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A B S T R A C T

Understanding the impact of changes in land use/land cover (LULC) on carbon sequestration (Cseq) and emission 
leads to achieving sustainable development goals (SDGs). For this, Business-As-Usual (BAU) and Sustainable 
Development (SD) scenarios were examined in Azarshar city, Iran which is faced with urban intensification. The 
spatiotemporal dynamics of the carbon cycle and influences of various urban growth indicators are still unclear 
even under climate change, rapid urbanization, and ecological deterioration. In this research, total carbon 
storage (Cts) and Cseq were determined at four carbon pools i.e., aboveground carbon (AGC), belowground carbon 
(BGC), dead organic carbon (DeOC), and soil organic carbon (SOC). This research revealed a successful imple
mentation of integrated CA-Markov and InVEST models in delineating LULC changes between 2013 and 2033. It 
was concluded that land resources management play a crucial role in decreasing Cseq along with increasing 
carbon emission across the study area. The modelling results showed a significant shifting from barren and 
cropland to developed land uses. This research goes beyond providing supporting evidence that urban expansion 
is a key factor driving the aforementioned changes, but also illustrates the importance of remote sensing in 
ecological modelling, especially where information is sparse.

1. Introduction

Over the last decades, land use/land cover (LULC) changes especially 
due to urban intensification has increased (Yuan et al., 2022). LULC 
changes are important metrics in assessing progress toward sustainable 
development goals (SDGs) (Guo et al., 2023). Wei et al. (2023) eluci
dated the impact of rapid urbanization in China’s urban land use on 
diminishing SDGs. There are 17 interlinked goals defined by the United 
Nations SDGs. Since there was a lack of SDG-oriented evaluation of 
urban land use at a local level, it would be of interest to monitor total 
carbon storage (Cts) and carbon sequestration (Cseq) following LULC 
changes. The literature demonstrates that landscape changes and 
accelerated urbanization throughout the world ̶ including Iran, partic
ularly in metropolitan areas in recent decades ̶ have led to widespread 

changes in the spatial pattern of the landscape (Dadashpoor et al., 
2019). According to the Human Development Report issued by the 
United Nations, the urbanization rate in Iran was 64.20 % in 2000, then 
increased to 75.94 % in 2019, and it was expected to increase to 85.82 % 
by 2050 (Pilehvar, 2021). Therefore, among the SDGs, the 15th being: 
Sustainably manage forests, combat desertification, halt and reverse 
land degradation, halt biodiversity loss; can be measured in places like 
Azarshahr city, located in north-western Iran due to significant growth 
in anthropogenic activities this city has faced in recent decades.

The expansion of urbanization leads to increased carbon emission 
due to declining ecological spaces in the environment (Wu et al., 2023). 
Furthermore, carbon emissions due to anthropogenic activities, i.e., 
using fossil fuels, deforestation, and undesirable land use changes, 
contribute to global warming (Lu et al., 2022). Consequently, carbon 
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emissions due to fossil energy consumption, as well as its role in climate 
change, will be of significant concern (Qin and Sha, 2023). Moreover, 
Cseq can be mentioned as one of the most important crises affected by 
climate change (Gallant et al., 2020). The Intergovernmental Panel on 
Climate Change (IPCC) has facilitated the provision of useful informa
tion for policymakers to address both present and potential future risks 
(Masson-Delmotte et al., 2022).

LULC changes impact the spatiotemporal patterns of carbon emission 
and Cseq (Hong et al., 2022). Decreasing carbon emissions and increasing 
Cseq are crucial parameters to achieve SDGs in urban areas (Hong et al., 
2023). The segregation of urban areas from other land use scenarios, i.e., 
agriculture, forest, pasture, and water body sectors also explain their 
spatial distribution (Castella et al., 2013). Overall, urbanization accel
erates natural resource vulnerability, increasing impervious surfaces 
and reducing green spaces (Santhanam and Majumdar, 2022). Many 
nations and regions have transformed substantial tracts of forest, crop
lands, and pasture into industrial zones to intensify economic prosperity. 
Therefore, a significant amount of the available carbon pool has trans
formed into a carbon source (Le Bivic and Melot, 2020; Yang et al., 

2020). To address this, monitoring the spatiotemporal patterns of 
environmental features needs to be modeled and mapped with the 
application of easy-to-measure attributes, i.e., remote sensing (RS) data 
(Shahbazi et al., 2019) and advanced methods. For example, RS data has 
been incorporated into digital soil mapping (DSM) projects, providing 
highly detailed characterization of soil resources and their functions 
(Mulder et al., 2011). Moreover, the time series of LULC changes can be 
demonstrated using RS data derived from Landsat imagery and calcu
lated band ratios (Piao et al., 2021).

