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OPEN ACCESS 

ABSTRACT 

Context. The research explores the benefits of real time tracking of soil moisture for various land 
management contexts and the importance of spatio-temporal modelling and mapping to gain clear 
and visual understanding of soil moisture fluxes across a farm. Aims. This research aims to outline the 
key processes required for building an operational on-farm soil moisture monitoring system where 
the product is highly granular daily soil moisture maps depicting variations temporally, spatially and 
vertically. Methods. We describe processes of capacitance soil moisture probe installation, data 
collection infrastructure, sensor calibration, spatio-temporal modelling, and mapping. Key results. An 
out-of-bag soil moisture evaluation modelling system was tested for nearly 2 years. We found a 

−3model accuracy (RMSE) estimate of 0.002 cm cm−3 and concordance of 0.96 were found. This 
result is averaged over this period but fluctuated daily, and related to rainfall patterns across 
the target farm, which were not directly incorporated into the modelling framework. As expected, 
incorporating prior estimates of soil moisture into the modelling framework contributed to very 
accurate estimates of real time available soil moisture. Conclusions. This research promotes the 
importance of iterative improvements to the soil moisture monitoring system, particularly in 
areas of sensor recalibration and spatio-temporal modelling. We stress the need for a longer-term 
view and plan for ongoing maintenance and improvement of such systems in the emerging digital 
farming ecosystem. Implications. The results of this research will be useful for researchers and 
practitioners involved in the design and implementation of on-farm soil monitoring systems. 

Keywords: agriculture, digital agriculture, digital soil mapping, generalised additive models, IoT, 
sensor calibration, soil modelling, soil moisture, soil moisture sensing, soil monitoring. 

Introduction 

Soil moisture is a critical factor for the existence of agriculture, and therefore has played a 
vital role in the development and sustainability of human civilisation. In addition to its role 
in agriculture, soil moisture plays a critical role in the water cycle, and the global climate 
system (McColl et al. 2017). Soil moisture affects the exchange of water and energy between 
land surface and atmosphere, which have implications for regional and global climate 
patterns. Soil moisture also affects the risk of flooding, bushfires and erosion, as well as 
the transport of water and sediments in watersheds. 

A diverse array of methods can be used for measurement of soil moisture, ranging from 
direct gravimetric approaches (McKenzie et al. 2002), tensiometers (Richards and Gardner 
1936), electrical resistivity sensors (Kean et al. 1987), neutron probes (Visvalingam and 
Tandy 1972), electromagnetic induction (Rhoades et al. 1976; Huth and Poulton 2007), 
capacitance (Campbell 1990) and time domain reflectometry (TDR; Dalton and Van 
Genuchten 1986) sensors, and infra-red spectroscopy (Blaschek et al. 2019). The viability 
of each of these approaches depends on the specific needs of the user, including the 
accuracy required, the frequency of monitoring, the cost, the required expertise, and 
resourcing to carry out these different approaches. 
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With the emergence of ‘smart farming’, the Internet of 
Things (IoT), and the related digital convergence (Wadoux 
and McBratney 2021), the integration of the cyber and 
physical components of farm management and agribusiness 
operations is increasingly entwined. For farming contexts, 
granular monitoring of soil moisture provides an agribusiness 
manager a precision capability to manage crop productivity. 

Despite the growing use of sensor-based soil moisture 
monitoring at farm-scales, there are fragmented efforts 
regarding the technical aspects of the establishment, operation, 
data curation and analytics that underpin and support a 
successful program of farm-based soil moisture monitoring. 
Our aim in this experiential-based research is to resolve this 
fragmentation by outlining these processes, with the aim to 
provide guidance for establishing and maintaining an on-
farm soil moisture sensing system. 

The benefits of sensor-based soil moisture monitoring 
support many on-farm decisions like time of planting, nutrient 
management, harvest options such as growing a crop out for 
grain, or grazing it with livestock, baling it for hay or making 
silage. With timely soil moisture information, in-crop 
marketing strategies for the previously mentioned product 
options are available, facilitating greater marketing diversity 
and forward-selling opportunities. Where irrigation is actively 
practiced, precision scheduling can also be enabled. But from 
an agricultural resilience and adaptation perspective, such 
networks could provide insights into early warning signs for 
the detection of drought conditions and their subsequent 
monitoring (Jung et al. 2020). Similarly with changing climates, 
a much-observed phenomenon across agricultural zones 
across the world, changes in precipitation patterns, temperature 
and evaporation rates can significantly impact available soil 
moisture, and being able to quickly quantify these changes 
enables more adaptable agricultural practices. For soil 
science and vadose zone research, soil water monitoring and 
granular insights of soil moisture provides better information 
to drive research into nutrient fluxes and biogeochemical 
cycling more broadly. 

Systems of inter-connected soil moisture sensors (soil 
moisture sensor networks, SMSN) address issues of single 
point of measurements to enable better spatial characterisa-
tion (Brown et al. 2023). These networks typically consist 
of several sensors placed at different locations and depths 
across some prescribed spatial extent (field, farm, catchment 
etc.), which are connected to a data logger or some other data 
acquisition system. The most common types of sensors 
deployed in a SMSN are based on capacitance measurement 
or TDR measurement techniques (Bogena et al. 2022). The 
sensors measure soil moisture at regular intervals, and the 
data transmitted wirelessly or through a wired connection 
to a computer or server. Compared with remote sensing of 
soil moisture, SMSNs enable unmatched ability to measure 
and monitor soil moisture at depth, in and beyond the root 
zone, and potentially with higher granularity. 

While our study is limited to in-field installations of soil 
moisture sensors, remote sensing of soil moisture (Petropoulos 
et al. 2015) is also an emerging science. Although limited to 
measurement of the soil surface currently, together with other 
operational and scale (for highly granular characterisation) 
challenges, the abilities to characterise soil moisture across 
large spatial extents via remote sensing enhances monitoring 
capabilities of this critical resource. 

In this research, we describe the deployment of 36 soil 
moisture probes across a 290-ha farm in southern New 
South Wales, Australia. A description of the hardware and 
supporting data infrastructure is provided for background, 
but it is acknowledged the choices around equipment 
selection, data logging processes and density of sensors are 
a matter for the owner and operator of the SMSN and the 
contexts for which they are established. Moreover, we describe 
the logic of sensor placement, as the need to deploy them in 
such a way to maximise spatial and environment coverage is 
critical to deriving sensible inferences of the spatial and 
temporal variability of soil moisture fluxes. We then describe 
the processes of soil-specific calibration  (Gasch et al. 2017), 
followed by integration of sensor information with a data-
rich digital soil informatic system (Malone et al. 2022) that  
extends soil moisture readings from the probe scale to highly 
granular model daily predictions across a farm. We also 
highlight that SMSNs are not set-and-forget systems. From 
regular equipment maintenance and monitoring to modular-
based improvements of supporting data analytics, keeping 
such systems running over long time scales requires ongoing 
dedicated expertise and resources. 

