al., 2021). This implies drone images may 
have more advantages than satellite images in field-scale applications. 
Synergising drone and satellite images may provide promising potential 
in applications across a range of spatial and temporal scales (Alvar
ez-Vanhard et al., 2021; Jiang et al., 2022). 

Waldner et al. (2019) used an in silico approach based on crop 
modelling to explore which metrics derived from time series of the Leaf 
Area Index (LAI) achieve optimal performance in yield prediction across 
Australia. They found that integration of satellite observations from 
peak VI to harvest over time achieved better performance than single 
observation, e.g., peak VI. This was explained by the integration 

approach represents the intensity and the duration of the photosynthetic 
activity of the crop, which is highly correlated with measured yield. In 
this study, we calculated the correlation coefficients between yield and 
different types of metrics as well (data not shown), and interestingly, 
single observations at the later stage of crop growth had higher corre
lation than the peak value or integration metrics in the growing seasons 
of 2019 and 2021. Waldner et al. (2019) used a national scale dataset 
and predicted the yield across regions while our dataset focused on 
within-field yield variability. This demonstrates that different metrics or 
approaches may be needed when estimating yield at a sub-field or finer 
level (Maestrini and Basso, 2018; Ziliani et al., 2022). 

In this study, the strongest correlation value between NDVI and yield 
maps varied across different years. Specifically, in 2019, the highest 
correlation was observed at the mid-grain filling stage, while in 2021, it 
was right after the flowering stage. This difference is likely caused by 
contrasting climatic conditions experienced during different wheat 

Fig. 7. Comparison of simulated biomass dynamics and grain yield of wheat compared to averages of manual measurements and yield map at strip and field scales. 
Error bars indicate the standard deviation. 
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developmental stages. The 2019 wheat was an early sown winter wheat 
and grew under a significant spring drought, while the 2021 wheat crop 
was a spring wheat was sown later and grew under much wetter con
ditions. The better rainfall conditions during 2021 enabled wheat to fill 
grains without water stress, with grain yield more closely related to the 
maximum LAI and NDVI than wheat in 2019. This indicates that the 
relationship between NDVI and yield maps for a given field would be 
time-specific and differs based on the year. The satellite image gap be
tween 31 Oct 2021 and 3 Dec 2021 was due to the cloudy weather. The 
correlation coefficient during the missing data period may be higher 
than the one we currently identified. 

Point-based simulations at BARS did not capture the spatial vari
ability despite detailed initial soil condition, crop and management re
cords. Statistical analysis showed no correlation between simulated/ 
observed yield and soil water/nitrogen content. The possible reasons for 
such results include: (1) initial soil condition and PAWC may not be the 
key driver of crop yield in 2021; (2) other factors such as lateral flow of 
water and nutrients – which may be considerable due to the undulating 
terrain of the field. These factors may also contribute to the yield vari
ability but are not captured by point-based APSIM simulations; (3) The 
same weather condition was used for all the points in the simulation, 
while local microclimate conditions particularly temperature variations 
related to slope could affect crop establishment and growth dynamics; 
(4) Unrepresentativeness and uncertainty of the soil input data at the 
point scale. The data from each sensor location/soil core provides useful 
information about the soil conditions (temperature, moisture, mineral N 
etc) at the particular point, these conditions may not reflect what the 
crop senses beyond that point. Nevertheless, the dataset used in this 
study is already the most detailed data that is available at present. It is 
important to keep in mind that applying process-based models at much 
finer scale would require more accurate inputs (soil, microclimate and 
management variations) at the matching scales and additional model
ling of other impacts such as lateral flows of water and nutrients etc. 

Despite the uncertainties at the point scale, APSIM modelling simu
lated the biomass dynamics and final wheat yields well at 1 ha strip- and 
10 ha field scale. This result provides us confidence in APSIM-based 
modelling of crop growth and yield at an average field level, which is 
a powerful means to integrate and extend experimental results across 
seasons and investigate how soil and climate interactions affect land 
productivity and environmental performance in the long term. The 
better performance of the model predictions at the whole field scale also 
implies that model predictions for soil properties such as soil organic 
carbon may be better conducted at the whole field level for the purpose 
of calculating carbon credits. 

One of the questions that arises from this study is - what spatial scales 
are needed for research and management purposes? For treatment 
layout of long-term experiments on a heterogeneous field, spatial vari
abilities in soil across the field must be considered for measurements and 
modelling, based on which zones can be delineated for representative 
measurements with replicates. One of the ideas of the LTT at BARS is to 
move away from replicated completely randomised block trials in the 
conventional way and instead to use digital technologies to embracing 
field variability (Kirkegaard et al., 2023). Modelling at matching scales 
can help integrate and extend experimental results and take account of 
the impact of soil variation, thus better reflecting the reality on farm and 
avoiding the need to restrict experiments to homogeneous fields. 
Sensing data at high spatial resolution may help with this. However, it 
remains unclear the degree to which detailed sensing and measurements 
at finer spatial resolutions could assist agronomic management of a 
heterogeneous field such as the LTT at BARS. For example, spatially 
explicit management practices of nitrogen fertilisation have been found 
to have relatively limited value (Robertson et al., 2008). Even modelling 
applications, productivity and environmental performance of cropping 
systems are more confidently evaluated at the whole field level. 

5. Conclusion 

With the advances in digital technologies, large amounts of spatial 
in-field data are becoming increasingly available to assist in research 
and farm management, which include manual measurements, crop yield 
maps, and remote/proximal sensing data at point or sub-field scales. 
This study reveals that data derived from remote/proximal sensing, 
yield maps, and manual measurements are poorly correlated at fine 
resolution (e.g., 1 m2). However, when these point measurements are 
aggregated to coarse resolutions (e.g. >1 ha) correlation with spatial 
variation in crop performance is improved. The results from process- 
based modelling follows a similar trend and only becomes reliable at 
coarse resolutions at strip and field scale. Remotely sensed vegetation 
indices (VI) were correlated with yield map only when spatial resolution 
became coarse (> 50 m × 50 m), but the relationship and the timing of 
highest correlation differed between dry and wet years. The results 
highlight the need for caution when using yield maps and remote 
sensing data to estimate yield and quantify spatial variability at a fine 
resolution (e.g., 1 m2). 
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Bölenius, E., Stenberg, B., Arvidsson, J., 2017. Within field cereal yield variability as 
affected by soil physical properties and weather variations – a case study in east 
central Sweden. Geoderma Reg. 11, 96–103. https://doi.org/10.1016/j. 
geodrs.2017.11.001. 

D. He et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.fcr.2024.109332
https://doi.org/10.1016/j.srs.2021.100019
https://doi.org/10.1016/S1161-0301(02)00101-6
https://doi.org/10.1007/s11119-017-9556-z
https://doi.org/10.1016/j.geodrs.2017.11.001
https://doi.org/10.1016/j.geodrs.2017.11.001


Field Crops Research 309 (2024) 109332

10
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