The simulation of LULC changes at various scenarios i.e., business-as- 
usual (BAU) as a baseline and sustainable development (SD) assists in 
identifying Cts and Cseq for different carbon pools. For this, the Cellular 
Automata-Markov (CA-Markov) model has been consistently used with 
confident results (Koko et al., 2020). Basse et al. (2014) found that 
CA-Markov would be a useful tool for generating a geographic pattern 
for landscape with transition principles. A similar finding had been re
ported by Yang et al. (2012). The next user-friendly model in ecological 
monitoring is the Integrated Valuation of Ecosystem Services and 
Tradeoffs (InVEST) to assess and simulate the carbon cycle in terrestrial 

Fig. 1. The flowchart of the methodology used in this research. USGS: United States Geological Survey; SVM: Support Vector Machine; LULC: Land use/land cover; 
CA-Markov: Cellular Automata-Markov Chain; BAU: Business-As-Usual; SD: Sustainable Development; InVEST: Integrated Valuation of Ecosystem Services 
and Tradeoffs.
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ecosystems (Kafy et al., 2023). It evaluates sequestered carbon among 
different pools i.e., soil, plants, and other sources over considerable time 
scales (Gallant et al., 2020). Furthermore, integrating CA-Markov and 
InVEST models have been frequently used in environmental modelling i. 
e., prediction of Cseq both in Iran (Sadat et al., 2020) and the world (He 
et al., 2016; Babbar et al., 2021). Additionally, Clerici et al. (2019) found 
the aforementioned models’ ability to assess the combined conse
quences of LULC and increased temperatures on the services in the 
Colombian Andes.

Since urban intensification is one of the most important drivers of 
climate change (Li et al., 2022a), a set of software i.e., TerrSet, Envi, and 
InVEST in addition to ArcGIS were utilized in this study. Therefore, our 
research aimed: i) to distinguish the LULC changes using RS data derived 
from Landsat-8 OLI (Operational Land Imager) imagery acquired for 
2013 and 2023; ii) to predict the LULC changes for 2033 using Markov 
chain method based on two scenarios of BAU and SD and to compare the 
results; iii) to calculate Cseq for the next decade according to the 
above-mentioned scenarios; and iv) to observe Cts and Cseq as a result of 
LULC changes at four carbon pools i.e., aboveground carbon (AGC), 
belowground carbon (BGC), dead organic carbon (DeOC) and soil 
organic carbon (SOC).

2. Materials and methods

2.1. Simplified flowchart of the study

Fig. 1 shows the flowchart of the methodology implemented in this 
research to ease the visualization of the process. The first step was to 
prepare LULC maps for 2013 and 2023 using available RS data. Subse
quently, these were utilized in preparing LULC maps for 2033 based on 
the two defined scenarios, i.e., BAU and SD. The amount of Cts for the 
four carbon pools and then Cseq over the study area based on the LULC 
maps were also calculated.

2.2. Study area and general description

This research was conducted in Azarshahr city with an areal extent of 
about 173.70 km2. It is located in East Azerbaijan Province, Iran. It is 
delimited by longitude 45◦50′42″ - 46◦02′11″ E and latitude 37◦43′16″ - 
37◦52′37″ N (Fig. 2-a and b). The digital elevation model (DEM) of the 
study area indicates that altitude varies from 1270 to 1557 m above sea 
level with an increasing trend from the western to the eastern part of the 
study area (Fig. 2-c). According to the report of the IRIMO (2020) for the 
last 15 consecutive years, the average annual maximum and minimum 
temperatures are 27.7 ◦C and 3.7 ◦C (15.25 ◦C, on average), respectively. 
The annual rainfall and evapotranspiration on average are 303 mm and 
1500 mm, respectively. According to the Keys to Soil Taxonomy (USDA, 
2014) and the clipped study site from the original soil map of Iran at 

