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Understanding the impact of changes in land use/land cover (LULC) on carbon sequestration (Cseq) and emission
leads to achieving sustainable development goals (SDGs). For this, Business-As-Usual (BAU) and Sustainable
Development (SD) scenarios were examined in Azarshar city, Iran which is faced with urban intensification. The
spatiotemporal dynamics of the carbon cycle and influences of various urban growth indicators are still unclear
even under climate change, rapid urbanization, and ecological deterioration. In this research, total carbon
storage (Cts) and Cseq were determined at four carbon pools i.e., aboveground carbon (AGC), belowground carbon
(BGC), dead organic carbon (DeOC), and soil organic carbon (SOC). This research revealed a successful imple-
mentation of integrated CA-Markov and InVEST models in delineating LULC changes between 2013 and 2033. It
was concluded that land resources management play a crucial role in decreasing Cseq along with increasing
carbon emission across the study area. The modelling results showed a significant shifting from barren and
cropland to developed land uses. This research goes beyond providing supporting evidence that urban expansion
is a key factor driving the aforementioned changes, but also illustrates the importance of remote sensing in
ecological modelling, especially where information is sparse.

changes in the spatial pattern of the landscape (Dadashpoor et al.,
2019). According to the Human Development Report issued by the

1. Introduction

Over the last decades, land use/land cover (LULC) changes especially
due to urban intensification has increased (Yuan et al., 2022). LULC
changes are important metrics in assessing progress toward sustainable
development goals (SDGs) (Guo et al., 2023). Wei et al. (2023) eluci-
dated the impact of rapid urbanization in China’s urban land use on
diminishing SDGs. There are 17 interlinked goals defined by the United
Nations SDGs. Since there was a lack of SDG-oriented evaluation of
urban land use at a local level, it would be of interest to monitor total
carbon storage (Cys) and carbon sequestration (Cseq) following LULC
changes. The literature demonstrates that landscape changes and
accelerated urbanization throughout the world- including Iran, partic-
ularly in metropolitan areas in recent decades- have led to widespread

United Nations, the urbanization rate in Iran was 64.20 % in 2000, then
increased to 75.94 % in 2019, and it was expected to increase to 85.82 %
by 2050 (Pilehvar, 2021). Therefore, among the SDGs, the 15th being:
Sustainably manage forests, combat desertification, halt and reverse
land degradation, halt biodiversity loss; can be measured in places like
Azarshahr city, located in north-western Iran due to significant growth
in anthropogenic activities this city has faced in recent decades.

The expansion of urbanization leads to increased carbon emission
due to declining ecological spaces in the environment (Wu et al., 2023).
Furthermore, carbon emissions due to anthropogenic activities, i.e.,
using fossil fuels, deforestation, and undesirable land use changes,
contribute to global warming (Lu et al., 2022). Consequently, carbon
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emissions due to fossil energy consumption, as well as its role in climate
change, will be of significant concern (Qin and Sha, 2023). Moreover,
Cseq can be mentioned as one of the most important crises affected by
climate change (Gallant et al., 2020). The Intergovernmental Panel on
Climate Change (IPCC) has facilitated the provision of useful informa-
tion for policymakers to address both present and potential future risks
(Masson-Delmotte et al., 2022).

LULC changes impact the spatiotemporal patterns of carbon emission
and Cseq (Hong et al., 2022). Decreasing carbon emissions and increasing
Cseq are crucial parameters to achieve SDGs in urban areas (Hong et al.,
2023). The segregation of urban areas from other land use scenarios, i.e.,
agriculture, forest, pasture, and water body sectors also explain their
spatial distribution (Castella et al., 2013). Overall, urbanization accel-
erates natural resource vulnerability, increasing impervious surfaces
and reducing green spaces (Santhanam and Majumdar, 2022). Many
nations and regions have transformed substantial tracts of forest, crop-
lands, and pasture into industrial zones to intensify economic prosperity.
Therefore, a significant amount of the available carbon pool has trans-
formed into a carbon source (Le Bivic and Melot, 2020; Yang et al.,
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2020). To address this, monitoring the spatiotemporal patterns of
environmental features needs to be modeled and mapped with the
application of easy-to-measure attributes, i.e., remote sensing (RS) data
(Shahbazi et al., 2019) and advanced methods. For example, RS data has
been incorporated into digital soil mapping (DSM) projects, providing
highly detailed characterization of soil resources and their functions
(Mulder et al., 2011). Moreover, the time series of LULC changes can be
demonstrated using RS data derived from Landsat imagery and calcu-
lated band ratios (Piao et al., 2021).