Materials and methods 

Methodological overview 
A general stepwise process of establishing an on-farm soil 
monitoring system entails: 

1. Selection of the type and quantity of soil moisture probes. 
2. Provision of a data collection and analytics system to 

collect and store data streams that would be measured 
by the soil moisture probes. 

3. Installation of soil moisture probes and establish 
connection with data collection system. 

4. Integrate into analytics system, processes for sensor calibra-
tion and re-calibration to return site specific measures  of  
available soil moisture. 

5. Further integration of system to take output from Step 4 
into a spatio-temporal modelling framework to output 
maps at an established granularity and time step. 

6. Revisit Steps 4 and 5 periodically seeking to improve 
processes with the intention of gaining more accuracy. 

7. Routine monitoring of the integrity of probes in the field 
and data collected by them. 
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A lot of the work described in this research is centred 
around Steps 4 and 5. Steps 1–3 describe the specific 
context of the farm where this research was conducted. 
Step 6 is not included in the methodological work of this 
research, but rather processes of its implementation is 
described in the discussion part of the manuscript. 

The site 
Boorowa Agricultural Research Station (BARS) is a 290-ha 
mixed cropping farming enterprise situated in south-eastern 
New South Wales, Australia. It is located 3 km south of the 
town of Boorowa (34.4386S, 148.7231S) in the Boorowa 
River catchment located within the Lachlan Fold Belt. The 
terrain ranges from gently undulating (1–3% slope) to 
undulating rises (3–10% slope) with local relief between 9 
m and 30 m above the average 600 m Australian Height 
Datum elevation across the area. The area experiences a 
temperate climate with long summers and cool/cold winters. 
Rainfall on average is 619 mm per year, and is slightly winter 
dominated. The underlying geology at BARS are Silurian 
ignimbrites and tuffs with associated interbedded sediments 
of the Douro Group, which is dominated by the Hawkins 
Volcanics (Cas 1983). On crests and slopes, soils are yellow 
to light reddish duplex (Texture Contrast >20%, increase in 
clay between A and B horizon) soils. According to the 
Australian Soil Classification, the soils are classified as 
either Yellow or Red Chromosols or Kurosols, depending on 
whether there is subsoil acidity (Isbell and National Committee 
on Soil and Terrain 2021). Mottling of the subsoil is common. 
Other soils such as Red and Yellow Dermosols, Kandosols, 
and Yellow Sodosols are often found near drainage lines 
(Hird 1991). 

Malone et al. (2022) provides detailed description of soil 
survey and digital soil mapping across BARS. In summary, 
300 soil survey sites together with various forms of proximal 
soil sensing (on-the-go ground based GNSS (Global 
Navigation Satellite System) location and height data, EMI 
(electromagnetic induction) and passive gamma radiometric 
survey, as well as VIS-NIR soil spectral inference) were 
combined with geospatial machine learning modelling to 
create a comprehensive digital infrastructure of soil informa-
tion. One output of the BARS soil infrastructure is a 3D suite of 
digital soil attribute maps. The soil attributes that were 
mapped included: soil pH, soil organic carbon, soil texture, 
bulk density, and cation exchange capacity. These maps were 
nominally generated at a 5-m grid cell spatial resolution at 
defined depth at the following intervals: 0–10 cm, 10–20 cm, 
20–40 cm, 40–60 cm, 60–80 cm, 80–100 cm, 100–120 cm, 
120–140 cm, 140–160 cm, and 160–180 cm. These maps and 
associated derivatives and digital infrastructure are used for 
managing various farm operations and research activities. 
They also underpin work of soil moisture mapping at BARS, 
which is described in this research. 

A total of 36 Terrasonde soil moisture probes (Hussat, 
Hanwood, NSW, Australia; https://hussat.com.au/) were 
installed at various selected locations across BARS in 
September 2019 (Fig. 1). These probes have built-in long 
life internal batteries and short-range underground to 
surface telemetry. Each probe communicates over a 27-MHz 
simplex radio link, with a nearby base-station positioned up to 
50 m away from the probe, which is solar and battery 
powered. The relatively low frequency radio signals can 
penetrate the soil that the probe is buried in. The Hussat 
Base Station relays the Terrasonde message via a LoRaWAN 
network to a custom Senaps data ingestion (Fig. 2). Long 
Range(LoRa) is a physical, non-cellular, wireless technology 
designed for long-range wireless communication. LoRaWAN, 
or LoRaWAN wireless Internet of Things (IoT) wide-area 
network (WAN) protocols, referred to the open, cloud-based 
protocol and system architecture for IoT networks, which 
make it possible for LoRa devices to communicate with 
each other via networks, platforms, and technologies across 
the Internet. 

Senaps is a cloud-based software platform that provides 
digital infrastructure for spatio-temporal data and analysis. 
The platform supports executing user defined analysis models 
on sensor datasets and allows the data products to be 
accessible via an Application Programming Interface (API). 
Flexible permission settings ensure the data is only visible/ 
editable by authorised users. Once data is in the Senaps 
database, it can be easily value added with the user models. 
Data consumers can view the value-added data through 
custom software applications via the API or by using the 
web interface (https://products.csiro.au/senaps/about/). Senaps 
is a domain agnostic platform that also facilitates the integra-
tion of soil moisture data with other data sources and 
operational analysis such as crop production simulations 
and weather observations and forecasting. 

The LoRaWAN link has some benefits for transmitting from 
the Hussat Base Station versus the cellular network in 
situations where the Hussat Base Station needs to be located 
outside the range of a cellular network. At BARS, the 
LoRaWAN Gateway is located at a high point with a high 
gain antenna and only requires a single SIM card versus 
needing one for each Hussat Base Station. The LoRaWAN 
Gateway forwards the sensor messages over the internet to 
the LoRaWAN Network server. Senaps subscribes to the 
MQTT (MQ Telemetry, the most commonly used messaging 
protocol for the IoT) messages from the configured LoRaWAN 
application and parses the data for storage in its database. 
LoRaWAN also has benefits over the cellular network in this 
application as it is more suited to low power, low bandwidth 
IoT applications without sacrificing transmission distance or 
security. 

The Terrasonde soil moisture probes (Hussat) installed at 
BARS are 160 cm long and are buried vertically with the 
top at a depth of 20 cm underground. Each probe has eight 
sensors measuring soil moisture at 30, 50, 70, 90, 110, 130, 
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Fig. 1. CSIRO Boorowa Agricultural Research Station (328 km south-west of Sydney, New South 
Wales in south-eastern, Australia. Green dots, locations of installed soil moisture probes; red 
square, location of weather station. 