Fig. 2. Location of the study area in Iran (a) and in East Azerbaijan Province (b); digital elevation model (DEM) for the entire study area (c), and identified three soil 
subgroups across the study area (d).
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1:1000,000 scale, three soil subgroups were identified. The dominant 
soil subgroups are Xeric Haplocalcids (70 %), followed by Typic Aqui
salids (16 %) and Lithic Haploxerepts (14 %) (Fig. 2-d).

2.3. Remotely-sensed data

The simultaneous implementation of RS data and geographic infor
mation system (GIS) facilitates preparing LULC maps. Primarily, those 
are needed for calculating Cts values for each land use (Babbar et al., 
2021). This research acquired Landsat-8 OLI satellite data for July 2013 
and June 2023 (via USGS-EROS; http://earthexplorer.usgs.gov/). For 
both scenes, RS data pre-processing i.e., radiometric calibration and 
atmospheric correction were performed (Poncet et al., 2019; Doxani 
et al., 2023). A major reason for selecting the above-mentioned data 
capture dates was due to the ideal condition of zero cloud coverage. 
While the native resolution of the RS scenes was 30-m pixel resolution, 
we resampled whole images to 15-m resolution in order to improve 
LULC classification (Phiri et al., 2018) through clearer characterization 
of the plant cover and bare soil in the examined region (El Haj et al., 
2023).

2.4. Preparing LULC maps

The acquired RS data were used in preparing LULC maps for 2013 
and 2023. For this, the support vector machine (SVM) algorithm was 
used in supervised classification mode. Although, it is a powerful su
pervised algorithm that makes use of a binary classifier founded in 
statistical machine learning theory (Vapnik, 1998), we used SVM in 
classifying the entire study area into six classes i.e., developed, cropland, 
tree cover (scrub forest), pasture, barren, and water body based on the 
known Land Cover Class categorizations (USGS, 2022). The high accu
racy of the results when using SVM in land cover classification has been 
reported by Asori and Adu (2023).

2.4.1. Accuracy of prepared maps
To evaluate the accuracy of supervised classification, the kappa 

statistic criterion was used in this research. Yilmaz and Demirhan (2023)
reported that kappa is a good indicator for evaluating multi-class clas
sification performance. After classifying LULC changes, a total of 236 
points (both in 2013 and 2023) were randomly selected according to 
their available coordinates covering six examined LULC classes across 
the study area. Due to the variation of area extension relevant to each 
class, the number of selected points differed for each. Each random 
point’s value was then verified using Google Earth for accuracy assess
ment. Similar work has been performed by Tilahun and Teferie (2015) to 
verify Google Earth’s ability to segregate various land uses i.e., agri
culture, settlement, grazing, forest, and bare lands in addition to water 
bodies in Ethiopia.

2.4.2. Prediction of LULC maps for 2033
To monitor the LULC changes and to prepare their maps to describe 

SDGs, two scenarios were defined by the fact that scenario analysis 
through the creation of alternative plans and policies is an effective 
approach to assess ecosystem services i.e., Cts due to land use changes 
(Wang et al., 2022b). These were Business-As-Usual (BAU) versus Sus
tainable Development (SD). BAU refers to a hypothetical situation in 
which the current conditions, trends, policies, or operations of a system 
or a process remain unchanged or unaffected by any significant change 
or intervention, often used as a standard or a benchmark for comparing 
and evaluating impacts. SD on the other hand, is a hypothetical situation 
in which the current or future land use and environmental policies are 
designed to prioritize ecological conservation and restoration over 
economic development to achieve SDGs (Gaur and Singh, 2023). One 
expects to observe clear differences and non-aligned trajectories be
tween the aforementioned scenarios. For the SD scenario, tree cover and 
grasslands were prohibited from being converted to agricultural and 

built-up areas, and urban growth and development are controlled and 
regulated to improve management and decision-making (Dougaheh 
et al., 2023). At this step, the LULC maps for 2033 were prepared based 
on BAU and SD scenarios. For this, the following approaches were 
consecutively performed:

