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ABSTRACT

Context. The research explores the benefits of real time tracking of soil moisture for various land
management contexts and the importance of spatio-temporal modelling and mapping to gain clear
and visual understanding of soil moisture fluxes across a farm. Aims. This research aims to outline the
key processes required for building an operational on-farm soil moisture monitoring system where
the product is highly granular daily soil moisture maps depicting variations temporally, spatially and
vertically. Methods. We describe processes of capacitance soil moisture probe installation, data
collection infrastructure, sensor calibration, spatio-temporal modelling, and mapping. Key results. An
out-of-bag soil moisture evaluation modelling system was tested for nearly 2 years. We found a
model accuracy (RMSE) estimate of 0.002 cm~ cm™ and concordance of 0.96 were found. This
result is averaged over this period but fluctuated daily, and related to rainfall patterns across
the target farm, which were not directly incorporated into the modelling framework. As expected,
incorporating prior estimates of soil moisture into the modelling framework contributed to very
accurate estimates of real time available soil moisture. Conclusions. This research promotes the
importance of iterative improvements to the soil moisture monitoring system, particularly in
areas of sensor recalibration and spatio-temporal modelling. We stress the need for a longer-term
view and plan for ongoing maintenance and improvement of such systems in the emerging digital
farming ecosystem. Implications. The results of this research will be useful for researchers and
practitioners involved in the design and implementation of on-farm soil monitoring systems.

Keywords: agriculture, digital agriculture, digital soil mapping, generalised additive models, IoT,
sensor calibration, soil modelling, soil moisture, soil moisture sensing, soil monitoring.

Introduction

Soil moisture is a critical factor for the existence of agriculture, and therefore has played a
vital role in the development and sustainability of human civilisation. In addition to its role
in agriculture, soil moisture plays a critical role in the water cycle, and the global climate
system (McColl et al. 2017). Soil moisture affects the exchange of water and energy between
land surface and atmosphere, which have implications for regional and global climate
patterns. Soil moisture also affects the risk of flooding, bushfires and erosion, as well as
the transport of water and sediments in watersheds.

A diverse array of methods can be used for measurement of soil moisture, ranging from
direct gravimetric approaches (McKenzie et al. 2002), tensiometers (Richards and Gardner
1936), electrical resistivity sensors (Kean et al. 1987), neutron probes (Visvalingam and
Tandy 1972), electromagnetic induction (Rhoades et al. 1976; Huth and Poulton 2007),
capacitance (Campbell 1990) and time domain reflectometry (TDR; Dalton and Van
Genuchten 1986) sensors, and infra-red spectroscopy (Blaschek et al. 2019). The viability
of each of these approaches depends on the specific needs of the user, including the
accuracy required, the frequency of monitoring, the cost, the required expertise, and
resourcing to carry out these different approaches.
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With the emergence of ‘smart farming’, the Internet of
Things (IoT), and the related digital convergence (Wadoux
and McBratney 2021), the integration of the cyber and
physical components of farm management and agribusiness
operations is increasingly entwined. For farming contexts,
granular monitoring of soil moisture provides an agribusiness
manager a precision capability to manage crop productivity.

Despite the growing use of sensor-based soil moisture
monitoring at farm-scales, there are fragmented efforts
regarding the technical aspects of the establishment, operation,
data curation and analytics that underpin and support a
successful program of farm-based soil moisture monitoring.
Our aim in this experiential-based research is to resolve this
fragmentation by outlining these processes, with the aim to
provide guidance for establishing and maintaining an on-
farm soil moisture sensing system.

The benefits of sensor-based soil moisture monitoring
support many on-farm decisions like time of planting, nutrient
management, harvest options such as growing a crop out for
grain, or grazing it with livestock, baling it for hay or making
silage. With timely soil moisture information, in-crop
marketing strategies for the previously mentioned product
options are available, facilitating greater marketing diversity
and forward-selling opportunities. Where irrigation is actively
practiced, precision scheduling can also be enabled. But from
an agricultural resilience and adaptation perspective, such
networks could provide insights into early warning signs for
the detection of drought conditions and their subsequent
monitoring (Jung et al. 2020). Similarly with changing climates,
a much-observed phenomenon across agricultural zones
across the world, changes in precipitation patterns, temperature
and evaporation rates can significantly impact available soil
moisture, and being able to quickly quantify these changes
enables more adaptable agricultural practices. For soil
science and vadose zone research, soil water monitoring and
granular insights of soil moisture provides better information
to drive research into nutrient fluxes and biogeochemical
cycling more broadly.

Systems of inter-connected soil moisture sensors (soil
moisture sensor networks, SMSN) address issues of single
point of measurements to enable better spatial characterisa-
tion (Brown et al. 2023). These networks typically consist
of several sensors placed at different locations and depths
across some prescribed spatial extent (field, farm, catchment
etc.), which are connected to a data logger or some other data
acquisition system. The most common types of sensors
deployed in a SMSN are based on capacitance measurement
or TDR measurement techniques (Bogena et al. 2022). The
sensors measure soil moisture at regular intervals, and the
data transmitted wirelessly or through a wired connection
to a computer or server. Compared with remote sensing of
soil moisture, SMSNs enable unmatched ability to measure
and monitor soil moisture at depth, in and beyond the root
zone, and potentially with higher granularity.

While our study is limited to in-field installations of soil
moisture sensors, remote sensing of soil moisture (Petropoulos
et al. 2015) is also an emerging science. Although limited to
measurement of the soil surface currently, together with other
operational and scale (for highly granular characterisation)
challenges, the abilities to characterise soil moisture across
large spatial extents via remote sensing enhances monitoring
capabilities of this critical resource.

In this research, we describe the deployment of 36 soil
moisture probes across a 290-ha farm in southern New
South Wales, Australia. A description of the hardware and
supporting data infrastructure is provided for background,
but it is acknowledged the choices around equipment
selection, data logging processes and density of sensors are
a matter for the owner and operator of the SMSN and the
contexts for which they are established. Moreover, we describe
the logic of sensor placement, as the need to deploy them in
such a way to maximise spatial and environment coverage is
critical to deriving sensible inferences of the spatial and
temporal variability of soil moisture fluxes. We then describe
the processes of soil-specific calibration (Gasch et al. 2017),
followed by integration of sensor information with a data-
rich digital soil informatic system (Malone et al. 2022) that
extends soil moisture readings from the probe scale to highly
granular model daily predictions across a farm. We also
highlight that SMSNs are not set-and-forget systems. From
regular equipment maintenance and monitoring to modular-
based improvements of supporting data analytics, keeping
such systems running over long time scales requires ongoing
dedicated expertise and resources.

