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A B S T R A C T

The Soil and Landscape Grid of Australia (SLGA) has been significantly updated and expanded. The initial
version, released in 2015, provided the first continental-scale characterization of soil resources adhering to
GlobalSoilMap specifications. It featured digital maps for 11 key soil attributes (including bulk density, organic
carbon, soil texture, pH, available water capacity, total nitrogen, total phosphorus, effective cation exchange
capacity, and soil thickness) at a 90 m × 90 m spatial resolution and served as a widely accessed national
resource with substantial global influence.

The updated version, developed between 2018 and 2023, includes enhancements to the original 11 soil at-
tributes and introduces 13 additional products. These additions improve the representation of key soil charac-
teristics, such as soil carbon composition, soil microbial distribution, and soil moisture fluxes, contributing to a
more comprehensive understanding of Australia’s soil and landscape resources.

The updated data and methodologies offer a robust foundation for developing a national soil monitoring
program and other applications. The advancements in the SLGA and its associated data systems are detailed, and
all products are freely available for public use.

1. Introduction

The Soil and Landscape Grid of Australia (SLGA) was launched in
2015, providing a nationally consistent, high-resolution digital mapping
of continuous soil and landscape attributes across the Australian conti-
nent (Grundy et al., 2015). This initiative applied digital soil mapping
techniques to create the first continental implementation of the Glob-
alSoilMap concept (Arrouays et al., 2014).

The development of SLGA Version 1 (Grundy et al., 2020) aimed to
ensure the relevance of its products—national mapping of 11 key soil
attributes—to a wide range of users. It also emphasized the importance
of systematic updates and improvements as new data sources and
modelling approaches became available. Building on this foundation, a
substantial program of work commenced in 2018, supported by the
Terrestrial Ecosystem Research Network (TERN; https://www.tern.org.
au/) and a network of soil information organisations across Australia.

This effort leveraged advancements in digital soil mapping and related
technologies to enhance and expand upon the original SLGA products.

This paper outlines the activities undertaken to enhance the SLGA
and highlights the new products, findings, and methodological ad-
vancements introduced in SLGA Version 2, with references provided for
detailed insights into each aspect.

2. At a glance: soil and landscape grid of Australia Version 2

Table 1 outlines the products included in SLGA Version 2, detailing
key information for each product, including their spatial and depth
coverage, along with a concise summary of the modelling processes used
in their development. Additionally, URLs are provided for downloading
the corresponding data.

The SLGA adheres to GlobalSoilMap specifications (Arrouays et al.,
2014), providing soil attribute estimates at the centre of 3 arcsecond grid
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Table 1
Products in Version 2 of the Soil and Landscape Grid of Australia. This table summarizes the products included in SLGA Version 2, providing their names, corre-
sponding units, and status (indicating whether the product is an update from Version 1). Each product is briefly described, with details on its spatial and vertical
(depth) resolution and a summary of the methodologies used for its generation. For some Version 2 products, a model extrapolation risk assessment was performed,
identifying and quantifying areas where digital soil mapping models may have limitations due to being outside the calibration data domain. Citable references and
download links are provided for each product.

Soil Physical Properties

Attribute Units Status Description Depth and
Spatial
Support

Modelling
framework

Defined
model
extrapolation
risk

Reference Downloadable data link/
further information

Clay % mass Updated < 2 µm mass
fraction of the <

2 mm soil
material
determined using
the pipette
method

− Point
support with
90 m grid cell
resolution.
− Interval
depth
support for
layers: 0–5
cm, 5–15 cm,
15–30 cm,
30–60 cm,
60–100 cm,
100–200 cm.

− Integrative
random forest ML
modelling pairing
lab and field-based
data.
− Predictand data
transformed to
isometric log-ratio.
− Uncertainties
derived through
bootstrap
resampling method.

N Malone and
Searle
(2021a)

https://doi.org/
10.25919/hc4s-3130

Silt % mass Updated 2–20 µm mass
fraction of the <

2 mm soil
material
determined using
the pipette
method

N Malone and
Searle
(2021a)

https://doi.org/
10.25919/2ew1-0w57

Sand % mass Updated 20 µm − 2 mm
mass fraction of
the < 2 mm soil
material
determined using
the pipette
method

N Malone and
Searle
(2021a)

https://doi.org/
10.25919/rjmy-pa10

Volumetric soil
moisture at –33
kPa moisture
potential

% vol NEW Volumetric soil
moisture at –33
kPa moisture
potential

− Random forest ML
modelling
− Soil moisture at-
33 kPa and − 1.5
MPa moisture
potentials derived
via pedotransfer
functions using soil
texture, bulk density
and soil carbon as
inputs at point
locations
− Uncertainties
derived through
bootstrap
resampling method