The simulation of LULC changes at various scenarios i.e., business-as-
usual (BAU) as a baseline and sustainable development (SD) assists in
identifying Cis and Cseq for different carbon pools. For this, the Cellular
Automata-Markov (CA-Markov) model has been consistently used with
confident results (Koko et al., 2020). Basse et al. (2014) found that
CA-Markov would be a useful tool for generating a geographic pattern
for landscape with transition principles. A similar finding had been re-
ported by Yang et al. (2012). The next user-friendly model in ecological
monitoring is the Integrated Valuation of Ecosystem Services and
Tradeoffs (InVEST) to assess and simulate the carbon cycle in terrestrial
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ecosystems (Kafy et al., 2023). It evaluates sequestered carbon among
different poolsi.e., soil, plants, and other sources over considerable time
scales (Gallant et al., 2020). Furthermore, integrating CA-Markov and
InVEST models have been frequently used in environmental modelling i.
e., prediction of Cseq both in Iran (Sadat et al., 2020) and the world (He
etal., 2016; Babbar et al., 2021). Additionally, Clerici et al. (2019) found
the aforementioned models’ ability to assess the combined conse-
quences of LULC and increased temperatures on the services in the
Colombian Andes.

Since urban intensification is one of the most important drivers of
climate change (Li et al., 2022a), a set of software i.e., TerrSet, Envi, and
InVEST in addition to ArcGIS were utilized in this study. Therefore, our
research aimed: i) to distinguish the LULC changes using RS data derived
from Landsat-8 OLI (Operational Land Imager) imagery acquired for
2013 and 2023; ii) to predict the LULC changes for 2033 using Markov
chain method based on two scenarios of BAU and SD and to compare the
results; iii) to calculate Cgeq for the next decade according to the
above-mentioned scenarios; and iv) to observe Ci and Cseq as a result of
LULC changes at four carbon pools i.e., aboveground carbon (AGC),
belowground carbon (BGC), dead organic carbon (DeOC) and soil
organic carbon (SOC).
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2. Materials and methods
2.1. Simplified flowchart of the study

Fig. 1 shows the flowchart of the methodology implemented in this
research to ease the visualization of the process. The first step was to
prepare LULC maps for 2013 and 2023 using available RS data. Subse-
quently, these were utilized in preparing LULC maps for 2033 based on
the two defined scenarios, i.e., BAU and SD. The amount of C for the
four carbon pools and then Cgeq over the study area based on the LULC
maps were also calculated.

2.2. Study area and general description

This research was conducted in Azarshahr city with an areal extent of
about 173.70 km?. It is located in East Azerbaijan Province, Iran. It is
delimited by longitude 45°50'42" - 46°02'11" E and latitude 37°43'16" -
37°52'37" N (Fig. 2-a and b). The digital elevation model (DEM) of the
study area indicates that altitude varies from 1270 to 1557 m above sea
level with an increasing trend from the western to the eastern part of the
study area (Fig. 2-c). According to the report of the IRIMO (2020) for the
last 15 consecutive years, the average annual maximum and minimum
temperatures are 27.7 °C and 3.7 °C (15.25 °C, on average), respectively.
The annual rainfall and evapotranspiration on average are 303 mm and
1500 mm, respectively. According to the Keys to Soil Taxonomy (USDA,
2014) and the clipped study site from the original soil map of Iran at
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Fig. 2. Location of the study area in Iran (a) and in East Azerbaijan Province (b); digital elevation model (DEM) for the entire study area (c), and identified three soil

subgroups across the study area (d).
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1:1000,000 scale, three soil subgroups were identified. The dominant
soil subgroups are Xeric Haplocalcids (70 %), followed by Typic Aqui-
salids (16 %) and Lithic Haploxerepts (14 %) (Fig. 2-d).