2.4.2.1. Markov chain. The Markov chain model within the TerrSet 
software was utilized in this study for geospatial monitoring and 
modelling since it simultaneously incorporates image processing tools 
for sustainable development purposes (Eastman, 2016). Since Markov 
chain specifically focuses on spatial transformation without accounting 
for influencing factors (Sun et al., 2022), it was used by tabulating the 
relative frequency of change for all transitions between the six studied 
land uses. Using land cover data for the 2013 and 2023, the probability 
of a transition in LULC for year 2033 were calculated for the two 
aforementioned scenarios. Obviously, in the studies related to land re
sources, the shifts between different land use categories may vary or 
remain somewhat constant over time. Therefore, the actual transition 
probability matrix was employed to predict future land use changes 
based on historical data for each land use category (Ghalehteimouri 
et al., 2022). Regarding identified changes of LULC for the last 10 years 
era (from 2013 to 2023) using Markov chain, the modelling processes 
were pursued using Cellular Automata (CA).

2.4.2.2. Cellular automata model. The CA model was then used as a 
mathematical framework to illustrate the area of LULC changes over 
time. It generates self-similar patterns and uniform states (Wolfram, 
1983) which represent cellular actions, reactions, and quantified vari
ations in each cell’s attributes based on a set of pre-defined rules. CA has 
been commonly utilized to simulate LULC changes. Notwithstanding the 
CA model assisting in finding the evolving patterns of urban growth 
(Wang and Maduako, 2018), it is ideally suited for integration with 
other models due to its dynamic and temporal nature (Ghalehteimouri 
et al., 2022). Therefore, CA was linked with Markov chain in this study 
to observe the LULC changes from 2013 to 2023.

2.4.2.3. CA-Markov model. One of the prominent models commonly 
used for predicting upcoming LULC is the combination of CA and Mar
kov chain, referred to as the CA-Markov model (Song et al., 2020; 
Negese et al., 2022). According to the distinguished LULC changes based 
on the aforementioned models’ outputs for the past time periods, we 
implemented the CA-Markov model within the TerrSet software to 
prepare the LULC map for 2033-BAU and 2033-SD. Obviously, it was 
expected to observe urban expansion (developed) due to increasing 
population and needs to support food and living requirements, and on 
the contrary, decreasing of cropland, tree cover, pasture, barren and 
water body areas. The ability of CA-Markov model in urban planning 
and land suitability assessment across the globe was reported by Mishra 
et al. (2018). The LULC changes impact on temperature over the study 
area and greenhouse gases (Nayak and Mandal, 2019), therefore, 
monitoring the Cseq would be of interest, which can be evaluated by 
InVEST model.

2.5. InVEST model for calculating carbon sequestration

To directly calculate soil organic carbon storage (SOCS) in the field, 
abundant data derived from laboratory analyses and digital soil map
ping (DSM) techniques are essential (Rahbar Alam Shirazi et al., 2023). 
Soil analyses incur siginifican costs, both in monetary and time in
vestments, therefore, linking CA-Markov and InVEST model facilitates 
the representing of static Cts and temporal Cseq within a landscape (Zhao 
et al., 2019). The carbon pools i.e., AGC, BGC, DeOC and SOC were 
calculated using InVEST model based on the available LULC maps (Leh 
et al., 2013; Babbar et al., 2021). Carbon storage data for each pool can 
be sourced from field estimates obtained through local design studies, 
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extracted from meta-analyses focusing on specific habitat types or re
gions, or derived from established scientific literature. For reference, 
these are summarized in Table 1.

Although, different procedures were examined and there was no 
literature and background related to our study area, we used carbon 
density data (on average) focusing on the previous findings i.e. (Ma 
et al., 2019; Sadat et al., 2020; Li et al., 2021a; Adelisardou et al., 2022; 
Wang et al., 2022a). Furthermore, Clerici et al. (2019) found that due to 
representation of the data from a single time point, researchers can 
ignore the effects of LUCC on carbon storage changes. A possible clari
fication for averaging is that initial data extracted from the literature 
were somewhat similar to our study area in terms of latitude. A decisive 
reason is that latitude affects the humus decomposition rate as well as 
SOC accumulation (Li et al., 2022b). It should be noted that the results 
may be changed if the input data such as the application of IPCC 
guidelines (IPCC, 2006) or InVEST user’s guide (Sharp et al., 2020) are 
supplied.