Materials and methods

Methodological overview

A general stepwise process of establishing an on-farm soil
monitoring system entails:

[

Selection of the type and quantity of soil moisture probes.

2. Provision of a data collection and analytics system to
collect and store data streams that would be measured
by the soil moisture probes.

3. Installation of soil moisture probes and establish
connection with data collection system.

4. Integrate into analytics system, processes for sensor calibra-
tion and re-calibration to return site specific measures of
available soil moisture.

5. Further integration of system to take output from Step 4
into a spatio-temporal modelling framework to output
maps at an established granularity and time step.

6. Revisit Steps 4 and 5 periodically seeking to improve
processes with the intention of gaining more accuracy.

7. Routine monitoring of the integrity of probes in the field

and data collected by them.
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A lot of the work described in this research is centred
around Steps 4 and 5. Steps 1-3 describe the specific
context of the farm where this research was conducted.
Step 6 is not included in the methodological work of this
research, but rather processes of its implementation is
described in the discussion part of the manuscript.

The site

Boorowa Agricultural Research Station (BARS) is a 290-ha
mixed cropping farming enterprise situated in south-eastern
New South Wales, Australia. It is located 3 km south of the
town of Boorowa (34.4386S, 148.7231S) in the Boorowa
River catchment located within the Lachlan Fold Belt. The
terrain ranges from gently undulating (1-3% slope) to
undulating rises (3-10% slope) with local relief between 9
m and 30 m above the average 600 m Australian Height
Datum elevation across the area. The area experiences a
temperate climate with long summers and cool/cold winters.
Rainfall on average is 619 mm per year, and is slightly winter
dominated. The underlying geology at BARS are Silurian
ignimbrites and tuffs with associated interbedded sediments
of the Douro Group, which is dominated by the Hawkins
Volcanics (Cas 1983). On crests and slopes, soils are yellow
to light reddish duplex (Texture Contrast >20%, increase in
clay between A and B horizon) soils. According to the
Australian Soil Classification, the soils are classified as
either Yellow or Red Chromosols or Kurosols, depending on
whether there is subsoil acidity (Isbell and National Committee
on Soil and Terrain 2021). Mottling of the subsoil is common.
Other soils such as Red and Yellow Dermosols, Kandosols,
and Yellow Sodosols are often found near drainage lines
(Hird 1991).

Malone et al. (2022) provides detailed description of soil
survey and digital soil mapping across BARS. In summary,
300 soil survey sites together with various forms of proximal
soil sensing (on-the-go ground based GNSS (Global
Navigation Satellite System) location and height data, EMI
(electromagnetic induction) and passive gamma radiometric
survey, as well as VIS-NIR soil spectral inference) were
combined with geospatial machine learning modelling to
create a comprehensive digital infrastructure of soil informa-
tion. One output of the BARS soil infrastructure is a 3D suite of
digital soil attribute maps. The soil attributes that were
mapped included: soil pH, soil organic carbon, soil texture,
bulk density, and cation exchange capacity. These maps were
nominally generated at a 5-m grid cell spatial resolution at
defined depth at the following intervals: 0-10 cm, 10-20 cm,
20-40 cm, 40-60 cm, 60-80 cm, 80-100 c¢cm, 100-120 cm,
120-140 cm, 140-160 cm, and 160-180 cm. These maps and
associated derivatives and digital infrastructure are used for
managing various farm operations and research activities.
They also underpin work of soil moisture mapping at BARS,
which is described in this research.

A total of 36 Terrasonde soil moisture probes (Hussat,
Hanwood, NSW, Australia; https://hussat.com.au/) were
installed at various selected locations across BARS in
September 2019 (Fig. 1). These probes have built-in long
life internal batteries and short-range underground to
surface telemetry. Each probe communicates over a 27-MHz
simplex radio link, with a nearby base-station positioned up to
50 m away from the probe, which is solar and battery
powered. The relatively low frequency radio signals can
penetrate the soil that the probe is buried in. The Hussat
Base Station relays the Terrasonde message via a LoRaWAN
network to a custom Senaps data ingestion (Fig. 2). Long
Range(LoRa) is a physical, non-cellular, wireless technology
designed for long-range wireless communication. LoRaWAN,
or LoRaWAN wireless Internet of Things (IoT) wide-area
network (WAN) protocols, referred to the open, cloud-based
protocol and system architecture for IoT networks, which
make it possible for LoRa devices to communicate with
each other via networks, platforms, and technologies across
the Internet.

Senaps is a cloud-based software platform that provides
digital infrastructure for spatio-temporal data and analysis.
The platform supports executing user defined analysis models
on sensor datasets and allows the data products to be
accessible via an Application Programming Interface (API).
Flexible permission settings ensure the data is only visible/
editable by authorised users. Once data is in the Senaps
database, it can be easily value added with the user models.
Data consumers can view the value-added data through
custom software applications via the API or by using the
web interface (https://products.csiro.au/senaps/about/). Senaps
is a domain agnostic platform that also facilitates the integra-
tion of soil moisture data with other data sources and
operational analysis such as crop production simulations
and weather observations and forecasting.

The LoRaWAN link has some benefits for transmitting from
the Hussat Base Station versus the cellular network in
situations where the Hussat Base Station needs to be located
outside the range of a cellular network. At BARS, the
LoRaWAN Gateway is located at a high point with a high
gain antenna and only requires a single SIM card versus
needing one for each Hussat Base Station. The LoRaWAN
Gateway forwards the sensor messages over the internet to
the LoRaWAN Network server. Senaps subscribes to the
MQTT (MQ Telemetry, the most commonly used messaging
protocol for the IoT) messages from the configured LoRaWAN
application and parses the data for storage in its database.
LoRaWAN also has benefits over the cellular network in this
application as it is more suited to low power, low bandwidth
IoT applications without sacrificing transmission distance or
security.

The Terrasonde soil moisture probes (Hussat) installed at
BARS are 160 cm long and are buried vertically with the
top at a depth of 20 cm underground. Each probe has eight
sensors measuring soil moisture at 30, 50, 70, 90, 110, 130,

3
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Fig. 1.

CSIRO Boorowa Agricultural Research Station (328 km south-west of Sydney, New South

Wales in south-eastern, Australia. Green dots, locations of installed soil moisture probes; red

square, location of weather station.
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Fig. 2.
located at Boorowa Agricultural Research Station.