2.3. Remotely-sensed data

The simultaneous implementation of RS data and geographic infor-
mation system (GIS) facilitates preparing LULC maps. Primarily, those
are needed for calculating Cs values for each land use (Babbar et al.,
2021). This research acquired Landsat-8 OLI satellite data for July 2013
and June 2023 (via USGS-EROS; http://earthexplorer.usgs.gov/). For
both scenes, RS data pre-processing i.e., radiometric calibration and
atmospheric correction were performed (Poncet et al., 2019; Doxani
et al., 2023). A major reason for selecting the above-mentioned data
capture dates was due to the ideal condition of zero cloud coverage.
While the native resolution of the RS scenes was 30-m pixel resolution,
we resampled whole images to 15-m resolution in order to improve
LULC classification (Phiri et al., 2018) through clearer characterization
of the plant cover and bare soil in the examined region (El Haj et al.,
2023).

2.4. Preparing LULC maps

The acquired RS data were used in preparing LULC maps for 2013
and 2023. For this, the support vector machine (SVM) algorithm was
used in supervised classification mode. Although, it is a powerful su-
pervised algorithm that makes use of a binary classifier founded in
statistical machine learning theory (Vapnik, 1998), we used SVM in
classifying the entire study area into six classes i.e., developed, cropland,
tree cover (scrub forest), pasture, barren, and water body based on the
known Land Cover Class categorizations (USGS, 2022). The high accu-
racy of the results when using SVM in land cover classification has been
reported by Asori and Adu (2023).

2.4.1. Accuracy of prepared maps

To evaluate the accuracy of supervised classification, the kappa
statistic criterion was used in this research. Yilmaz and Demirhan (2023)
reported that kappa is a good indicator for evaluating multi-class clas-
sification performance. After classifying LULC changes, a total of 236
points (both in 2013 and 2023) were randomly selected according to
their available coordinates covering six examined LULC classes across
the study area. Due to the variation of area extension relevant to each
class, the number of selected points differed for each. Each random
point’s value was then verified using Google Earth for accuracy assess-
ment. Similar work has been performed by Tilahun and Teferie (2015) to
verify Google Earth’s ability to segregate various land uses i.e., agri-
culture, settlement, grazing, forest, and bare lands in addition to water
bodies in Ethiopia.

2.4.2. Prediction of LULC maps for 2033

To monitor the LULC changes and to prepare their maps to describe
SDGs, two scenarios were defined by the fact that scenario analysis
through the creation of alternative plans and policies is an effective
approach to assess ecosystem services i.e., Cts due to land use changes
(Wang et al., 2022b). These were Business-As-Usual (BAU) versus Sus-
tainable Development (SD). BAU refers to a hypothetical situation in
which the current conditions, trends, policies, or operations of a system
or a process remain unchanged or unaffected by any significant change
or intervention, often used as a standard or a benchmark for comparing
and evaluating impacts. SD on the other hand, is a hypothetical situation
in which the current or future land use and environmental policies are
designed to prioritize ecological conservation and restoration over
economic development to achieve SDGs (Gaur and Singh, 2023). One
expects to observe clear differences and non-aligned trajectories be-
tween the aforementioned scenarios. For the SD scenario, tree cover and
grasslands were prohibited from being converted to agricultural and
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built-up areas, and urban growth and development are controlled and
regulated to improve management and decision-making (Dougaheh
et al., 2023). At this step, the LULC maps for 2033 were prepared based
on BAU and SD scenarios. For this, the following approaches were
consecutively performed:

2.4.2.1. Markov chain. The Markov chain model within the TerrSet
software was utilized in this study for geospatial monitoring and
modelling since it simultaneously incorporates image processing tools
for sustainable development purposes (Eastman, 2016). Since Markov
chain specifically focuses on spatial transformation without accounting
for influencing factors (Sun et al., 2022), it was used by tabulating the
relative frequency of change for all transitions between the six studied
land uses. Using land cover data for the 2013 and 2023, the probability
of a transition in LULC for year 2033 were calculated for the two
aforementioned scenarios. Obviously, in the studies related to land re-
sources, the shifts between different land use categories may vary or
remain somewhat constant over time. Therefore, the actual transition
probability matrix was employed to predict future land use changes
based on historical data for each land use category (Ghalehteimouri
et al., 2022). Regarding identified changes of LULC for the last 10 years
era (from 2013 to 2023) using Markov chain, the modelling processes
were pursued using Cellular Automata (CA).