The InVEST model calculates the Cts per unit area at six LULC using 
Eqs.1 and 2, respectively. 

C = AGC+BGC+DeOC+ SOC (1) 

Cts =
∑n

k=1

Ak × Ck,(k = 1, 2, ...n) (2) 

where, C represents the summation of calculated carbon density at four 
pools interrelated to each LULC in Mg ha− 1. Subsequently, by multi
plying the average carbon density of the aforementioned pools along 
with each LULC (Ck) in their respective areas (Ak), the amount of Cts was 
computed in Mg (Zhao et al., 2019; Hu et al., 2021). The next step was to 
utilize the prepared digital maps of Cts for 2013, 2023 and 2033 (BAU 
and SD scenarios) for calculating Cseq for the aforementioned three-time 
scenarios. Finally, in addition to illustrating the variation of Cseq from 
2013 to 2023, it was presented for the future (2023–2033) by imple
menting two scenarios (BAU and SD).

3. Results and discussion

3.1. Retrospective monitoring of LULC changes

3.1.1. Final LULC maps
The LULC maps for 2013, 2023 and based on future projection for 

2033 in terms of examined BAU and SD scenarios are illustrated in 
Fig. 3.

The built model for 2013 relevant to our study area showed that the 
highest area was covered by croplands (33.8 %), followed by barren 
(24.8 %), pasture (19.3 %), developed (12.7 %), tree cover (9.3 %) and 
water body (0.1 %). The developed land use and water bodies are pre
dominantly located in the lower elevation areas with gentle slopes. 
Furthermore, tree cover was concentrated toward the central part of the 
study area. A similar procedure was performed in preparation of LULC 
map for 2023. The visualization of using predicted maps for 2033 show a 
distinct variation on land uses by time.

3.1.2. LULC change analyses
Fig. 4 illustrates the decadal analysis of LULC changes from 2013 till 

now and for the future. In terms of 2013–2033, the highest variation was 
for pasture (-11 %), followed by developed (+10 %), barren (+8.6 %), 
cropland (-4.1 %) and tree cover (-3.6 %) land uses. Since there was no 
detectable change in terms of water body, it was ignored in the analysis 
process. It should be noted that the classification accuracy for 2013 and 
2023 based on the kappa coefficient values was 0.82 and 0.81, respec
tively (Table 2).

According to the Markov chain model for the year between 2013 and 
2023, a significant change was identified in the central part of the study 
area with the conversion of 743 ha of barren to developed land uses. 
Additionally, 905 ha of cropland was converted to development over the 
examined period. The Markov chain indicates the likelihood of moving 
from one state to another as a stochastic process where conditions within 
a system shift from one state to another with defined transition proba
bilities (Fogang et al., 2023). The results provide supporting evidence 
that urban expansion is likely attributed to this area. This urbanization 
was previously reported in China (Wang et al., 2023), India (Mishra 
et al., 2020) and even in Iran (Sobhani et al., 2021). Moreover, 872 ha of 
cropland and 1718 ha of pasture have been converted to barren land in 
the same period.

In terms of future projections, the BAU scenario shows an increase of 
7.6 % in developed while a decrease of 4.4 %, 1.7 %, 0.6 % and 0.9 % 
area extension in cropland, tree cover, pasture and barren, respectively. 
While, SD scenario shows a decrease in area extension in cropland 
(-8.1 %) and increase of 1.7 %, 4.8 % and 1.6 % for tree cover, pasture 
and barren, respectively. The most frequently observed changes from 
2023 to 2033 under BAU scenario were for barren to developed 
(822 ha), followed by croplands to developed (474 ha) and croplands to 
barren (458 ha). The next examined scenario (SD) for 2023–2033 
demonstrated the conversion of 891 ha croplands to barren, 288 ha 
cropland to tree cover and 225 ha cropland to pasture. Obviously, these 
conversions result in an improvement of ecological spaces across the 
study area.