Fig. 2. Soil moisture sensor data collection, distribution and access pathway for the soil moisture probes 
located at Boorowa Agricultural Research Station. 

150 and 170 cm. A data reading (soil moisture and 
temperature) is made from each sensor once every 24 h. 
The sub-surface position of the top of the sensor ensures 
on-farm management operations, like planting or cultivation, 
are not hindered significantly. However, this has obvious 
implications for measurement and modelling of topsoil 
(0–20 cm) soil moisture, which is discussed further on. 

The location of each probe placement was determined by 
balancing coverage of environmental variation with needs 
to minimise disturbances to normal farm operations. For 

capturing spatial variability, probe installation was deter-
mined through kth-order random toposequences (Odgers 
et al. 2008). Toposequences are generated by taking a 
random path uphill to the top of a hill and downhill to a 
stream or valley bottom from a randomly selected seed 
point. Rather than selecting points along toposequences 
in some deterministic way, site locations were selected 
by examining a collection of different pathways and then 
considering the impact of whether proposed installation 
would impede normal farm operations. A key factor of 
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consideration was the placement of probe base stations that 
could be installed up to 50 m from a buried probe. Where 
regular cropping is practiced on the farm, it was decided 
that base stations, given their size, be installed to the edge 
of the cropping fields and consequently, this constrained 
where several of the probes were installed. 

Calibration of the soil moisture sensors 
The Terrasonde soil moisture sensors (Hussat) are a 
capacitance type and measure the relative permittivity 
(dielectric constant) of the bulk soil surrounding the sensor. It 
has been shown experimentally that the relative permittivity 
of soil is highly sensitive to volumetric soil water content 
(Bogena et al. 2007; Robinson et al. 2008). Permittivity is a 
physical quantity that describes how an electric field affects 
and is affected by a dielectric medium (in our case, soil), 
and is determined by the ability of a material to polarise in 
response to the field, and thereby reduce the total electric 
field inside the material. 

In general, the relative permittivity is converted to a 
volumetric water content with a ‘calibration’ equation. The 
manufacturer of the probes (Hussat) confirmed that the 
Terrasonde probes operate at 50 MHz. This frequency 
renders many common calibration equations such as the Topp 
quadratic function (Topp et al. 1980) and other common 
equations, such as those described in Gasch et al. (2017) as 
invalid. Consequently, it is suggested to use a custom 
calibration that has been developed specifically for the 
Terrasonde sensors that dually corrects for soil temperature 
effects on measured soil permittivity readings and provides 
a measure of volumetric soil water (θ). The set of equations 
to convert from permittivity (Er) to θ is first to correct for 
soil temperature effects, followed by parsing this quantity 
through a defined arithmetic equation with fixed coefficients: 

ðEr × CF1Þ
ErT = (1)

CF2 + CF3 + ST 

θ is then estimated as: 

pffiffiffiffiffiffiffiffi 
θ = ðCF4 × 2 ErT + CF5Þ × 100 (2) 

where ErT and ST are the temperature corrected permittivity 
and soil temperature respectively. Equation coefficients CF1, 
CF2, CF3, CF4, CF5 are numerical quantities derived through 
extensive empirical calibration performed by the manufacturer 
Hussat and cannot be shared for commercial-in-confidence 
reasons. Anecdotally the above equations have been success-
fully applied to similar soil types as found at BARS (Hussat). 

Thus, the soil moisture sensors are ‘factory’ calibrated to 
generate θ values and many users of the sensors are satisfied 
with the information, knowing values may not reflect actual 
soil moisture levels, but still demonstrate relative changes in 
the state of soil moisture. As such, users may apply their own 
heuristics such as mental models or simple bias corrections to 

make allowances for these systematic differences irrespective 
or how large or small they may be. This is often the case for 
commercially supplied probes. This approach would be 
considered an ad hoc approach to sensor re-calibration. 

Using soil information gathered or modelled at the sites of 
sensor deployment, Gasch et al. (2017) were able to 
demonstrate an objective and automated approach to re-
calibrate soil moisture sensors to suit them better to the soil 
conditions in which they are deployed. The Gasch et al. 
(2017) approach is to match known reference points of the 
soil moisture characteristic to corresponding points 
captured along a time series of factory calibrated θ data. A 
key requirement for this approach is to have a long enough 
time series to capture events where the sensor experiences 
both the wet and dry ends of the soil moisture spectrum. The 
key reference points in relation to the soil moisture 
characteristic are saturation point, field capacity, and wilting 
point. Field capacity is a term used interchangeably with 
drained upper limit, where both are generally identified as 
the volumetric moisture of a soil at a potential of −1.0 m 
(McKenzie et al. 2002), or in other words, the maximum 
amount of water a soil can hold against gravity. Conversely, 
wilting point corresponds to a soil water content at a 
potential of −150 m. Crop lower limit is a term often used 
interchangeably with wilting point, which can often be a 
source of uncertainty as the ability of different plants to extract 
water from soils can vary substantially due to physiological 
differences together with a co-dependence on the soil itself 
(soil texture, compaction, stratification, crop specific subsoil  
chemical constraints); the amounts of water in the soil at 
different depths, which affect root distribution, the transpiration 
rate of a plant, and the ambient temperature. Thus, the lower 
limit of a soil is often dependent on the plant type. 

In this study, DUL refers to water potentials of −1.0 m 
(notional field capacity), LL refers to −150 m (notional 
wilting point), and SAT refers to saturated soil. In addition 
to having a sufficient time series, an underlying assumption 
of the Gasch et al. (2017) approach is that the reference 
points (SAT, DUL or LL) can be easily identified from the time 
series of sensed soil moisture. In practice, these reference 
points can be identified along a time series trace by observing 
the behaviour over time. For example Gasch et al. (2017) 
scripted an algorithm for identifying DUL by looking for a 
sharp increase in soil moisture followed by a sharp inflection 
and then a decrease that stabilised 3–10 days following the 
inflection point. Similarly, SAT and LL can simply be defined 
from the maximum and minimum values of the sensor data trace. 

After testing, we used a 2-point scaling to re-calibrate the 
sensor data and established the DUL and LL reference points as 
the 95th and 5th percentiles of the traces for each sensor after 
removal of outliers: 

DUL− 
θ = × ðθ − UpperobsÞ + DUL (3)

Upperobs − Lowerobs 

5 

D
ow

nloaded from
 http://connectsci.au/sr/article-pdf/doi/10.1071/SR

24004/296011/sr24004.pdf by guest on 21 January 2026

www.publish.csiro.au/sr


B. Malone et al. Soil Research 62 (2024) SR24004 

where θ* is the re-calibrated θ, DUL are the measured 
reference points, LL are the modelled reference points, and 
Upperobs and Lowerobs are the sensor reference points to 
correspond to DUL and LL, respectively. 