2.4.2.2. Cellular automata model. The CA model was then used as a
mathematical framework to illustrate the area of LULC changes over
time. It generates self-similar patterns and uniform states (Wolfram,
1983) which represent cellular actions, reactions, and quantified vari-
ations in each cell’s attributes based on a set of pre-defined rules. CA has
been commonly utilized to simulate LULC changes. Notwithstanding the
CA model assisting in finding the evolving patterns of urban growth
(Wang and Maduako, 2018), it is ideally suited for integration with
other models due to its dynamic and temporal nature (Ghalehteimouri
et al., 2022). Therefore, CA was linked with Markov chain in this study
to observe the LULC changes from 2013 to 2023.

2.4.2.3. CA-Markov model. One of the prominent models commonly
used for predicting upcoming LULC is the combination of CA and Mar-
kov chain, referred to as the CA-Markov model (Song et al., 2020;
Negese et al., 2022). According to the distinguished LULC changes based
on the aforementioned models’ outputs for the past time periods, we
implemented the CA-Markov model within the TerrSet software to
prepare the LULC map for 2033-BAU and 2033-SD. Obviously, it was
expected to observe urban expansion (developed) due to increasing
population and needs to support food and living requirements, and on
the contrary, decreasing of cropland, tree cover, pasture, barren and
water body areas. The ability of CA-Markov model in urban planning
and land suitability assessment across the globe was reported by Mishra
et al. (2018). The LULC changes impact on temperature over the study
area and greenhouse gases (Nayak and Mandal, 2019), therefore,
monitoring the Cseq would be of interest, which can be evaluated by
InVEST model.

2.5. InVEST model for calculating carbon sequestration

To directly calculate soil organic carbon storage (SOCS) in the field,
abundant data derived from laboratory analyses and digital soil map-
ping (DSM) techniques are essential (Rahbar Alam Shirazi et al., 2023).
Soil analyses incur siginifican costs, both in monetary and time in-
vestments, therefore, linking CA-Markov and InVEST model facilitates
the representing of static G and temporal Cseq within a landscape (Zhao
et al., 2019). The carbon pools i.e., AGC, BGC, DeOC and SOC were
calculated using InVEST model based on the available LULC maps (Leh
et al., 2013; Babbar et al., 2021). Carbon storage data for each pool can
be sourced from field estimates obtained through local design studies,
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extracted from meta-analyses focusing on specific habitat types or re-
gions, or derived from established scientific literature. For reference,
these are summarized in Table 1.

Although, different procedures were examined and there was no
literature and background related to our study area, we used carbon
density data (on average) focusing on the previous findings i.e. (Ma
et al., 2019; Sadat et al., 2020; Li et al., 2021a; Adelisardou et al., 2022;
Wang et al., 2022a). Furthermore, Clerici et al. (2019) found that due to
representation of the data from a single time point, researchers can
ignore the effects of LUCC on carbon storage changes. A possible clari-
fication for averaging is that initial data extracted from the literature
were somewhat similar to our study area in terms of latitude. A decisive
reason is that latitude affects the humus decomposition rate as well as
SOC accumulation (Li et al., 2022b). It should be noted that the results
may be changed if the input data such as the application of IPCC
guidelines (IPCC, 2006) or InVEST user’s guide (Sharp et al., 2020) are
supplied.

The InVEST model calculates the C¢ per unit area at six LULC using
Egs.1 and 2, respectively.