3.2. Total carbon storage

The next step was to calculate Cts across the study area based on the 
prepared LULC maps for 2013 and 2023 as well as the predicted one for 
2033 (BAU and SD scenarios) through linking CA-Markov and InVEST 
models. This procedure has previously been implemented in similar 
disciplines (Hernández-Guzmán et al., 2019; Hoque et al., 2021; Zhu 
et al., 2022; Adelisardou et al., 2022). However, the calculation of Cts at 
four carbon pools i.e., AGC, BGC, DeOC and SOC in past, present and 
future has not been well investigated. Fig. 5 presents the results of the 
integrated modelling for each of the carbon pools. Fig. 6 illustrates the 
spatial distribution of Cts in Mg ha− 1 for the entire study area.

3.2.1. Past to present era
According to the results, the highest carbon storage was considered 

for SOC, followed by AGC, BGC and DeOC at all examined time sce
narios. In 2013, the highest levels of Cts relate to SOC (80.3 %), followed 
by AGC (12 %), BGC (6.4 %) and DeOC (1.3 %). A similar trend was also 
observed for 2023 (SOC=81.6 %, AGC=11.2 %, BGC=6 % and 
DeOC=1.2 %). Gong et al. (2022) found similar results in China; our 
study area in terms of climate and landscape is somewhat similar to 
Nandu River Basin on Hainan Island. Since SOC was distinguished as 
having the highest levels of Cts in all scenarios, it may be explained by 
urbanization as well as increasing barren land in our study area. Obvi
ously, it depends on the circumstances of the study area. For instance, 
Barakat et al. (2021) elucidated that urbanization associated with pop
ulation growth and economic development significantly affected LULC 
change and tended to reduce the area of agricultural fields and then SOC 
deposition. In summary, a total of 160,823 Mg Cts (approximately 25 %) 
decreased from 2013 to 2023 (Supplementary material, Table A1). The 

Table 1 
The used carbon density (Mg ha− 1) in InVEST model.

LULC classes AGC BGC DeOC SOC

Developed 0.10 0.00 0.00 14.77
Cropland 3.62 2.61 0.50 34.24
Tree Cover 29.67 7.95 3.28 26.34
Pasture 1.64 3.28 0.07 62.48
Barren 0.61 0.47 0.00 7.70
Water body 0.84 5.98 0.00 6.25

AGC: aboveground carbon; BGC: belowground carbon; DeOC: dead organic 
carbon; SOC: soil organic carbon.
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results reveal that Cts has a 1.33-fold decrease in variation between their 
values in 2013 and 2023. A similar declining trend due to urbanization 
was observed in Shanghai, China (Zhang et al., 2020), represented by 
73.19 × 105 Mg Cts (0.48 % per year) from 1990–2015. On the contrary, 
Li et al. (2021a) reported that there was an increase of 11.8 % Cts in 
2016 compared to 2000. Details in terms of the calculated Cts at 
examined carbon pools and LULC in 2013, 2023 as well as 2033 (BAU 
and SD scenarios) are summarized in Supplementary material, Table A1.

3.2.2. Future scenario analysis
In terms of future scenario analysis (2023–2033), the Cts based on 

BAU showed a somewhat similar decreasing trend (by 39,750 Mg) from 
past to present as expected (4-fold). A possible reason is that the study 
area has no more potential for urban intensification. A complementary 

regular decreasing trend was also observed at four carbon pools because 
LULC changes directly threaten carbon storage (Jiang et al., 2017). The 
highest levels of Cts for SOC (83.9 %), followed by AGC (9.6 %), BGC 
(5.4 %) and DeOC (1.1 %). Therefore, a 1.08-fold declining variation 
between 2023 and 2033-BAU indicates a decreased rate of Cts accu
mulation in the next 10 years. Obviously, the rate of Cseq impacts on 
carbon emission. Goldstein et al. (2020) confirmed the huge effects of 
urban land expansion on Cts followed by carbon emission.