Various laboratory and field approaches are established for 
the measurement of DUL and LL (McKenzie et al. 2002). These 
all require substantial time, specialised equipment, and 
expertise to perform. Pedotransfer functions, which use 
mathematical functions to relate these parameters with 
more easily acquired soil data are often used in the absence 
of measurements (Pachepsky et al. 2006). Their application 
comes with a greater amount of uncertainty, but with 
appropriate modelling and extension of these models, such 
pedotransfer functions can significantly reduce time and 
effort and enhance the amount of data to be made available 
for a given analysis. 

There are several potential pedotransfer function candidates 
to consider, but the ones we selected in this study were 
those from Padarian (2014) that were calibrated via genetic 
algorithms using CSIRO Ecosystem Sciences (APSRU); 
Agricultural Production Systems Research Unit compilation 
of 806 soil profiles that includes field measurements of DUL 
and crop LL for the most commonly grown crops of Australia 
(Dalgliesh et al. 2012). This is because these pedotransfer 
functions would be suitable for application on BARS as 
the calibration represents Australian agricultural soils. For 
implementation, we have made a general assumption that 
the measures of crop LL from Dalgliesh et al. (2012)  equate 
to the previously defined concept of LL that is used in this study. 

From Padarian (2014), the equation for DUL is: 

DUL = 0:2729 + ð0.005033 × CLAYÞ + ð3.158e-15 

× ðSAND × CECÞÞ − ð1.65e − 15 × SANDÞ 
− ð0.00256 × ðCLAYÞ × BDÞ (4) 

LL is then estimated as: 

LL = ð0.6151 × DULÞ − 0.02192 (5) 

where CLAY and SAND are the soil texture fractions for clay 
(% particles <0.002 mm in diameter) and sand (% particles 
0.02–2 mm in diameter), respectively; CEC is cation exchange 
capacity (meq 100 g−1); and BD is bulk density (g cm−3). Clay, 
sand, CEC, and bulk density were acquired for each soil 
moisture probe and sensor using the digital soil data infrastruc-
ture from Malone et al. (2022). This entailed intersecting the 
modelled predictions of the attributes with the point locations 
of the probes, extraction of the data, then fitting a mass 
preserving spline soil depth function (Bishop et al. 1999) to  
the extracted data, to output it such that the sensor locations 
on the probes were the mid-points of depth intervals down the 
soil profile. For example, given the above-described positions 
of the sensors on each probe, soil data were output for the 
following depth intervals: 0–40 cm, 40–60 cm, 60–80 cm, 

80–100 cm, 100–120 cm, 120–140 cm, 140–160 cm, and 
160–180 cm. For the first depth at 0–40 cm, it is noted that 
the top sensor on the probe is 30 cm below the soil surface 
and does not represent the internal midpoint. This was 
required due to the absence of a surface soil moisture sensing 
capability for the present work, and therefore for the top 
sensor of each probe, we make assumptions that it is measuring 
the volume of soil in the top 40 cm. It is acknowledged this is an 
additional source uncertainty to the work described in this 
research. 

With the soil data prepared for each sensor on each probe, 
Eqns 4 and 5 were applied for estimate DUL and LL, 
respectively. Eqn 2 could then be applied to re-calibrate the 
sensor data to adjust θ readings to θ*. The work of identifying 
the sensor upper and lower limits considered the time series 
from October 2019 (1 month after sensor installation) to 
August 2022. For analysis purposes, this time range has 
been ideal as the soils have experienced severe drought 
(from end of 2019 to early 2020), and prolonged periods of 
higher-than-average rainfall (from 2020 to 2022). 

Spatio-temporal modelling of soil moisture 
The scope of the spatio-temporal modelling for this research 
was to generate daily soil moisture maps for 1058 days (from 
October 2019 to August 2022), corresponding to the described 
depth intervals to 180 cm across BARS at a 5-m grid cell 
resolution. Volumetric soil moisture is expressed in both 
cm−3 cm−3 and mm units. Cumulative totals are also generated 
over each of the intervals. Although not included in this study, 
cumulative totals can be used at defined depth intervals. 

The modelling target variable data for each day are the re-
calibrated soil moisture data for each of the eight sensors of 
the 36 probes. Some processing of these data was performed 
to identify large data gaps in the temporal record of each 
sensor. In general, the consistency of the sensor readings 
was high, but we set a threshold whereby if there were less 
than 80% of days without a reading, the sensor data stream 
was removed for all subsequent analysis. Of the 288 
candidate data cases, 53 sensor data streams were removed. 
For the remaining sensor data streams, any missing data were 
filled in using a cubic smoothing spline before performing a 
smooth filtering using the Savitsky–Golay smoothing filter 
(second order polynomial with a window size of 7 days). 

Predictive covariates were sourced from the work of 
Malone et al. (2022) and included those from on-the-go 
proximal soil survey, which were gamma radiometric data, 
electromagnetic induction data, and elevation and associated 
derivatives. To reduce the data layer dimension of these data, 
principal component analysis was performed, which reduced 
14 data layer dimensions to nine while preserving 97.5% of 
the combined data variation. We also included soil data, 
specifically estimates of clay content, bulk density, and soil 
organic carbon. The soil data were harmonised to the depth 
intervals of the sensor data using the mass-preserving spline 
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depth function from Bishop et al. (1999). Finally, an index 
value of each depth interval was also included into the 
predictive covariate suite. 

Generalised Additive Models (GAMs; Hastie and Tibshirani 
1990) were used to fit daily parameters that related re-
calibrated soil moisture data (θ*) with the associated environ-
mental covariate data. To better leverage the temporal 
dynamics of soil moisture as captured through daily sensor 
data, the models contained both environmental covariates 
plus prior model estimates of θ*. Day 1 model covariates 
included only environmental covariates as those previously 
mentioned. However, Days 2–7 models contained the same 
covariates, plus the preceding days model estimates of θ*. 
For example, the Day 2 model contained environmental 
covariates plus Day 1 predicted θ*. While Day 7 modelling 
contained environmental covariates plus θ* prediction for 
Days 1–6. From Day 8 onwards, the models contained the 
environment covariates plus the preceding 7 days predicted 
θ* in a rolling fashion until the end of the modelling period 
(1058 days). 