150 and 170 cm. A data reading (soil moisture and
temperature) is made from each sensor once every 24 h.
The sub-surface position of the top of the sensor ensures
on-farm management operations, like planting or cultivation,
are not hindered significantly. However, this has obvious
implications for measurement and modelling of topsoil
(0-20 cm) soil moisture, which is discussed further on.

The location of each probe placement was determined by
balancing coverage of environmental variation with needs
to minimise disturbances to normal farm operations. For

Soil moisture sensor data collection, distribution and access pathway for the soil moisture probes

capturing spatial variability, probe installation was deter-
mined through kth-order random toposequences (Odgers
et al. 2008). Toposequences are generated by taking a
random path uphill to the top of a hill and downhill to a
stream or valley bottom from a randomly selected seed
point. Rather than selecting points along toposequences
in some deterministic way, site locations were selected
by examining a collection of different pathways and then
considering the impact of whether proposed installation
would impede normal farm operations. A key factor of

4
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consideration was the placement of probe base stations that
could be installed up to 50 m from a buried probe. Where
regular cropping is practiced on the farm, it was decided
that base stations, given their size, be installed to the edge
of the cropping fields and consequently, this constrained
where several of the probes were installed.

Calibration of the soil moisture sensors

The Terrasonde soil moisture sensors (Hussat) are a
capacitance type and measure the relative permittivity
(dielectric constant) of the bulk soil surrounding the sensor. It
has been shown experimentally that the relative permittivity
of soil is highly sensitive to volumetric soil water content
(Bogena et al. 2007; Robinson et al. 2008). Permittivity is a
physical quantity that describes how an electric field affects
and is affected by a dielectric medium (in our case, soil),
and is determined by the ability of a material to polarise in
response to the field, and thereby reduce the total electric
field inside the material.

In general, the relative permittivity is converted to a
volumetric water content with a ‘calibration’ equation. The
manufacturer of the probes (Hussat) confirmed that the
Terrasonde probes operate at 50 MHz. This frequency
renders many common calibration equations such as the Topp
quadratic function (Topp et al. 1980) and other common
equations, such as those described in Gasch et al. (2017) as
invalid. Consequently, it is suggested to use a custom
calibration that has been developed specifically for the
Terrasonde sensors that dually corrects for soil temperature
effects on measured soil permittivity readings and provides
a measure of volumetric soil water (6). The set of equations
to convert from permittivity (Er) to 6 is first to correct for
soil temperature effects, followed by parsing this quantity
through a defined arithmetic equation with fixed coefficients:

(Er x CF1)
ErT=—1———— 1
T = CF2+ CF3 4 ST M
0 is then estimated as:
6= (CF4 x VErT + CF5) x 100 (2)

where ErT and ST are the temperature corrected permittivity
and soil temperature respectively. Equation coefficients CF1,
CF2, CF3, CF4, CF5 are numerical quantities derived through
extensive empirical calibration performed by the manufacturer
Hussat and cannot be shared for commercial-in-confidence
reasons. Anecdotally the above equations have been success-
fully applied to similar soil types as found at BARS (Hussat).
Thus, the soil moisture sensors are ‘factory’ calibrated to
generate 0 values and many users of the sensors are satisfied
with the information, knowing values may not reflect actual
soil moisture levels, but still demonstrate relative changes in
the state of soil moisture. As such, users may apply their own
heuristics such as mental models or simple bias corrections to

make allowances for these systematic differences irrespective
or how large or small they may be. This is often the case for
commercially supplied probes. This approach would be
considered an ad hoc approach to sensor re-calibration.

Using soil information gathered or modelled at the sites of
sensor deployment, Gasch et al. (2017) were able to
demonstrate an objective and automated approach to re-
calibrate soil moisture sensors to suit them better to the soil
conditions in which they are deployed. The Gasch et al.
(2017) approach is to match known reference points of the
soil moisture characteristic to corresponding points
captured along a time series of factory calibrated 0 data. A
key requirement for this approach is to have a long enough
time series to capture events where the sensor experiences
both the wet and dry ends of the soil moisture spectrum. The
key reference points in relation to the soil moisture
characteristic are saturation point, field capacity, and wilting
point. Field capacity is a term used interchangeably with
drained upper limit, where both are generally identified as
the volumetric moisture of a soil at a potential of —1.0 m
(McKenzie et al. 2002), or in other words, the maximum
amount of water a soil can hold against gravity. Conversely,
wilting point corresponds to a soil water content at a
potential of —150 m. Crop lower limit is a term often used
interchangeably with wilting point, which can often be a
source of uncertainty as the ability of different plants to extract
water from soils can vary substantially due to physiological
differences together with a co-dependence on the soil itself
(soil texture, compaction, stratification, crop specific subsoil
chemical constraints); the amounts of water in the soil at
different depths, which affect root distribution, the transpiration
rate of a plant, and the ambient temperature. Thus, the lower
limit of a soil is often dependent on the plant type.

In this study, DUL refers to water potentials of —1.0 m
(notional field capacity), LL refers to —150 m (notional
wilting point), and SAT refers to saturated soil. In addition
to having a sufficient time series, an underlying assumption
of the Gasch et al. (2017) approach is that the reference
points (SAT, DUL or LL) can be easily identified from the time
series of sensed soil moisture. In practice, these reference
points can be identified along a time series trace by observing
the behaviour over time. For example Gasch et al. (2017)
scripted an algorithm for identifying DUL by looking for a
sharp increase in soil moisture followed by a sharp inflection
and then a decrease that stabilised 3-10 days following the
inflection point. Similarly, SAT and LL can simply be defined
from the maximum and minimum values of the sensor data trace.

After testing, we used a 2-point scaling to re-calibrate the
sensor data and established the DUL and LL reference points as
the 95th and 5th percentiles of the traces for each sensor after
removal of outliers:

DUL-
X =
Upper,ps — Lower

X (0 — Upperqys) + DUL  (3)

920z Asenuer |z uo 3senb Aq Jpd y00%24S/1 L 0962/700¥2HS/L L0L 0 1/10P/HPd-8jo1e/is/Ne"10S}08uu0d//:d)Y WOl papeojumoq


www.publish.csiro.au/sr

B. Malone et al.

Soil Research 62 (2024) SR24004

where 6* is the re-calibrated 6, DUL are the measured
reference points, LL are the modelled reference points, and
Upperops and Lower,y,s are the sensor reference points to
correspond to DUL and LL, respectively.