C = AGC+ BGC+ DeOC +S0OC (€H)

Cs=) MAxCk=1, 2
k=1

) (2)

where, C represents the summation of calculated carbon density at four
pools interrelated to each LULC in Mg ha~!. Subsequently, by multi-
plying the average carbon density of the aforementioned pools along
with each LULC (Cy) in their respective areas (Ax), the amount of Cs was
computed in Mg (Zhao et al., 2019; Hu et al., 2021). The next step was to
utilize the prepared digital maps of Cs for 2013, 2023 and 2033 (BAU
and SD scenarios) for calculating Cseq for the aforementioned three-time
scenarios. Finally, in addition to illustrating the variation of Cseq from
2013 to 2023, it was presented for the future (2023-2033) by imple-
menting two scenarios (BAU and SD).

3. Results and discussion
3.1. Retrospective monitoring of LULC changes

3.1.1. Final LULC maps

The LULC maps for 2013, 2023 and based on future projection for
2033 in terms of examined BAU and SD scenarios are illustrated in
Fig. 3.

The built model for 2013 relevant to our study area showed that the
highest area was covered by croplands (33.8 %), followed by barren
(24.8 %), pasture (19.3 %), developed (12.7 %), tree cover (9.3 %) and
water body (0.1 %). The developed land use and water bodies are pre-
dominantly located in the lower elevation areas with gentle slopes.
Furthermore, tree cover was concentrated toward the central part of the
study area. A similar procedure was performed in preparation of LULC
map for 2023. The visualization of using predicted maps for 2033 show a
distinct variation on land uses by time.

Table 1

The used carbon density (Mg ha™!) in InVEST model.
LULC classes AGC BGC DeOC SOC
Developed 0.10 0.00 0.00 14.77
Cropland 3.62 2.61 0.50 34.24
Tree Cover 29.67 7.95 3.28 26.34
Pasture 1.64 3.28 0.07 62.48
Barren 0.61 0.47 0.00 7.70
Water body 0.84 5.98 0.00 6.25

AGC: aboveground carbon; BGC: belowground carbon; DeOC: dead organic
carbon; SOC: soil organic carbon.

Soil Advances 2 (2024) 100017

3.1.2. LULC change analyses

Fig. 4 illustrates the decadal analysis of LULC changes from 2013 till
now and for the future. In terms of 2013-2033, the highest variation was
for pasture (-11 %), followed by developed (+10 %), barren (+8.6 %),
cropland (-4.1 %) and tree cover (-3.6 %) land uses. Since there was no
detectable change in terms of water body, it was ignored in the analysis
process. It should be noted that the classification accuracy for 2013 and
2023 based on the kappa coefficient values was 0.82 and 0.81, respec-
tively (Table 2).

According to the Markov chain model for the year between 2013 and
2023, a significant change was identified in the central part of the study
area with the conversion of 743 ha of barren to developed land uses.
Additionally, 905 ha of cropland was converted to development over the
examined period. The Markov chain indicates the likelihood of moving
from one state to another as a stochastic process where conditions within
a system shift from one state to another with defined transition proba-
bilities (Fogang et al., 2023). The results provide supporting evidence
that urban expansion is likely attributed to this area. This urbanization
was previously reported in China (Wang et al., 2023), India (Mishra
et al., 2020) and even in Iran (Sobhani et al., 2021). Moreover, 872 ha of
cropland and 1718 ha of pasture have been converted to barren land in
the same period.

In terms of future projections, the BAU scenario shows an increase of
7.6 % in developed while a decrease of 4.4 %, 1.7 %, 0.6 % and 0.9 %
area extension in cropland, tree cover, pasture and barren, respectively.
While, SD scenario shows a decrease in area extension in cropland
(-8.1 %) and increase of 1.7 %, 4.8 % and 1.6 % for tree cover, pasture
and barren, respectively. The most frequently observed changes from
2023 to 2033 under BAU scenario were for barren to developed
(822 ha), followed by croplands to developed (474 ha) and croplands to
barren (458 ha). The next examined scenario (SD) for 2023-2033
demonstrated the conversion of 891 ha croplands to barren, 288 ha
cropland to tree cover and 225 ha cropland to pasture. Obviously, these
conversions result in an improvement of ecological spaces across the
study area.