N Searle and
Somarathna
(2022b)

https://doi.
org/10.25919/jnvd-3a26

Volumetric soil
moisture at − 1.5
MPa moisture
potential

% vol NEW Volumetric soil
moisture at − 1.5
MPa moisture
potential

N Searle and
Somarathna
(2022a)

https://doi.org/
10.25919/awp8-nv68

Available Water
Capacity

% Updated Readily available
water for plant
extraction:
Volumetric soil
moisture at –33
kPa – Volumetric
soil moisture at
− 1.5 MPa
moisture
potential

N Searle et al.
(2022b)

https://doi.org/
10.25919/4jwj-na34

Bulk Density (whole
soil)

g/cm3 Updated Bulk Density of
the whole soil
(including coarse
fragments) in
mass per unit
volume

− Integrative
random forest ML
modelling pairing
measured and
derived bulk density
data from spatial
predictive function
based on soil
texture, CEC, soil
carbon and
environmental
covariate data.
− Uncertainties
quantified through
local error and fuzzy
clustering method.

Y Malone
(2023)

https://doi.org/
10.25919/gxyn-pd07

Coarse Fragments % vol NEW Proportion of
coarse fragments
size class

− Point
support with
90 m grid cell
resolution.
− Interval
depth
support for
layers: 0–5
cm, 5–15 cm,
15–30 cm.

− Volumetric
abundance of coarse
fragments sourced
from field
assessments of
coarse fractions.
− Gravimetric
measures of coarse
fractions converted
to volumetric ones

N Román
Dobarco
et al.
(2023b)

https://doi.org/
10.25919/c583-fd02
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Table 1 (continued )

Soil Physical Properties

Attribute Units Status Description Depth and
Spatial
Support

Modelling
framework

Defined
model
extrapolation
risk

Reference Downloadable data link/
further information

where available.
− Probability
random forest
modelling for both
predictions and
uncertainties.

Soil Moisture
Information
Processing System
(SMIPS)

Total
volumetric
soil
moisture
content
(mm)
Proportion
of
‘rootzone’
full (%)

NEW Estimates of
national daily
volumetric soil
water contents

Point support
with 1 km
grid cell
resolution.
Daily time
step
− Interval
depth
support for
layers: 0–10
cm, 10–90 cm

SMIPS system
ingests daily climate
data and runs a
simple soil water
bucket model. SLGA
mapping of texture,
AWC and thickness
help drive model.
The model
calculates daily soil
moisture fluxes
which are also
adjusted according
to the SMOS satellite
observations.
Prediction
uncertainties not
explicitly defined.

N Stenson
et al. (2021)

https://data.tern.org.
au/landscapes/smips/

Carbon Materials
Soil Organic Carbon % mass Updated Mass fraction of

carbon by weight
in the < 2 mm
soil material as
determined by
dry combustion
at 900 Celsius.

− Point
support with
either 30 m
or 90 m grid
cell
resolution.
− Interval
depth
support for
layers at both
resolutions:
0–5 cm, 5–15
cm, 15–30
cm, 30–60
cm, 60–100
cm, 100–200
cm.

− Quantile
regression forest for
both prediction and
uncertainty
quantification.

N Wadoux
et al. (2023)

30 m grid resolution
https://doi.org/10.25919
/5qjv-7 s27
90 m grid resolution
https://doi.org/
10.25919/ejhm-c070

Soil Organic Carbon
Fractions

0–1 NEW Proportions of
mineral-
associated
organic carbon
(MAOC),
particulate
organic carbon
(POC) and
pyrogenic
organic carbon
(PyOC).
Available only
for 0–5 cm, 5–15
cm, 15–30 cm.

− Point
support with
90 m grid cell
resolution.
− Interval
depth
support for
layers: 0–5
cm, 5–15 cm,
15–30 cm.

− Quantile
regression forest
modelling for both
prediction and
uncertainty
quantification.
− SOC fraction data
predicted with mid-
infrared and near-
infrared spectral
models and
transformed to
isometric log-ratios.

N Román
Dobarco
et al.
(2023b)

https://doi.org/
10.25919/fa46-ey49

Soil Organic
Fraction densities
and stock

Mg C ha− 1 NEW Soil organic
carbon fractions
(MOAC, POC.
PyOC) per
volume or area of
soil.

− Point
support with
90 m grid cell
resolution.
− SOC
fraction
density
estimates for:
0–5 cm, 5–15
cm, 15–30
cm.
SOC fraction
stock
estimated for:
0–30 cm.

− Stocks estimated
using estimates of
total soil carbon,
bulk density,
volumetric gravel,
and layer/soil
thickness
− Uncertainties
quantified via
conditional
simulation taking
into consideration
uncertainties of
input data.