Various laboratory and field approaches are established for
the measurement of DUL and LL (McKenzie et al. 2002). These
all require substantial time, specialised equipment, and
expertise to perform. Pedotransfer functions, which use
mathematical functions to relate these parameters with
more easily acquired soil data are often used in the absence
of measurements (Pachepsky et al. 2006). Their application
comes with a greater amount of uncertainty, but with
appropriate modelling and extension of these models, such
pedotransfer functions can significantly reduce time and
effort and enhance the amount of data to be made available
for a given analysis.

There are several potential pedotransfer function candidates
to consider, but the ones we selected in this study were
those from Padarian (2014) that were calibrated via genetic
algorithms using CSIRO Ecosystem Sciences (APSRU);
Agricultural Production Systems Research Unit compilation
of 806 soil profiles that includes field measurements of DUL
and crop LL for the most commonly grown crops of Australia
(Dalgliesh et al. 2012). This is because these pedotransfer
functions would be suitable for application on BARS as
the calibration represents Australian agricultural soils. For
implementation, we have made a general assumption that
the measures of crop LL from Dalgliesh et al. (2012) equate
to the previously defined concept of LL that is used in this study.

From Padarian (2014), the equation for DUL is:

DUL = 0.2729 + (0.005033 x CLAY) + (3.158e-15
X (SAND x CEC)) — (1.65e — 15 x SAND)
— (0.00256 x (CLAY) x BD) &)

LL is then estimated as:
LL=(0.6151 x DUL) — 0.02192 5)

where CLAY and SAND are the soil texture fractions for clay
(% particles <0.002 mm in diameter) and sand (% particles
0.02-2 mm in diameter), respectively; CEC is cation exchange
capacity (meq 100 g~1); and BD is bulk density (g cm™3). Clay,
sand, CEC, and bulk density were acquired for each soil
moisture probe and sensor using the digital soil data infrastruc-
ture from Malone et al. (2022). This entailed intersecting the
modelled predictions of the attributes with the point locations
of the probes, extraction of the data, then fitting a mass
preserving spline soil depth function (Bishop et al. 1999) to
the extracted data, to output it such that the sensor locations
on the probes were the mid-points of depth intervals down the
soil profile. For example, given the above-described positions
of the sensors on each probe, soil data were output for the
following depth intervals: 0-40 cm, 40-60 cm, 60-80 cm,

80-100 c¢m, 100-120 cm, 120-140 cm, 140-160 cm, and
160-180 cm. For the first depth at 0-40 cm, it is noted that
the top sensor on the probe is 30 cm below the soil surface
and does not represent the internal midpoint. This was
required due to the absence of a surface soil moisture sensing
capability for the present work, and therefore for the top
sensor of each probe, we make assumptions that it is measuring
the volume of soil in the top 40 cm. It is acknowledged this is an
additional source uncertainty to the work described in this
research.

With the soil data prepared for each sensor on each probe,
Eqns 4 and 5 were applied for estimate DUL and LL,
respectively. Eqn 2 could then be applied to re-calibrate the
sensor data to adjust 8 readings to 6*. The work of identifying
the sensor upper and lower limits considered the time series
from October 2019 (1 month after sensor installation) to
August 2022. For analysis purposes, this time range has
been ideal as the soils have experienced severe drought
(from end of 2019 to early 2020), and prolonged periods of
higher-than-average rainfall (from 2020 to 2022).

Spatio-temporal modelling of soil moisture

The scope of the spatio-temporal modelling for this research
was to generate daily soil moisture maps for 1058 days (from
October 2019 to August 2022), corresponding to the described
depth intervals to 180 cm across BARS at a 5-m grid cell
resolution. Volumetric soil moisture is expressed in both
cm~3 cm™2 and mm units. Cumulative totals are also generated
over each of the intervals. Although not included in this study,
cumulative totals can be used at defined depth intervals.

The modelling target variable data for each day are the re-
calibrated soil moisture data for each of the eight sensors of
the 36 probes. Some processing of these data was performed
to identify large data gaps in the temporal record of each
sensor. In general, the consistency of the sensor readings
was high, but we set a threshold whereby if there were less
than 80% of days without a reading, the sensor data stream
was removed for all subsequent analysis. Of the 288
candidate data cases, 53 sensor data streams were removed.
For the remaining sensor data streams, any missing data were
filled in using a cubic smoothing spline before performing a
smooth filtering using the Savitsky—-Golay smoothing filter
(second order polynomial with a window size of 7 days).

Predictive covariates were sourced from the work of
Malone et al. (2022) and included those from on-the-go
proximal soil survey, which were gamma radiometric data,
electromagnetic induction data, and elevation and associated
derivatives. To reduce the data layer dimension of these data,
principal component analysis was performed, which reduced
14 data layer dimensions to nine while preserving 97.5% of
the combined data variation. We also included soil data,
specifically estimates of clay content, bulk density, and soil
organic carbon. The soil data were harmonised to the depth
intervals of the sensor data using the mass-preserving spline
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depth function from Bishop et al. (1999). Finally, an index
value of each depth interval was also included into the
predictive covariate suite.

Generalised Additive Models (GAMs; Hastie and Tibshirani
1990) were used to fit daily parameters that related re-
calibrated soil moisture data (8*) with the associated environ-
mental covariate data. To better leverage the temporal
dynamics of soil moisture as captured through daily sensor
data, the models contained both environmental covariates
plus prior model estimates of 6*. Day 1 model covariates
included only environmental covariates as those previously
mentioned. However, Days 2-7 models contained the same
covariates, plus the preceding days model estimates of 6*.
For example, the Day 2 model contained environmental
covariates plus Day 1 predicted 8*. While Day 7 modelling
contained environmental covariates plus * prediction for
Days 1-6. From Day 8 onwards, the models contained the
environment covariates plus the preceding 7 days predicted
0* in a rolling fashion until the end of the modelling period
(1058 days).