3.2. Total carbon storage

The next step was to calculate Cis across the study area based on the
prepared LULC maps for 2013 and 2023 as well as the predicted one for
2033 (BAU and SD scenarios) through linking CA-Markov and InVEST
models. This procedure has previously been implemented in similar
disciplines (Hernandez-Guzman et al., 2019; Hoque et al., 2021; Zhu
etal., 2022; Adelisardou et al., 2022). However, the calculation of C at
four carbon pools i.e., AGC, BGC, DeOC and SOC in past, present and
future has not been well investigated. Fig. 5 presents the results of the
integrated modelling for each of the carbon pools. Fig. 6 illustrates the
spatial distribution of Cg in Mg ha™! for the entire study area.

3.2.1. Past to present era

According to the results, the highest carbon storage was considered
for SOC, followed by AGC, BGC and DeOC at all examined time sce-
narios. In 2013, the highest levels of C relate to SOC (80.3 %), followed
by AGC (12 %), BGC (6.4 %) and DeOC (1.3 %). A similar trend was also
observed for 2023 (SOC=81.6 %, AGC=11.2%, BGC=6 % and
DeOC=1.2 %). Gong et al. (2022) found similar results in China; our
study area in terms of climate and landscape is somewhat similar to
Nandu River Basin on Hainan Island. Since SOC was distinguished as
having the highest levels of C in all scenarios, it may be explained by
urbanization as well as increasing barren land in our study area. Obvi-
ously, it depends on the circumstances of the study area. For instance,
Barakat et al. (2021) elucidated that urbanization associated with pop-
ulation growth and economic development significantly affected LULC
change and tended to reduce the area of agricultural fields and then SOC
deposition. In summary, a total of 160,823 Mg C;; (approximately 25 %)
decreased from 2013 to 2023 (Supplementary material, Table A1). The
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Fig. 3. Prepared LULC maps for the entire study area in 2013 and 2023 as well as predicted ones in 2033 based on scenarios of BAU and SD.

results reveal that C has a 1.33-fold decrease in variation between their
values in 2013 and 2023. A similar declining trend due to urbanization
was observed in Shanghai, China (Zhang et al., 2020), represented by
73.19 x 10° Mg Cg (0.48 % per year) from 1990-2015. On the contrary,
Li et al. (2021a) reported that there was an increase of 11.8 % C in
2016 compared to 2000. Details in terms of the calculated Ci at
examined carbon pools and LULC in 2013, 2023 as well as 2033 (BAU
and SD scenarios) are summarized in Supplementary material, Table Al.

3.2.2. Future scenario analysis

In terms of future scenario analysis (2023-2033), the Ci based on
BAU showed a somewhat similar decreasing trend (by 39,750 Mg) from
past to present as expected (4-fold). A possible reason is that the study
area has no more potential for urban intensification. A complementary

regular decreasing trend was also observed at four carbon pools because
LULC changes directly threaten carbon storage (Jiang et al., 2017). The
highest levels of Cis for SOC (83.9 %), followed by AGC (9.6 %), BGC
(5.4 %) and DeOC (1.1 %). Therefore, a 1.08-fold declining variation
between 2023 and 2033-BAU indicates a decreased rate of Cy accu-
mulation in the next 10 years. Obviously, the rate of Csq impacts on
carbon emission. Goldstein et al. (2020) confirmed the huge effects of
urban land expansion on Ci followed by carbon emission.

The second scenario, SD, revealed an increment of 21,140 Mg Cy for
the entire study area. The difference among two examined scenarios can
be explained by the fact that SD results were taken after controlling
urban development and protecting ecological spaces. The highest value
was found for SOC (81 %), followed by AGC (11.8 %), BGC (6 %) and
DeOC (1.2 %). In summary, the Cg increased by 12 % when using SD
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Fig. 4. The decadal analysis and future projections (a and b) along with Chord diagram (c) indicating LULC changes for the past and future eras (BAU and

SD scenarios).

Table 2
The classification accuracy of different LULC classes using evaluating criteria.