The second scenario, SD, revealed an increment of 21,140 Mg Cts for 
the entire study area. The difference among two examined scenarios can 
be explained by the fact that SD results were taken after controlling 
urban development and protecting ecological spaces. The highest value 
was found for SOC (81 %), followed by AGC (11.8 %), BGC (6 %) and 
DeOC (1.2 %). In summary, the Cts increased by 12 % when using SD 

Fig. 3. Prepared LULC maps for the entire study area in 2013 and 2023 as well as predicted ones in 2033 based on scenarios of BAU and SD.
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compared to BAU. This can be explained by the increase of tree cover 
and pasture land uses which is parallel on achieving UN SDGs. Zhang 
et al. (2023) found that an environmental protection scenario has the 
greatest impact on achieving SDG15.1 in coastal urban areas. Kafy et al. 
(2023) reported the influence of land management practices i.e., affor
estation, reforestation, and conservation agriculture on the amount of 
Cts. Generally, this study highlighted the importance of policy and land 
management interventions in enhancing Cts which primarily needed for 
explaining Cseq (Critchley et al., 2023). A brief description of stored 
carbon under BAU and SD scenarios are summarized in Supplementary 
material (Table A1).

3.3. Carbon sequestration

Understanding Cseq following the calculation of Cts is important 
because human activities i.e., LULC changes have far-reaching conse
quences for CO2 emission (Sha et al., 2022). The first direct demon
stration of this research was the enablement of monitoring the spatial 

distribution of Cseq by LULC changes using RS data and modelling 
techniques. Contrary to field measurements and digital mapping of Cseq 
through environmental covariates (Siami et al., 2022), our approach is 
cost- and time-efficient. Fig. 7 shows the spatial distribution of seques
tered carbon and carbon emission across the study area over the period 
2013–2023 as well as for the future based on two examined scenarios.

The maps were categorized into three classes to facilitate the in
terpretations. The results revealed that in 2013–2023, the highest car
bon emission occurs in the central part of the study area because this 
area faced extensive changes of coverage and there is a net decrease in 
carbon. Generally, a total of 31.6 % of the study area emits more carbon 
than they absorb. However, the CO2 emissions caused by LULC changes 
are possibly larger than assumed (Arneth et al., 2017). Further obser
vation illustrates an increasing area expansion of no-change in future. 
Consequently, it demonstrates a stabilization of land use patterns, which 
could be attributed to policy interventions or natural succession pro
cesses (Lambin and Meyfroidt, 2010).

The details of Cseq values related to the examined pools are briefly 

Fig. 4. The decadal analysis and future projections (a and b) along with Chord diagram (c) indicating LULC changes for the past and future eras (BAU and 
SD scenarios).

Table 2 
The classification accuracy of different LULC classes using evaluating criteria.

Year LULC Class Validation points for different LULC classes

Developed Cropland Tree Cover Pasture Barren Water body Total User Accuracy

2013 Developed 40 0 0 0 3 0 43 93.02
Cropland 0 31 0 2 4 0 37 83.78
Tree Cover 0 3 45 0 0 0 48 93.75
Pasture 2 2 0 40 4 0 48 83.33
Barren 3 0 0 10 37 0 50 74.00
Water body 0 0 0 0 0 10 10 100.00
Total 45 36 45 52 48 10 236
Producer Accuracy 88.89 86.11 100.00 76.92 77.08 100.00 Overall Accuracy 86.01 % Kappa Coefficient 0.82

2023 Developed 45 3 0 2 1 0 51 88.24
Cropland 1 41 5 0 3 0 50 82.00
Tree Cover 0 4 28 0 1 0 33 84.85
Pasture 2 0 0 35 3 0 40 87.50
Barren 2 3 0 6 41 0 52 78.85
Water body 0 0 0 0 0 10 10 100.00
Total 50 51 33 43 49 10 236
Producer Accuracy 90.00 80.39 84.85 81.40 83.67 100.00 Overall Accuracy 84.74 % Kappa Coefficient 0.81