The somewhat automated approach of the modelling
(GAM fitting for each day) called for a side investigation to
determine the treatment of predictor variables to use. For
GAMs, this entails whether to treat variables as linear
predictors or in the case of this study as smoothing spline
functions. To do this, manual daily model fitting investigations
were done over several consecutive day periods and over
different periods across the 1058 days. For each day, a GAM
model was constructed in a stepwise fashion, starting by
treating each covariate as a linear predictor of the target
variable 6*. A scope of model parameter alternatives was then
explored via iteration. The model parameter alternatives
were smoothing spline functions from one up to five basis
dimensions for each covariate. The GAM parameter modelling
was set to operate by trying all combinations of the full suite of
covariates and their linear and smoothing parametrisations
until the whole modelling scope was explored. We note that
each covariate was introduced once to a model, either as a
linear or smoothing spline variable, never combinations of
both. The parameter set that returned the smallest Akaike
Information Criterion (AIC) value was selected as the ‘final’
model. From this analysis, for the daily model fitting automa-
tion process, five of the nine environmental covariates were to
be treated as linear predictor variables. The other four were to
be treated as smoothing spline functions with either four or five
basis dimensions. The soil variables were to be treated as linear
predictors, and prior soil moisture data were to be treated as
smoothing spline functions with three basis dimensions for
each day.

Due to the relatively small number of cases (233), 90%
were used for model calibration for each day of modelling.
The remaining 10% of data were used to evaluate the
goodness of model fit. Lin’s Concordance correlation (CCC)
and the root mean square error of prediction (RMSE) were
the selected metrics used for model evaluation. The fitted

model was then put into prediction mode and used for
extension to grid predictor variables and create digital
maps of soil moisture for each of the defined soil depth
interval layers.

Implementation of methods

All data analysis was performed using R (R Core Team 2022).
For all spatial and GIS operations, sp (Pebesma and Bivand
2005), rgdal (Bivand et al. 2022), and raster (Hijmans 2022)
were used. GAM modelling used a combination of the gam
(Hastie 2023) and mgev (Wood 2004) packages. The stepwise
GAM procedure was performed using the gam package using
the step.Gam function.

Results

Each of the soil moisture probes and their sensors across
the whole SMSN output daily permittivity readings. Our
workflow then processes these readings in combination
with associated soil temperature readings, then applies an
initial factory calibration equation to derive 0 estimates. This
is followed by re-calibrating those estimates via a 2-point
scaling by matching given sensor readings with associated
site characterised soil information related to the hydraulic
properties (DUL and LL). Both DUL and LL were estimated
by pedotransfer function, and we selected near maxima and
minima of the sensor estimates of 6 to these soil hydraulic
variables respectively. Fig. 3a shows the permittivity reading
from three sensors (30 cm, 90 cm, 150 cm) of a single probe
over the course of the 1058-day study period. Compared with
Fig. 3b that shows the soil moisture data in 6 units, the
permittivity data is less smooth, which is due to the diurnal
changes in the readings due to soil temperature variations.
The factory calibration effectively smoothed these out,
while also performing a systematic adjustment. As expected,
the 30-cm data are temporally more variable than the 90-cm
data, which again is also more variable than the 150-cm data
due to differences in the dynamics of plant-soil water
interaction down a soil profile. To provide some local
context, the soils across the farm are predominantly lighter
topsoils (clay loams), about 25 c¢cm thickness above light to
medium clay soils with measurable amounts of gravel.
The soil moisture sensing is mainly measuring the clayey
component of the soil, beneath the sandier upper horizons,
which means that we expect similar values of DUL and LL at
deeper sensor depths. In the sensor re-calibration, particularly
for the 150-cm sensor, the re-scaling brings the soil moisture
trace into the similar upper and lower range as for the other
sensors. The re-calibration does not affect the pattern of the
data, and Fig. 3c shows the delayed wetting and drying at
lower depths in the soil profile is in response to inputs from
rain and crop water usage over time.
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for a selected soil probe (#142). (a) Raw sensor permittivity readings for (b) factory calibrated soil moisture
and (c) re-calibrated soil moisture.
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Spatial modelling used daily fitted GAMs to model soil
moisture at specified depth intervals down to 180 cm. The
predictor variables included covariates derived from proximal
soil sensing (environmental variables), digital soil mapping
(soil variables) and time lagged (up to 7-day history) prior
soil moisture estimates. As a simple sensitivity analysis to get
a sense of which predictors have a relatively strong associa-
tion with real time soil moisture. To determine significant
differences, we assessed the P-values for each fitted model
parameters. Using a 0.05 threshold across each day, we
summarised which variables (soil, environmental, and prior soil
moisture) were identified as being significant. Fig. 4 shows for
the first 100 days those variables that were model significant
(blue squares). Soil variables (clay, soil carbon, bulk density
and depth interval) were used infrequently. On the first day

Soil variables

"B z

n [

of the analysis, we expected an association. However, the
environmental variables were used more frequently, but the
pattern is difficult to interpret and does not relate to other factors
such as rainfall. The use of prior soil moisture is significant in
each of the models, except the first day when it was not
included in model. This general pattern is consistent across the
1058 days of the study. As the modelling after Day 1 contains
prior estimates of soil moisture, those estimates also capture
the initial associations between observed soil moisture and the
soil and environmental covariates from Day 1 and continue for
1058 days. Hence, specific parameter significance for the soil
and environmental variables is only sporadic, but nevertheless
provide and important inclusion over the course of the model runs.

Regarding the soil moisture covariates, the frequency of
their significant association was different depending on the

Environmental variables

Soil moisture variables

Fig. 4. Model predictor variable themes (soil, environmental, and prior soil moisture), which were identified
as being significant (blue squares) over the first 100 days of the GAM modelling system. Blocks are to be read
from the top left corner (Day 1), then row wise down to the bottom right corner (Day 100).
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length of the time lag. The 7-day historical soil moisture
prediction was included in 100% of models after 8 days of
running the automated modelling. A total of 61% of days
included historical soil moisture predictions from Day 6. For
Days 1, 2, 3, 4, and 5, the historical soil moisture covariates
were significantly associated at 23%, 20%, 20%, 21%, and
25% of the time, respectively. The more significant associa-
tions with soil moisture covariates with 6-day and 7-day lags
might indicate that genuine patterns of temporal variation
of soil moisture are not revealed till a certain quantum of
days has passed between measurements. On a day-to-day
scale, changes in soil moisture are small relative to changes
over a week.