Year LULC Class Validation points for different LULC classes
Developed Cropland Tree Cover Pasture Barren Water body Total User Accuracy
2013 Developed 40 0 0 0 3 0 43 93.02
Cropland 0 31 0 2 4 0 37 83.78
Tree Cover 0 3 45 0 0 0 48 93.75
Pasture 2 2 0 40 4 0 48 83.33
Barren 3 0 0 10 37 0 50 74.00
Water body 0 0 0 0 0 10 10 100.00
Total 45 36 45 52 48 10 236
Producer Accuracy 88.89 86.11 100.00 76.92 77.08 100.00 Overall Accuracy 86.01 % Kappa Coefficient 0.82
2023 Developed 45 3 0 2 1 0 51 88.24
Cropland 1 41 5 0 3 0 50 82.00
Tree Cover 0 4 28 0 1 0 33 84.85
Pasture 2 0 0 35 3 0 40 87.50
Barren 2 3 0 6 41 0 52 78.85
Water body 0 0 0 0 0 10 10 100.00
Total 50 51 33 43 49 10 236
Producer Accuracy 90.00 80.39 84.85 81.40 83.67 100.00 Overall Accuracy 84.74 % Kappa Coefficient 0.81

LULC: Land use/land cover

compared to BAU. This can be explained by the increase of tree cover
and pasture land uses which is parallel on achieving UN SDGs. Zhang
et al. (2023) found that an environmental protection scenario has the
greatest impact on achieving SDG15.1 in coastal urban areas. Kafy et al.
(2023) reported the influence of land management practices i.e., affor-
estation, reforestation, and conservation agriculture on the amount of
Cis. Generally, this study highlighted the importance of policy and land
management interventions in enhancing Ci which primarily needed for
explaining Cseq (Critchley et al., 2023). A brief description of stored
carbon under BAU and SD scenarios are summarized in Supplementary
material (Table Al).

3.3. Carbon sequestration

Understanding Cseq following the calculation of Cis is important
because human activities i.e., LULC changes have far-reaching conse-
quences for COy emission (Sha et al., 2022). The first direct demon-
stration of this research was the enablement of monitoring the spatial

distribution of Cseq by LULC changes using RS data and modelling
techniques. Contrary to field measurements and digital mapping of Cgeq
through environmental covariates (Siami et al., 2022), our approach is
cost- and time-efficient. Fig. 7 shows the spatial distribution of seques-
tered carbon and carbon emission across the study area over the period
2013-2023 as well as for the future based on two examined scenarios.

The maps were categorized into three classes to facilitate the in-
terpretations. The results revealed that in 2013-2023, the highest car-
bon emission occurs in the central part of the study area because this
area faced extensive changes of coverage and there is a net decrease in
carbon. Generally, a total of 31.6 % of the study area emits more carbon
than they absorb. However, the CO, emissions caused by LULC changes
are possibly larger than assumed (Arneth et al., 2017). Further obser-
vation illustrates an increasing area expansion of no-change in future.
Consequently, it demonstrates a stabilization of land use patterns, which
could be attributed to policy interventions or natural succession pro-
cesses (Lambin and Meyfroidt, 2010).

The details of Cseq values related to the examined pools are briefly



B. Veisi Nabikandi et al. Soil Advances 2 (2024) 100017

2013

2023

2033-BAU

2033-SD

Legend Legend Legend Legend

AGC (Mg/ha) BGC (Mg/ha) DeOC (Mg/ha) SOC (Mg/ha)
High : 0.668 High : 0.179 High : 0.074 High : 1.406

- Low : 0.002 — Low : 0.000 — Low:0.000 N — Low : 0.141

0 2 4 8 12 16
ey Kilometers

Fig. 5. The spatiotemporal distribution of total carbon storage considering for each carbon pool across the study area.
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Fig. 6. The spatial distribution of total carbon storage for the entire study area in past, present and future time eras.