N Román
Dobarco
et al.
(2023b)

https://doi.org/
10.25919/fa46-ey49

(continued on next page)
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Table 1 (continued )

Soil Physical Properties

Attribute Units Status Description Depth and
Spatial
Support

Modelling
framework

Defined
model
extrapolation
risk

Reference Downloadable data link/
further information

Soil Microbial
Biodiversity

Unitless NEW Soil bacteria and
fungi beta
diversity

− Point
support with
90 m grid cell
resolution.
− Surface soil
estimate only

− Non-metric
multidimensional
scaling (NMDS)
used to investigate
dissimilarities in
microbial
community
compositions.
− NMDS axes
modelled and
mapped using
quantile regression
forest.

N Román
Dobarco
et al. (2022)

https://doi.org/
10.25919/4x7n-y874

Soil Chemical attributes
Soil pH (1:5 water) pH units NEW pH of a 1:5 soil

water solution
− Point
support with
90 m grid cell
resolution.
− Interval
depth
support for
layers: 0–5
cm, 5–15 cm,
15–30 cm,
30–60 cm,
60–100 cm,
100–200 cm.

− Integrative
random forest ML
modelling pairing
lab and field-based
data.
− Uncertainties
quantified through
local error and fuzzy
clustering method.

Y Malone
(2022b)

https://doi.org/
10.25919/37z2-0q10

Soil pH (1:5 CaCl2) pH units Updated pH of 1:5 soil/
0.01 M calcium
chloride extract

Y Malone and
Searle
(2021a)

https://doi.org/
10.25919/7320-hw30

Total Nitrogen % mass Updated Mass fraction of
total nitrogen in
the soil by weight

− Random forest ML
modelling
− Uncertainties
quantified through
local error and fuzzy
clustering method.

Y Malone and
Searle
(2023)

https://doi.org/
10.25919/pm2n-ww12

Total Phosphorus % mass Updated Mass fraction of
total phosphorus
in the soil by
weight

Y Malone and
Searle
(2024)

https://doi.org/
10.25919/7j78-md43

Available
Phosphorus

mg/kg NEW The inherent (not
treated) plant
available P as
measured by
Colwell P method

− Random forest ML
modelling
− Uncertainties
quantified k-fold
cross-validation

N Zund (2022) https://doi.org/
10.25919/6qzh-b979

Cation Exchange
capacity

cmol(+)/kg NEW The total amount
of exchangeable
bases which are
mostly sodium,
potassium,
calcium and
magnesium
(collectively
termed as bases)
in non-acidic
soils and bases
plus aluminium
and hydrogen in
acidic soils.

− Integrative
random forest ML
modelling pairing
measured and
derived CEC data
from spatial
predictive function
based on soil texture
and soil carbon and
environmental
covariate data.
− Uncertainties
quantified through
local error and fuzzy
clustering method.

N Malone
(2022a)

https://doi.org/
10.25919/pkva-gf85

Other attributes
Australian soil
classes

Categorical
data

NEW Mapped classes
(14) to the Order
level of the
Australian Soil
Classification

Point support
with 90 m
grid cell
resolution.

− Random forest ML
modelling
− Uncertainties
expressed in terms
of confusion index

N Searle
(2021)

https://doi.org/
10.25919/vkjn-3013

Soil Colour RGB colour
space

NEW Surface and
subsoil estimated
of dry soil colour
according to
Munsell soil
colour classes

− Point
support with
90 m grid cell
resolution.
− Surface
and
dominant
subsoil
horizon.

− Random forest ML
modelling
− Predictands
derived from field
observations of soil
Munsell colour, then
convert to CIELAB
colour space for
modelling
− Prediction
uncertainties not

N Malone
(2022c)

https://doi.org/
10.25919/h5g4-qm95

(continued on next page)
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cells (~90 m × 90 m) across Australia, along with a broad range of
landscape and regolith attributes. All SLGA products use the World
Geodetic System 1984 (WGS84) datum. Version 1 of the SLGA produced
digital soil maps for 11 soil attributes, including bulk density, organic
carbon, soil texture (clay, silt, sand fractions), pH (CaCl2), available
water capacity, total nitrogen, total phosphorus, effective cation ex-
change capacity, and soil thickness. These maps were informed by the
National Soil Site Data Collation (Searle, 2014), consisting of 281,202
soil profile observations from CSIRO and state and territory soil survey
agencies. To enhance coverage and sample numbers, these data were
integrated with vis-NIR soil spectral libraries. Final products were
generated through a combination of site-data modelling (Viscarra Rossel

et al., 2015) and soil map disaggregation and attribution (Odgers et al.,
2014, 2015). Harmonized soil profile data conformed to depth intervals:
0–0.05 m, 0.05–0.15 m, 0.15–0.3 m, 0.3–0.6 m, 0.6–1.0 m, and 1.0–2.0
m.