Fitted models were evaluated each day using an out-of-bag
dataset, 10% of the available data cases. This out-of-bag
dataset was selected at random each day of the modelling.
Fig. 5a shows the change in concordance estimates between
measured and estimated soil moisture based of the out-of-
bag data for the first 100 days. After the first day where a
concordance of about 0.5 was found, it increased substantially,
then fluctuated somewhat for 2-3 weeks before stabilising to
about 0.96. RMSE also stabilised around to 0.002 cm™3 cm™.
During this time, rainfall was not being recorded at the farm.
From January 2020 to August 2022, a plot of the relationship
between rainfall (measured at a single monitoring station on
the farm; Fig. 1), and model concordance was investigated.
While one might expect rainfall patterns experienced at each
soil moisture probe location to be different than at the site of
the weather monitoring station, the visual patterns observed
between rainfall and model concordance exhibit an interesting
but not overly strong relationship (Fig. 5b). While model
concordance does not fall below 0.9, where it does fall, there
is a general correspondence during periods of higher rainfall.
There would be expected a variable pattern of rainfall to be
experienced across the farm, and therefore not all sensors
would be reading uniform amounts of water entering the
soil. While the models eventually stabilise, the incidence of
rainfall inputs to the soil temporarily confuse the modelling,
as there is no variable or covariate in the model that is
directly accounting for the variation attributed to rainfall,
excepting of the historical soil moisture predictions, but this
relationship would be irregular given time lags for moisture
to be entering and moving down into the soil and effects due
to evapotranspiration (Jensen and Pedersen 2005).

To visualise the temporal nature of the digital soil mapping
products, we show selected time snapshots during the 2020
calendar year for the 0-40 cm and 120-140 cm depth intervals
(Fig. 6). The start of 2020 was particularly dry with widespread
areas of the farm being less than 25% full relative to available
water capacity, though much spatial variation exists due to
differences in terrain and soil properties. Nevertheless, both
upper and lower depth intervals are similar in terms of soil
moisture content. Rainfall in March 2020 led to widespread
increases in soil moisture, but mainly observed nearer to the
soil surface as seen in maps of April 2020. It was not until

August 2020 that widespread soil moisture in both upper
and lower depths was observed. Soil drying down is observed
for the upper depth interval in December 2020, and less so for
the lower depth interval. While these observations can be made
for the give four time points only in Fig. 6, we developed a
shiny application (https://shiny.esoil.io/Apps/BARS_SM/) that
displays daily mapping for each depth interval as well as
cumulatively in both cm™ em™~3 and mm soil moisture units.
These maps provide an indication of the soil moisture spatio-
temporal variability across the farm, and highlights the
differences in soil attributes and landscape features to show
that the pattern of soil moisture is not uniform through time.
To provide an operational soil moisture mapping data
service for BARS, a version of the above described spatio-
temporal modelling software and data are hosted within
the Senaps platform. Senaps provides a scientific workflow
hosting capability to operationalise sensor data analysis.
The Senaps workflow system allows the combination of
heterogeneous computational operators into complex workflows.
Users of the platform can upload their analysis code without
the intervention of platform administrators or developers.
The soil moisture modelling analysis described above and
implemented in R code was uploaded to the platform and is
then available to authorised users as an operator that can
be instantiated in a data Workflow in Senaps. The operator
software package provides meta-data to the software platform
to describe the base software image, software library
dependencies (include R packages and system libraries) and
the inputs and outputs of the operator. The operator package
also includes static datasets utilised in the analysis but not
dynamically updated. The operator is instantiated as a
workflow using a graph describing the input and output
data locations within the platform. Each time the workflow
execution is required the Senaps platform will retrieve the
code and deploy the required computational infrastructure.
To operate effectively, additional functionality is added to
support operating in a near real time context. These functions
allow the analysis software to determine the availability of
new input data and incrementally generate new daily outputs
as required. In addition, the underground and low power
design of the soil moisture sensors mean that samples can
be delayed by transient communication outages. The data
availability thresholds described above are also applied in
the operation workflow; however, on a sliding temporal
window defined by the schedule. The workflow is deployed
on two schedules: (1) one that is scheduled every second day
to ensure the output soil moisture maps are available with low
latency for operational use; and (2) one that is scheduled each
month where the past 30 days is reprocessed to ensure the
final time series is derived from all possible sensor samples.
Since GAM modelling used in this analysis requires the
preceding 7 days of model estimates of 6* and the Senaps
platform deploys compute infrastructure on demand. At each
scheduled execution, the operator code can first retrieve the

10

920z Asenuer |z uo 3senb Aq Jpd y00%24S/1 L 0962/700¥2HS/L L0L 0 1/10P/HPd-8jo1e/is/Ne"10S}08uu0d//:d)Y WOl papeojumoq


https://shiny.esoil.io/Apps/BARS_SM/

www.publish.csiro.au/sr

Soil Research 62 (2024) SR24004

e (@
o
o
o
o
c
©
2
o
(3]
[=
/<3
o
©
Q-
X
o
T 1
Oct 2019 Jan 2020
Day
g (b) o
-
o |
n
o |
<
= [}
£ Q
E S
381 23
£ °e
T o
14 o
o |
N
e
(=]
il 11N
o i =)
Jan 2020 Aug 2022
Day
Fig. 5. (a) GAM model evaluation concordance for the first 100 days (October 2013—January 2020). (b) GAM

model evaluation concordance together with observed rainfall measured at weather station (January 2020-

August 2022).

preceding 7 days of output data before calculating the newly
added days of output estimates for 6*.

The operational soil moisture workflow generates output
data in multiple formats including a time series of numerical
GeoTIFF files and RGB GeoTIFF files for visualisation
purposes and a multi-dimensional NetCDF to allow efficient
timeseries extraction. The output files are made available
for access by researchers and external software tools such

as GIS software using APIs provided by the THREDDS
software included within the Senaps platform.

Discussion

Deriving value from SMSNs is an actively growing area of
work and research, given the impact of available soil

il
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Fig. 6. Mapped estimates of soil moisture relative to available water capacity, expressed as a
percentage for 0—40 cm and 120-140 cm depth intervals. These maps are shown for the specific
time points of 1January 2020, 1 April 2020, 1 August 2020, and 1 December 2020.

moisture for productive agriculture. Various tools and platforms  decision making. In this research, additional value is added to
are available in the marketplace and being developedinresearch ~ a SMSN through spatio-temporal modelling that generates
(Gallacher et al. 2023) to proffer insights that will aid in on-farm  daily soil moisture maps. The mapping provides the visual
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tool that evaluate differences between sensors due to changes
in soil attributes and non-uniformity of inputs such as via
rainfall or irrigation. The sorts of inferences that may be
derived from single probe analysis tools could easily be
incorporated into a mapping system, enriching the suite of
insights that can be derived due to the spatial nature of
the data.