LULC: Land use/land cover
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Fig. 5. The spatiotemporal distribution of total carbon storage considering for each carbon pool across the study area.
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described in Supplementary material, Table A2. The negative values of 
Cseq demonstrate carbon emissions. The results show an emission of 
160,823 Mg carbon from 2013 to 2023. This finding strongly implies 
that barren lands were increasingly converted to pasture from 2013 to 
2023. In terms of future projection, notwithstanding there was no more 
Cseq difference between BAU and SD, while both scenarios demonstrated 
that Cseq would be decreased by 2-fold (6.5 %-6.6 %) compared to 2023. 
Taken together, our finding indicates differences in carbon emission 
values among BAU and SD scenarios, representing 9.1 % and 5.3 %, 
respectively. One possible interpretation is that under SD scenario, the 

positive impact of targeted environmental policies and land manage
ment strategies were mentioned (Cao et al., 2023). Land resources 
management i.e., agricultural practices and urbanization were the most 
important factors in decreasing Cseq along with increasing carbon 
emission across the study area by the fact that SOCS is a key function of 
soils as affected by LULC changes (Wiesmeier et al., 2019).

Finally, our findings not only imply a dynamic interplay between 
aforementioned carbon pools over time, but it can also be concluded that 
land use changes across the study area had a negative impact on carbon 
reservoirs (Betts, 2000). Furthermore, the continuous degradation of the 

Fig. 6. The spatial distribution of total carbon storage for the entire study area in past, present and future time eras.
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environment because of rapid economic growth and urbanization has 
contributed to the issue of global warming (Chen et al., 2022). We also 
obtained evidence that our study area is faced with Cseq and emission 
over time.

3.4. Study limitations and future directions

The present research provided clear support for classification and 
prediction of LULC maps for Azarshahr city in past, present and future 
scenarios. One basic potential limitation with this research is the 
absence of high-resolution RS data (e.g., Li et al., 2021b) and satellite 
hyperspectral image (Meng et al., 2021) for 2013. An accurate result 
may be taken when using other RS data. For instance, Velazquez et al. 
(2022) revealed the successful mapping of SOC using integrated indices 
as a novel idea in the Mediterranean area (Spain). The next limitation is 
the lack of soil legacy data and field measurements for our study site. 
Moreover, the limited availability of specific literature for Iran in 
calculating the AGC, BGC, DeOC, and SOC coefficients would be another 
limitation. Despite these limitations, an average of carbon density was 
utilized in InVEST model based on previous works from around the 
world with some similarity to our study area (Ma et al., 2019; Li et al., 
2021a; Wang et al., 2022a). Therefore, complementary work is needed 
to fill the gaps between ecological modelling and monitoring the impacts 
of LULC changes on Cseq in Azarshahr. Additionally, the findings may 
raise a variety of intriguing questions for future study, and this can be 
considered to be the most important contribution. With a lack of LULC 
changes, information over the study area and even over Iran, this study 
would represent a low-cost framework to track LULC changes across the 
county, province and then throughout the country.

4. Conclusion

This study comprehensively analyses the spatiotemporal dynamics of 
carbon storage and Cseq in Azarshahr city by linking CA-Markov and 
InVEST models using available RS data. It also gives a direct pathway to 
calculating Cseq by aggregating stored carbon from different carbon 
pools i.e., AGC, BGC, DeOC and SOC using prepared LULC changes maps 
with the absence of field data.

According to the results, carbon content over 2013–2023 has 
decreased dramatically and stands to decrease at a slower rate from 
2023 to the predicted year of 2033. Urban intensification was identified 

as the main factor in reducing Cseq across the study area. Furthermore, a 
significant reduction in Cseq capacity was found due to the loss of 
environmental ecological spaces, i.e., tree covers, pastures, and agri
culture. To overcome this, effective land use management strategies are 
indispensable to minimize the environmental impacts of human activ
ities on Cseq capacity.

This research emphasizes the important role of RS in monitoring 
LULC changes in short- and long-term scenarios. Linking CA-Markov and 
InVEST models as an innovative approach assisted us in monitoring the 
spatiotemporal analyses of Cts and Cseq based on LULC changes. Finally, 
our research reveals a deeper understanding of the links between LULC 
induced by environmental restoration programs and carbon storage 
changes. It is concluded that some practices i.e., afforestation and 
reforestation programs as well as encouraging tourism development, can 
reduce the adverse effects of LULC changes on Cseq.
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