described in Supplementary material, Table A2. The negative values of
Cseq demonstrate carbon emissions. The results show an emission of
160,823 Mg carbon from 2013 to 2023. This finding strongly implies
that barren lands were increasingly converted to pasture from 2013 to
2023. In terms of future projection, notwithstanding there was no more
Cseq difference between BAU and SD, while both scenarios demonstrated
that Cgeq would be decreased by 2-fold (6.5 %-6.6 %) compared to 2023.
Taken together, our finding indicates differences in carbon emission
values among BAU and SD scenarios, representing 9.1 % and 5.3 %,
respectively. One possible interpretation is that under SD scenario, the

positive impact of targeted environmental policies and land manage-
ment strategies were mentioned (Cao et al., 2023). Land resources
management i.e., agricultural practices and urbanization were the most
important factors in decreasing Cseq along with increasing carbon
emission across the study area by the fact that SOCS is a key function of
soils as affected by LULC changes (Wiesmeier et al., 2019).

Finally, our findings not only imply a dynamic interplay between
aforementioned carbon pools over time, but it can also be concluded that
land use changes across the study area had a negative impact on carbon
reservoirs (Betts, 2000). Furthermore, the continuous degradation of the
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Fig. 7. Spatial distribution of carbon sequestration and emission across the study area during the period 2013-2023 and 2023-2033 (BAU and SD scenarios).

environment because of rapid economic growth and urbanization has
contributed to the issue of global warming (Chen et al., 2022). We also
obtained evidence that our study area is faced with Cgeq and emission
over time.

3.4. Study limitations and future directions

The present research provided clear support for classification and
prediction of LULC maps for Azarshahr city in past, present and future
scenarios. One basic potential limitation with this research is the
absence of high-resolution RS data (e.g., Li et al., 2021b) and satellite
hyperspectral image (Meng et al., 2021) for 2013. An accurate result
may be taken when using other RS data. For instance, Velazquez et al.
(2022) revealed the successful mapping of SOC using integrated indices
as a novel idea in the Mediterranean area (Spain). The next limitation is
the lack of soil legacy data and field measurements for our study site.
Moreover, the limited availability of specific literature for Iran in
calculating the AGC, BGC, DeOC, and SOC coefficients would be another
limitation. Despite these limitations, an average of carbon density was
utilized in InVEST model based on previous works from around the
world with some similarity to our study area (Ma et al., 2019; Li et al.,
2021a; Wang et al., 2022a). Therefore, complementary work is needed
to fill the gaps between ecological modelling and monitoring the impacts
of LULC changes on Cgeq in Azarshahr. Additionally, the findings may
raise a variety of intriguing questions for future study, and this can be
considered to be the most important contribution. With a lack of LULC
changes, information over the study area and even over Iran, this study
would represent a low-cost framework to track LULC changes across the
county, province and then throughout the country.

4. Conclusion

This study comprehensively analyses the spatiotemporal dynamics of
carbon storage and Cseq in Azarshahr city by linking CA-Markov and
InVEST models using available RS data. It also gives a direct pathway to
calculating Cseq by aggregating stored carbon from different carbon
poolsi.e., AGC, BGC, DeOC and SOC using prepared LULC changes maps
with the absence of field data.

According to the results, carbon content over 2013-2023 has
decreased dramatically and stands to decrease at a slower rate from
2023 to the predicted year of 2033. Urban intensification was identified
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as the main factor in reducing Cseq across the study area. Furthermore, a
significant reduction in Cseq capacity was found due to the loss of
environmental ecological spaces, i.e., tree covers, pastures, and agri-
culture. To overcome this, effective land use management strategies are
indispensable to minimize the environmental impacts of human activ-
ities on Cgeq capacity.

This research emphasizes the important role of RS in monitoring
LULC changes in short- and long-term scenarios. Linking CA-Markov and
InVEST models as an innovative approach assisted us in monitoring the
spatiotemporal analyses of Cs and Cseq based on LULC changes. Finally,
our research reveals a deeper understanding of the links between LULC
induced by environmental restoration programs and carbon storage
changes. It is concluded that some practices i.e., afforestation and
reforestation programs as well as encouraging tourism development, can
reduce the adverse effects of LULC changes on Cgeq.
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