The somewhat automated approach of the modelling 
(GAM fitting for each day) called for a side investigation to 
determine the treatment of predictor variables to use. For 
GAMs, this entails whether to treat variables as linear 
predictors or in the case of this study as smoothing spline 
functions. To do this, manual daily model fitting investigations 
were done over several consecutive day periods and over 
different periods across the 1058 days. For each day, a GAM 
model was constructed in a stepwise fashion, starting by 
treating each covariate as a linear predictor of the target 
variable θ*. A scope of model parameter alternatives was then 
explored via iteration. The model parameter alternatives 
were smoothing spline functions from one up to five basis 
dimensions for each covariate. The GAM parameter modelling 
was set to operate by trying all combinations of the full suite of 
covariates and their linear and smoothing parametrisations 
until the whole modelling scope was explored. We note that 
each covariate was introduced once to a model, either as a 
linear or smoothing spline variable, never combinations of 
both. The parameter set that returned the smallest Akaike 
Information Criterion (AIC) value was selected as the ‘final’ 
model. From this analysis, for the daily model fitting automa-
tion process, five of the nine environmental covariates were to 
be treated as linear predictor variables. The other four were to 
be treated as smoothing spline functions with either four or five 
basis dimensions. The soil variables were to be treated as linear 
predictors, and prior soil moisture data were to be treated as 
smoothing spline functions with three basis dimensions for 
each day. 

Due to the relatively small number of cases (233), 90% 
were used for model calibration for each day of modelling. 
The remaining 10% of data were used to evaluate the 
goodness of model fit. Lin’s Concordance correlation (CCC) 
and the root mean square error of prediction (RMSE) were 
the selected metrics used for model evaluation. The fitted 

model was then put into prediction mode and used for 
extension to grid predictor variables and create digital 
maps of soil moisture for each of the defined soil depth 
interval layers. 

Implementation of methods 
All data analysis was performed using R (R Core Team 2022). 
For all spatial and GIS operations, sp (Pebesma and Bivand 
2005), rgdal (Bivand et al. 2022), and raster (Hijmans 2022) 
were used. GAM modelling used a combination of the gam 
(Hastie 2023) and mgcv (Wood 2004) packages. The stepwise 
GAM procedure was performed using the gam package using 
the step.Gam function. 

Results 

Each of the soil moisture probes and their sensors across 
the whole SMSN output daily permittivity readings. Our 
workflow then processes these readings in combination 
with associated soil temperature readings, then applies an 
initial factory calibration equation to derive θ estimates. This 
is followed by re-calibrating those estimates via a 2-point 
scaling by matching given sensor readings with associated 
site characterised soil information related to the hydraulic 
properties (DUL and LL). Both DUL and LL were estimated 
by pedotransfer function, and we selected near maxima and 
minima of the sensor estimates of θ to these soil hydraulic 
variables respectively. Fig. 3a shows the permittivity reading 
from three sensors (30 cm, 90 cm, 150 cm) of a single probe 
over the course of the 1058-day study period. Compared with 
Fig. 3b that shows the soil moisture data in θ units, the 
permittivity data is less smooth, which is due to the diurnal 
changes in the readings due to soil temperature variations. 
The factory calibration effectively smoothed these out, 
while also performing a systematic adjustment. As expected, 
the 30-cm data are temporally more variable than the 90-cm 
data, which again is also more variable than the 150-cm data 
due to differences in the dynamics of plant–soil water 
interaction down a soil profile. To provide some local 
context, the soils across the farm are predominantly lighter 
topsoils (clay loams), about 25 cm thickness above light to 
medium clay soils with measurable amounts of gravel. 
The soil moisture sensing is mainly measuring the clayey 
component of the soil, beneath the sandier upper horizons, 
which means that we expect similar values of DUL and LL at 
deeper sensor depths. In the sensor re-calibration, particularly 
for the 150-cm sensor, the re-scaling brings the soil moisture 
trace into the similar upper and lower range as for the other 
sensors. The re-calibration does not affect the pattern of the 
data, and Fig. 3c shows the delayed wetting and drying at 
lower depths in the soil profile is in response to inputs from 
rain and crop water usage over time. 
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Fig. 3. Soil moisture traces from sensors located at 30 cm (black line), 90 cm (red line), and 150 cm (blue line) 
for a selected soil probe (#142). (a) Raw sensor permittivity readings for (b) factory calibrated soil moisture 
and (c) re-calibrated soil moisture. 
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Spatial modelling used daily fitted GAMs to model soil 
moisture at specified depth intervals down to 180 cm. The 
predictor variables included covariates derived from proximal 
soil sensing (environmental variables), digital soil mapping 
(soil variables) and time lagged (up to 7-day history) prior 
soil moisture estimates. As a simple sensitivity analysis to get 
a sense of which predictors have a relatively strong associa-
tion with real time soil moisture. To determine significant 
differences, we assessed the P-values for each fitted model 
parameters. Using a 0.05 threshold across each day, we 
summarised which variables (soil, environmental, and prior soil 
moisture) were identified as being significant. Fig. 4 shows for 
the first 100 days those variables that were model significant 
(blue squares). Soil variables (clay, soil carbon, bulk density 
and depth interval) were used infrequently. On the first day 

of the analysis, we expected an association. However, the 
environmental variables were used more frequently, but the 
pattern is difficult to interpret and does not relate to other factors 
such as rainfall. The use of prior soil moisture is significant in 
each of the models, except the first day when it was not 
included in model. This general pattern is consistent across the 
1058 days of the study. As the modelling after Day 1 contains 
prior estimates of soil moisture, those estimates also capture 
the initial associations between observed soil moisture and the 
soil and environmental covariates from Day 1 and continue for 
1058 days. Hence, specific parameter significance for  the soil  
and environmental variables is only sporadic, but nevertheless 
provide and important inclusion over the course of the model runs. 

Regarding the soil moisture covariates, the frequency of 
their significant association was different depending on the 

Soil variables 

1 

11 

10 

Soil moisture variables 

100 

Environmental variables 

Fig. 4. Model predictor variable themes (soil, environmental, and prior soil moisture), which were identified 
as being significant (blue squares) over the first 100 days of the GAM modelling system. Blocks are to be read 
from the top left corner (Day 1), then row wise down to the bottom right corner (Day 100). 
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length of the time lag. The 7-day historical soil moisture 
prediction was included in 100% of models after 8 days of 
running the automated modelling. A total of 61% of days 
included historical soil moisture predictions from Day 6. For 
Days 1, 2, 3, 4, and 5, the historical soil moisture covariates 
were significantly associated at 23%, 20%, 20%, 21%, and 
25% of the time, respectively. The more significant associa-
tions with soil moisture covariates with 6-day and 7-day lags 
might indicate that genuine patterns of temporal variation 
of soil moisture are not revealed till a certain quantum of 
days has passed between measurements. On a day-to-day 
scale, changes in soil moisture are small relative to changes 
over a week. 