The primary goal of this work was to describe the processes
needed from establishing a soil SMSN, collecting and processing
the raw sensor data, and spatio-temporal modelling of the
processed data. What was described is not the only way of
generating daily soil moisture mapping, but provides some
cues for others with similar networks to derive additional
value from them. The intention was to build a system that
would be considered operational, such that insights can
be immediately delivered. From this, further innovation
via improvements to execution of key steps can be easily
incorporated later. The following discussion provides some
justification for choices made in developing the operational
system and then points out several tasks, or alternative
procedures whereby improvements in mapping precision
are to be expected or might be achieved or not.

Re-calibration of soil moisture probes

For mapping of soil moisture, the importance of site-specific
calibration of each probe and sensor across the SMSN cannot
be understated. Sensor re-calibration takes into consideration
the collective expression of soil attributes at the site of the
probe installation. From a mapping perspective, this enables
one to exploit correlative relationships between sensors
(autocorrelation) and with other soil and landscape features.
Even with rudimentary soil and landscape information to
drive the spatio-temporal modelling workflow, one can expect
the expression of soil moisture variations to be driven by
known soil and landscape processes. When there is highly
granular soils information as used in this work, the expression
of soil moisture and soil-landscape relationships becomes
more enhanced.

Yet, there is considerable uncertainty in the way sensor re-
calibration is done. This is because there is the implied
assumption about the relationship between near upper and
lower sensor readings corresponding to DUL and LL. Naturally,
this is a convenient concept. Based on sensor experiences from
both extremes of the soil moisture characteristic, and from an
operational perspective, the established sensor upper and
lower reading (e.g. Gasch et al. 2017) are likely to be close
enough to DUL and LL, respectively. More pertinent is the
issue with the measurement or estimation of DUL and LL. To
avoid characterisation of DUL and LL, sensor re-calibration
may entail the taking of soil moisture measurements either
in the laboratory or field and corresponding these with
the sensor readings taken at the same time as measurement.
This is a very large and complex undertaking, and the effort
multiplies as probe and sensor number increases. The degree

of difficulty also increases especially in the field, and more
so when investigations are done at increasing depth below
the soil surface. Performing the same work in the laboratory
removes the difficulties encountered in the field. However,
new problems are introduced, such as the wetting up and
drying down of soil needs to be done in a controlled
environment, which requires specialised equipment. There
are also issues if analysis is performed using re-packed soils
rather than in situ soil material (Sakaki and Smits 2015).
Furthermore, there is the need to have soil moisture sensors
integrated into the laboratory process. Therefore, establishing
a measurement (better) or prediction (less better) of DUL and
LL is a more practicable route to follow.

Measuring or predicting DUL and LL

Measurement of DUL and LL is not without difficulty. In the
field, this may entail the opportunistic approach, especially
in years where there is good early-season and within-season
rainfall. Ensuring a soil profile is at DUL is relatively easier
to manage in uniform heavier textured soils, but uncertainty
increases for lighter textured soil (as the window of opportu-
nity narrows), or soils that express a soil texture contrast.
Integration with watering and neutron probe observations
(assuming it is correctly calibrated) is one way to circumvent
this issue (Burk and Dalgliesh 2013). For LL (or CLL in this
case), even with rain-out shelters installed at anthesis, one
can only confidently characterise a whole soil profile in a
particularly dry year in texture contrast soils. Collectively,
the implication is that it may take more than 1 year for
each probe to acquire confident measures of DUL and LL
via the opportunistic approach. Ongoing efforts at BARS are
seeking to establish these data in any case. Alternatively, or
perhaps in conjunction with opportunistic approach, is via
laboratory work using suction tables and pressure plates to
measure either the full soil moisture characteristic or just for
the desired pressure potentials that DUL and LL are commonly
attributed. Where soil cores are re-packed instead of in-field
condition, the efficacy of such methods also needs to be
considered.

Clearly, even the measurement of soil moisture and DUL
and LL are potentially fraught with uncertainties, and not
even through measurement alone, but other factors such as
whether done in field or laboratory. However, measurement
is more ideal than prediction, whereby the meaning of
prediction is via pedotransfer functions that establish relation-
ships between relatively easier to characterise soil attributes
and the target variables of interest (DUL and LL that a
comparatively much more difficult to characterise). In this
study, we adopted equations from Padarian (2014) on the basis
they were derived from predominately agricultural soils from
around Australia. Like earlier discussions about the needed for
re-calibration of soil moisture sensors to better match with
in situ conditions, pedotransfer functions are equally limited
in terms of their extensibility outside the range of data they
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were fitted with. Here, the issue is not likely the geographic
and edaphic range of the pedotransfer functions; rather, it is
their sensitivity to changes in soil attributes at a local or
farm scale. Anecdotally from some measurements we have
acquired from BARS, the pedotransfer functions used in this
study correspond quite well with DUL but underpredict LL
and are not very sensitive to changes in soil texture spatially
and laterally, which equate the smoother than expected
maps of DUL and LL.

However, the convenience of adopting a pre-existing
pedotransfer function and integrating into the modelling
system is not to be overlooked as it enabled its efficient
creation. This is one part of the whole modelling system that
can be easily improved in future updates where in the first
instance, efforts be directed toward developing farm
specific pedotransfer functions that in themselves can grow
more precise as new measurement data is continually added
to them. Taken together with routine visitation of the sensor
upper and lower reading limits, we see a continual revisit and
feedback approach to ongoing updates to improve DUL and LL
characterisation, and ultimately, greater precision of soil
moisture monitoring at each probe location.

Spatio-temporal modelling

Once soil probes have been re-calibrated, the daily recording
of these data are brought into a spatio-temporal modelling
system. We previously highlighted the various sources of
uncertainty that is attributed to these data, yet in this work,
there is no attributable uncertainty incorporated into the
spatio-temporal modelling. The assumption is that the data
is free from error. Future iterations of the modelling systems
will obviously attempt to address this wrong assumption.
Another of the big assumptions is the absence of soil
moisture measurement at the soil surface, and the solution
to account for this by attributing the measurements from
the top sensor of each probe (positioned 30 cm below soil
surface) to be representative of the top 40 cm. In general,
we have established that the sensor position is located at
the midpoint of a depth interval. For convenience, this is
helpful to do as it enables estimation of soil available water
in mm units and allows the calculation of integrals across
any depth intervals and ranges. However, the issue of surface
soil moisture is not rectified, given the greatest fluxes are
observed at the surface. Operationally, this is actively being
addressed by the installation of co-located surface probes
that can be easily removed during field activities such as
seeding, fertiliser application and harvesting. The work of
re-calibration we have previously described need to be
performed before these additional probes are integrated into
the system. A point of exploration is the integration with
remote and proximal sensing platforms that actively measure
soil moisture and is part of future research efforts to fuse both
data source types.