Fitted models were evaluated each day using an out-of-bag 
dataset, 10% of the available data cases. This out-of-bag 
dataset was selected at random each day of the modelling. 
Fig. 5a shows the change in concordance estimates between 
measured and estimated soil moisture based of the out-of-
bag data for the first 100 days. After the first day where a 
concordance of about 0.5 was found, it increased substantially, 
then fluctuated somewhat for 2–3 weeks before stabilising to 
about 0.96. RMSE also stabilised around to 0.002 cm−3 cm−3. 
During this time, rainfall was not being recorded at the farm. 
From January 2020 to August 2022, a plot of the relationship 
between rainfall (measured at a single monitoring station on 
the farm; Fig. 1), and model concordance was investigated. 
While one might expect rainfall patterns experienced at each 
soil moisture probe location to be different than at the site of 
the weather monitoring station, the visual patterns observed 
between rainfall and model concordance exhibit an interesting 
but not overly strong relationship (Fig. 5b). While model 
concordance does not fall below 0.9, where it does fall, there 
is a general correspondence during periods of higher rainfall. 
There would be expected a variable pattern of rainfall to be 
experienced across the farm, and therefore not all sensors 
would be reading uniform amounts of water entering the 
soil. While the models eventually stabilise, the incidence of 
rainfall inputs to the soil temporarily confuse the modelling, 
as there is no variable or covariate in the model that is 
directly accounting for the variation attributed to rainfall, 
excepting of the historical soil moisture predictions, but this 
relationship would be irregular given time lags for moisture 
to be entering and moving down into the soil and effects due 
to evapotranspiration (Jensen and Pedersen 2005). 

To visualise the temporal nature of the digital soil mapping 
products, we show selected time snapshots during the 2020 
calendar year for the 0–40 cm and 120–140 cm depth intervals 
(Fig. 6). The start of 2020 was particularly dry with widespread 
areas of the farm being less than 25% full relative to available 
water capacity, though much spatial variation exists due to 
differences in terrain and soil properties. Nevertheless, both 
upper and lower depth intervals are similar in terms of soil 
moisture content. Rainfall in March 2020 led to widespread 
increases in soil moisture, but mainly observed nearer to the 
soil surface as seen in maps of April 2020. It was not until 

August 2020 that widespread soil moisture in both upper 
and lower depths was observed. Soil drying down is observed 
for the upper depth interval in December 2020, and less so for 
the lower depth interval. While these observations can be made 
for the give four time points only in Fig. 6, we  developed  a  
shiny application (https://shiny.esoil.io/Apps/BARS_SM/) that  
displays daily mapping for each depth interval as well as 
cumulatively in both cm−3 cm−3 and mm soil moisture units. 
These maps provide an indication of the soil moisture spatio-
temporal variability across the farm, and highlights the 
differences in soil attributes and landscape features to show 
that the pattern of soil moisture is not uniform through time. 

To provide an operational soil moisture mapping data 
service for BARS, a version of the above described spatio-
temporal modelling software and data are hosted within 
the Senaps platform. Senaps provides a scientific workflow 
hosting capability to operationalise sensor data analysis. 
The Senaps workflow system allows the combination of 
heterogeneous computational operators into complex workflows. 
Users of the platform can upload their analysis code without 
the intervention of platform administrators or developers. 
The soil moisture modelling analysis described above and 
implemented in R code was uploaded to the platform and is 
then available to authorised users as an operator that can 
be instantiated in a data Workflow in Senaps. The operator 
software package provides meta-data to the software platform 
to describe the base software image, software library 
dependencies (include R packages and system libraries) and 
the inputs and outputs of the operator. The operator package 
also includes static datasets utilised in the analysis but not 
dynamically updated. The operator is instantiated as a 
workflow using a graph describing the input and output 
data locations within the platform. Each time the workflow 
execution is required the Senaps platform will retrieve the 
code and deploy the required computational infrastructure. 

To operate effectively, additional functionality is added to 
support operating in a near real time context. These functions 
allow the analysis software to determine the availability of 
new input data and incrementally generate new daily outputs 
as required. In addition, the underground and low power 
design of the soil moisture sensors mean that samples can 
be delayed by transient communication outages. The data 
availability thresholds described above are also applied in 
the operation workflow; however, on a sliding temporal 
window defined by the schedule. The workflow is deployed 
on two schedules: (1) one that is scheduled every second day 
to ensure the output soil moisture maps are available with low 
latency for operational use; and (2) one that is scheduled each 
month where the past 30 days is reprocessed to ensure the 
final time series is derived from all possible sensor samples. 
Since GAM modelling used in this analysis requires the 
preceding 7 days of model estimates of θ* and the Senaps 
platform deploys compute infrastructure on demand. At each 
scheduled execution, the operator code can first retrieve the 
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Fig. 5. (a) GAM model evaluation concordance for the first 100 days (October 2013–January 2020). (b) GAM 
model evaluation concordance together with observed rainfall measured at weather station (January 2020– 
August 2022). 

preceding 7 days of output data before calculating the newly 
added days of output estimates for θ*. 

The operational soil moisture workflow generates output 
data in multiple formats including a time series of numerical 
GeoTIFF files and RGB GeoTIFF files for visualisation 
purposes and a multi-dimensional NetCDF to allow efficient 
timeseries extraction. The output files are made available 
for access by researchers and external software tools such 

as GIS software using APIs provided by the THREDDS 
software included within the Senaps platform. 

Discussion 

Deriving value from SMSNs is an actively growing area of 
work and research, given the impact of available soil 
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Fig. 6. Mapped estimates of soil moisture relative to available water capacity, expressed as a 
percentage for 0–40 cm and 120–140 cm depth intervals. These maps are shown for the specific 
time points of 1 January 2020, 1 April 2020, 1 August 2020, and 1 December 2020. 

moisture for productive agriculture. Various tools and platforms decision making. In this research, additional value is added to 
are available in the marketplace and being developed in research a SMSN through spatio-temporal modelling that generates 
(Gallacher et al. 2023) to proffer insights that will aid in on-farm daily soil moisture maps. The mapping provides the visual 
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tool that evaluate differences between sensors due to changes 
in soil attributes and non-uniformity of inputs such as via 
rainfall or irrigation. The sorts of inferences that may be 
derived from single probe analysis tools could easily be 
incorporated into a mapping system, enriching the suite of 
insights that can be derived due to the spatial nature of 
the data. 

The primary goal of this work was to describe the processes 
needed from establishing a soil SMSN, collecting and processing 
the raw sensor data, and spatio-temporal modelling of the 
processed data. What was described is not the only way of 
generating daily soil moisture mapping, but provides some 
cues for others with similar networks to derive additional 
value from them. The intention was to build a system that 
would be considered operational, such that insights can 
be immediately delivered. From this, further innovation 
via improvements to execution of key steps can be easily 
incorporated later. The following discussion provides some 
justification for choices made in developing the operational 
system and then points out several tasks, or alternative 
procedures whereby improvements in mapping precision 
are to be expected or might be achieved or not. 

Re-calibration of soil moisture probes 
For mapping of soil moisture, the importance of site-specific 
calibration of each probe and sensor across the SMSN cannot 
be understated. Sensor re-calibration takes into consideration 
the collective expression of soil attributes at the site of the 
probe installation. From a mapping perspective, this enables 
one to exploit correlative relationships between sensors 
(autocorrelation) and with other soil and landscape features. 
Even with rudimentary soil and landscape information to 
drive the spatio-temporal modelling workflow, one can expect 
the expression of soil moisture variations to be driven by 
known soil and landscape processes. When there is highly 
granular soils information as used in this work, the expression 
of soil moisture and soil–landscape relationships becomes 
more enhanced. 

Yet, there is considerable uncertainty in the way sensor re-
calibration is done. This is because there is the implied 
assumption about the relationship between near upper and 
lower sensor readings corresponding to DUL and LL. Naturally, 
this is a convenient concept. Based on sensor experiences from 
both extremes of the soil moisture characteristic, and from an 
operational perspective, the established sensor upper and 
lower reading (e.g. Gasch et al. 2017) are likely to be close 
enough to DUL and LL, respectively. More pertinent is the 
issue with the measurement or estimation of DUL and LL. To 
avoid characterisation of DUL and LL, sensor re-calibration 
may entail the taking of soil moisture measurements either 
in the laboratory or field and corresponding these with 
the sensor readings taken at the same time as measurement. 
This is a very large and complex undertaking, and the effort 
multiplies as probe and sensor number increases. The degree 

of difficulty also increases especially in the field, and more 
so when investigations are done at increasing depth below 
the soil surface. Performing the same work in the laboratory 
removes the difficulties encountered in the field. However, 
new problems are introduced, such as the wetting up and 
drying down of soil needs to be done in a controlled 
environment, which requires specialised equipment. There 
are also issues if analysis is performed using re-packed soils 
rather than in situ soil material (Sakaki and Smits 2015). 
Furthermore, there is the need to have soil moisture sensors 
integrated into the laboratory process. Therefore, establishing 
a measurement (better) or prediction (less better) of DUL and 
LL is a more practicable route to follow. 

Measuring or predicting DUL and LL 
Measurement of DUL and LL is not without difficulty. In the 
field, this may entail the opportunistic approach, especially 
in years where there is good early-season and within-season 
rainfall. Ensuring a soil profile is at DUL is relatively easier 
to manage in uniform heavier textured soils, but uncertainty 
increases for lighter textured soil (as the window of opportu-
nity narrows), or soils that express a soil texture contrast. 
Integration with watering and neutron probe observations 
(assuming it is correctly calibrated) is one way to circumvent 
this issue (Burk and Dalgliesh 2013). For LL (or CLL in this 
case), even with rain-out shelters installed at anthesis, one 
can only confidently characterise a whole soil profile in a 
particularly dry year in texture contrast soils. Collectively, 
the implication is that it may take more than 1 year for 
each probe to acquire confident measures of DUL and LL 
via the opportunistic approach. Ongoing efforts at BARS are 
seeking to establish these data in any case. Alternatively, or 
perhaps in conjunction with opportunistic approach, is via 
laboratory work using suction tables and pressure plates to 
measure either the full soil moisture characteristic or just for 
the desired pressure potentials that DUL and LL are commonly 
attributed. Where soil cores are re-packed instead of in-field 
condition, the efficacy of such methods also needs to be 
considered. 

Clearly, even the measurement of soil moisture and DUL 
and LL are potentially fraught with uncertainties, and not 
even through measurement alone, but other factors such as 
whether done in field or laboratory. However, measurement 
is more ideal than prediction, whereby the meaning of 
prediction is via pedotransfer functions that establish relation-
ships between relatively easier to characterise soil attributes 
and the target variables of interest (DUL and LL that a 
comparatively much more difficult to characterise). In this 
study, we adopted equations from Padarian (2014) on the basis 
they were derived from predominately agricultural soils from 
around Australia. Like earlier discussions about the needed for 
re-calibration of soil moisture sensors to better match with 
in situ conditions, pedotransfer functions are equally limited 
in terms of their extensibility outside the range of data they 
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were fitted with. Here, the issue is not likely the geographic 
and edaphic range of the pedotransfer functions; rather, it is 
their sensitivity to changes in soil attributes at a local or 
farm scale. Anecdotally from some measurements we have 
acquired from BARS, the pedotransfer functions used in this 
study correspond quite well with DUL but underpredict LL 
and are not very sensitive to changes in soil texture spatially 
and laterally, which equate the smoother than expected 
maps of DUL and LL. 

However, the convenience of adopting a pre-existing 
pedotransfer function and integrating into the modelling 
system is not to be overlooked as it enabled its efficient 
creation. This is one part of the whole modelling system that 
can be easily improved in future updates where in the first 
instance, efforts be directed toward developing farm 
specific pedotransfer functions that in themselves can grow 
more precise as new measurement data is continually added 
to them. Taken together with routine visitation of the sensor 
upper and lower reading limits, we see a continual revisit and 
feedback approach to ongoing updates to improve DUL and LL 
characterisation, and ultimately, greater precision of soil 
moisture monitoring at each probe location. 

Spatio-temporal modelling 
Once soil probes have been re-calibrated, the daily recording 
of these data are brought into a spatio-temporal modelling 
system. We previously highlighted the various sources of 
uncertainty that is attributed to these data, yet in this work, 
there is no attributable uncertainty incorporated into the 
spatio-temporal modelling. The assumption is that the data 
is free from error. Future iterations of the modelling systems 
will obviously attempt to address this wrong assumption. 
Another of the big assumptions is the absence of soil 
moisture measurement at the soil surface, and the solution 
to account for this by attributing the measurements from 
the top sensor of each probe (positioned 30 cm below soil 
surface) to be representative of the top 40 cm. In general, 
we have established that the sensor position is located at 
the midpoint of a depth interval. For convenience, this is 
helpful to do as it enables estimation of soil available water 
in mm units and allows the calculation of integrals across 
any depth intervals and ranges. However, the issue of surface 
soil moisture is not rectified, given the greatest fluxes are 
observed at the surface. Operationally, this is actively being 
addressed by the installation of co-located surface probes 
that can be easily removed during field activities such as 
seeding, fertiliser application and harvesting. The work of 
re-calibration we have previously described need to be 
performed before these additional probes are integrated into 
the system. A point of exploration is the integration with 
remote and proximal sensing platforms that actively measure 
soil moisture and is part of future research efforts to fuse both 
data source types. 