The decisions for selection of spatio-temporal modelling
structure were considered in terms of whether the modelling
process could be automated and performed relatively
efficiently. The appropriateness of selected model for the
quantity of data available was also considered, which entailed
decisions around selection of model type and suitability to use
for temporal modelling. Another factor was a preference to
use modelling workflows commonly performed for digital
soil mapping that potentially includes several predictive
covariates. Machine learning was considered but was eliminated
together with other approaches such as formal linear and non-
linear spatio-temporal modelling frameworks because of
suitability to uses with the available size of data, the difficulty
to automate in a daily time step fashion, model complexity
and interpretability. The practical solution therefore was
to adopt the use of GAMs as they facilitate investigation
of non-linear association between covariates and target
variable and fitted adequately to the other criteria that was
required.

The inclusion of rolling 7-days prior soil moisture estimates
into modelling facilitated the capture of temporal variation in
soil moisture and the interaction between soil moisture and
soil and landscape features. While it was an ad hoc decision
to select a rolling 7-day historical period, rather than 2, 3, 14
or even 21 days, the created modelling system can be adapted
and optimised in future iterations, which may sensitivity test
this feature. Alternatively, it might be possible to adopt
another approach such as temporal weighting that gives near
real time dynamic covariates (soil moisture predictions, in the
case of this study) higher weighting than more historical
dynamic covariates (Heuvelink et al. 2021). Given that our
own analysis revealed relatively stronger predictive power
of soil moisture covariates to those 6 or 7 days prior rather
than to Day 1 or 2 prior, due consideration of this approach
would need to be considered.

Considerations for establishing and maintaining an
on-farm soil moisture sensor network

Technical improvements to the created soil water monitoring
system were described above. The following general discus-
sion considers aspects of an on-farm SMSN related to
establishment and its ongoing maintenance.

In the establishment of the SMSN with 36 probes
distributed across BARS, considerations were made about their
placement with the intention of capturing the expressed soil
and environmental variability to ensure the best possible
spatio-temporal model extension. The determination of installing
36 probes was not guided by any statistical inference or
optimisation but like in most other contexts, was defined by
other measures such as costs, project time constraints, and
manufacturer considerations. Having 36 probes installed
across a 290-ha farm would be considered on the upper end
of soil moisture sensing capability. From a purely modelling
perspective where more data is better, there is an inclination
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to try to increase the density. There are statistical approaches
readily available to explore what an optimal number might
be. However, most operators or land managers thinking of
establishing a SMSN perhaps would not consider having a
density of one probe every 6 ha, as at BARS. Having only
one or two sensors across a farm will not enable the spatio-
temporal modelling described in this work, though some
general recommendations can be made if the intention is
to produce mapping. The actual number is probably less
important than the actual placement. Of great importance is
an understanding of whether acquired knowledge or
detailed mapping of the soil and landscape that the farm is
situated on. Delineating zones of common soils can then be
performed, which allow sensor/s to be installed in each of
them. Even installing a single sensor in each zone will provide
some spatio-temporal insight in soil moisture fluxes. With
greater numbers of sensors installed, there is increased ability
to exploit modelling capabilities, as well as more granular
information about the soil and landscape.

Due to the the tendency to set-and-forget, the ongoing
maintenance of a SMSN is often overlooked. This is problem-
atic as the ongoing physical maintenance needed to keep
the probes operational, and the ongoing supporting data
infrastructure system also needs to be carefully planned.
This includes alert and integrity checking systems to inform
operators of malfunctioning equipment or data streams, and
scheduling tools to record, monitor and update their ongoing
maintenance. Soil moisture probes also have an end-of-life
due to battery constraints or just through long-term operational
use in difficult environments. Decisions are needed to either
replace a probe or install a new one at the same location; or
perhaps install a new probe in an entirely new location. An
argument for the latter option is that over the life of an
installation, a thorough understanding of the behaviour of
soil and soil moisture fluxes will have been well established
and predictable. For example, sufficient information may
indicate that monitoring is no longer needed at a particular
site, and there is more need to relocate it elsewhere. As
more and more SMSNs become established, these questions
and considerations will eventuate more often, and to ensure
the most benefit is gained from a large financial investment,
set-and-forget strategies are not feasible.

Conclusions

In this study, our intention was to step through the processes
needed to enrich insights that might be gained by having an
on-farm soil moisture sensing network. The benefits of real
time tracking of soil moisture are obvious for several land
management contexts. The spatio-temporal mapping of soil
moisture combines what is observed from a network of points
with granular insights of soil and landscape process and
attributes to give clear and visual understanding of soil

moisture fluxes across a farm. By the process of building an
operational on-farm soil moisture monitoring system, the
core processes needed can be established. We discussed the
processes of sensor installation, underpinning data collection
infrastructure, the necessary data analytics involving sensor
calibration and re-calibration, and spatio-temporal modelling
and mapping. What was created is not a final product, but the
first of an iterative system whereby the efforts of the data
analytics pipeline involving sensor calibration and modelling
be revisited and improved. A range of options for sensor
re-calibration revolves around better characterisation of
soil DUL and LL ranging from relatively straightforward
(improving pedotransfer functions) to more difficult and
costly (field and lab measurement). Many options can be
entertained for spatio-temporal modelling, but it is important
to consider not just the elegance of the modelling but the
practicality of the model to be suited for the context, which
in our case was daily, granular estimates of soil moisture.
Nevertheless, the whole predictive system generated in this
study is modular and therefore easier to revisit and improve
each component individually when there is a need.

On-farm soil moisture sensing is an ever-increasing
practice and is an indication of the broader digitalisation of
farming. While the digital farming ecosystem is emerging, the
temptation with nearly all components of the digital infrastruc-
ture is to set-and-forget. Rather, a longer view and plan is
needed for the ongoing maintenance and improvement of such
systems so that we can derive full value and insights from them.
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Data availability. Real time and historical soil moisture data for each of the probes used in this study may be access through the SENAPS platform dashboard
(https://senaps.io/dashboard/#/app/stream/all). An account will first need to be established with the SENAPS team (https://products.csiro.au/senaps/about/) to
access those data. The digital soil mapping data that support this study will be shared upon reasonable request to the corresponding author.
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