The decisions for selection of spatio-temporal modelling 
structure were considered in terms of whether the modelling 
process could be automated and performed relatively 
efficiently. The appropriateness of selected model for the 
quantity of data available was also considered, which entailed 
decisions around selection of model type and suitability to use 
for temporal modelling. Another factor was a preference to 
use modelling workflows commonly performed for digital 
soil mapping that potentially includes several predictive 
covariates. Machine learning was considered but was eliminated 
together with other approaches such as formal linear and non-
linear spatio-temporal modelling frameworks because of 
suitability to uses with the available size of data, the difficulty 
to automate in a daily time step fashion, model complexity 
and interpretability. The practical solution therefore was 
to adopt the use of GAMs as they facilitate investigation 
of non-linear association between covariates and target 
variable and fitted adequately to the other criteria that was 
required. 

The inclusion of rolling 7-days prior soil moisture estimates 
into modelling facilitated the capture of temporal variation in 
soil moisture and the interaction between soil moisture and 
soil and landscape features. While it was an ad hoc decision 
to select a rolling 7-day historical period, rather than 2, 3, 14 
or even 21 days, the created modelling system can be adapted 
and optimised in future iterations, which may sensitivity test 
this feature. Alternatively, it might be possible to adopt 
another approach such as temporal weighting that gives near 
real time dynamic covariates (soil moisture predictions, in the 
case of this study) higher weighting than more historical 
dynamic covariates (Heuvelink et al. 2021). Given that our 
own analysis revealed relatively stronger predictive power 
of soil moisture covariates to those 6 or 7 days prior rather 
than to Day 1 or 2 prior, due consideration of this approach 
would need to be considered. 

Considerations for establishing and maintaining an 
on-farm soil moisture sensor network 
Technical improvements to the created soil water monitoring 
system were described above. The following general discus-
sion considers aspects of an on-farm SMSN related to 
establishment and its ongoing maintenance. 

In the establishment of the SMSN with 36 probes 
distributed across BARS, considerations were made about their 
placement with the intention of capturing the expressed soil 
and environmental variability to ensure the best possible 
spatio-temporal model extension. The determination of installing 
36 probes was not guided by any statistical inference or 
optimisation but like in most other contexts, was defined by 
other measures such as costs, project time constraints, and 
manufacturer considerations. Having 36 probes installed 
across a 290-ha farm would be considered on the upper end 
of soil moisture sensing capability. From a purely modelling 
perspective where more data is better, there is an inclination 
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to try to increase the density. There are statistical approaches 
readily available to explore what an optimal number might 
be. However, most operators or land managers thinking of 
establishing a SMSN perhaps would not consider having a 
density of one probe every 6 ha, as at BARS. Having only 
one or two sensors across a farm will not enable the spatio-
temporal modelling described in this work, though some 
general recommendations can be made if the intention is 
to produce mapping. The actual number is probably less 
important than the actual placement. Of great importance is 
an understanding of whether acquired knowledge or 
detailed mapping of the soil and landscape that the farm is 
situated on. Delineating zones of common soils can then be 
performed, which allow sensor/s to be installed in each of 
them. Even installing a single sensor in each zone will provide 
some spatio-temporal insight in soil moisture fluxes. With 
greater numbers of sensors installed, there is increased ability 
to exploit modelling capabilities, as well as more granular 
information about the soil and landscape. 

Due to the the tendency to set-and-forget, the ongoing 
maintenance of a SMSN is often overlooked. This is problem-
atic as the ongoing physical maintenance needed to keep 
the probes operational, and the ongoing supporting data 
infrastructure system also needs to be carefully planned. 
This includes alert and integrity checking systems to inform 
operators of malfunctioning equipment or data streams, and 
scheduling tools to record, monitor and update their ongoing 
maintenance. Soil moisture probes also have an end-of-life 
due to battery constraints or just through long-term operational 
use in difficult environments. Decisions are needed to either 
replace a probe or install a new one at the same location; or 
perhaps install a new probe in an entirely new location. An 
argument for the latter option is that over the life of an 
installation, a thorough understanding of the behaviour of 
soil and soil moisture fluxes will have been well established 
and predictable. For example, sufficient information may 
indicate that monitoring is no longer needed at a particular 
site, and there is more need to relocate it elsewhere. As 
more and more SMSNs become established, these questions 
and considerations will eventuate more often, and to ensure 
the most benefit is gained from a large financial investment, 
set-and-forget strategies are not feasible. 

Conclusions 

In this study, our intention was to step through the processes 
needed to enrich insights that might be gained by having an 
on-farm soil moisture sensing network. The benefits of real 
time tracking of soil moisture are obvious for several land 
management contexts. The spatio-temporal mapping of soil 
moisture combines what is observed from a network of points 
with granular insights of soil and landscape process and 
attributes to give clear and visual understanding of soil 

moisture fluxes across a farm. By the process of building an 
operational on-farm soil moisture monitoring system, the 
core processes needed can be established. We discussed the 
processes of sensor installation, underpinning data collection 
infrastructure, the necessary data analytics involving sensor 
calibration and re-calibration, and spatio-temporal modelling 
and mapping. What was created is not a final product, but the 
first of an iterative system whereby the efforts of the data 
analytics pipeline involving sensor calibration and modelling 
be revisited and improved. A range of options for sensor 
re-calibration revolves around better characterisation of 
soil DUL and LL ranging from relatively straightforward 
(improving pedotransfer functions) to more difficult and 
costly (field and lab measurement). Many options can be 
entertained for spatio-temporal modelling, but it is important 
to consider not just the elegance of the modelling but the 
practicality of the model to be suited for the context, which 
in our case was daily, granular estimates of soil moisture. 
Nevertheless, the whole predictive system generated in this 
study is modular and therefore easier to revisit and improve 
each component individually when there is a need. 

On-farm soil moisture sensing is an ever-increasing 
practice and is an indication of the broader digitalisation of 
farming. While the digital farming ecosystem is emerging, the 
temptation with nearly all components of the digital infrastruc-
ture is to set-and-forget. Rather, a longer view and plan is 
needed for the ongoing maintenance and improvement of such 
systems so that we can derive full value and insights from them. 
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(https://senaps.io/dashboard/#/app/stream/all). An account will first need to be established with the SENAPS team (https://products.csiro.au/senaps/about/) to  
access those data. The digital soil mapping data that support this study will be shared upon reasonable request to the corresponding author. 
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