SLGA Version 2 maintains consistency with Version 1 in terms of
datum, spatial resolution, and depth support, except for specific prod-
ucts, such as daily soil moisture mapping and soil colour, which use
alternative depth supports. While most products remain at a 3 arcsecond
resolution, some (e.g., soil organic carbon concentration) are also
available at 1 arcsecond (~30 m), and others (e.g., daily soil moisture
mapping) at ~ 30 arcsecond (1 km) resolution.

SLGA Version 2 comprises 24 soil attribute products, including

Table 1 (continued )

Soil Physical Properties

Attribute Units Status Description Depth and
Spatial
Support

Modelling
framework

Defined
model
extrapolation
risk

Reference Downloadable data link/
further information

quantified

Soil mapping library
optimised for
Habitat Condition
Assessment
System

As defined
for each
thematic
layer

NEW Remodelled
estimates of
selected SLGA
attributes with
efforts to
eliminate
anthropogenic
influences of
output maps

Point support
with 90 m
and 250 m
grid cell
resolution
products.
− Interval
depth
support for
layers: 0–30
cm, 30 cm-
maxiumum
soil
thickness.

− Random forest ML
modelling
− Uncertainties
quantified via
bootstrap method.

N Searle
(2023)

https://esoil.io/TERN
Landscapes/Public/Pro
ducts/TERN/NonAnthro
pogenic/

Pedogenons Categorical
data

NEW Conceptual taxa
that define
groups of
homogeneous
environmental
variables

Point support
with 90 m
grid cell
resolution.

− Unsupervised
classification (k-
means clustering) to
a set of state
variables, proxies of
the soil-forming
factors for a given
reference time.

N Román
Dobarco
et al. (2021)

https://doi.org/
10.25919/r8rv-8617

Library of DSM-
ready
environmental
covariates

As defined
for each
thematic
layer

NEW Library of
environmental
data at both 30 m
and 90 m
resolution,
aligned for data
modelling
purposes. Several
Australian
agency
contributions

Point support
with products
either at 30 m
or 90 m grid
cell
resolution.

The covariate
rasters (over 150) in
this dataset were
obtained from a
broad range of
original data
sources. All these
datasets are publicly
available. They
original data sets
were processed to
all have the same
spatial support for
the 90 m and 30 m
stacks respectively.

N Searle et al.
(2022a)

https://esoil.io/TERNLa
ndscapes/Public/Pa
ges/SLGA/GetData-COGS
DataStore.html

Soil thickness m Updated Estimate of
thickness of soils
to lithic contact
(Mostly A and B
horizon
thickness)

m − Integrated
modelling and
model combination
powered by random
forest ML modelling
− Uncertainties
quantified in terms
of exceedance
probabilities of soil
thickness occurring
beyond specified
depths.

N Malone and
Searle
(2020)

https://doi.org/
10.25919/djdn-5x77

Regolith depth m No update
performed

Depth to hard
rock. Depth is
inclusive of all
regolith

m − Cubist ML
modelling
− Uncertainties
quantified via
bootstrap method.

N Wilford et al.
(2016)

https://doi.org/10.422
5/08/55C9472F05295
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updates to the original 11 and three new product suites:

(1) Soil Moisture Information Processing System (SMIPS) (Stenson
et al., 2021).

(2) Soil mapping products for the National Habitat Condition
Assessment System (HCAS; Harwood et al. 2021), incorporating
customized mapping and depth specifications (Searle, 2023).

(3) A dataset of over 150 landscape covariates based on SCORPAN
factors (McBratney et al., 2003), including national climate data,
digital elevation models, geology mapping, geophysical surveys,
surficial geochemistry, and optical remote sensing products
(Searle et al., 2022a). These covariates have been post-processed
to ensure consistency in resolution, geometry, and extent, sup-
porting digital soil mapping tasks.

New products in SLGA Version 2 enhance modelling and under-
standing of soil water dynamics. These include maps of soil moisture
where soil water potential is equivalent to − 33 kPa and − 1.5 MPa
(Searle & Somarathna, 2022a; 2022b). These data supported the re-
development of the SMIPS unsaturated soil water flow model and
have broad applicability for studying soil moisture dynamics at a con-
tinental scale.

Additional products focus on carbon dynamics, including soil
organic carbon (SOC) fraction stocks, coarse fragments (Román Dobarco
et al., 2023b), and soil microbial diversity (Román Dobarco et al., 2022).
These products, along with enhanced mapping of soil carbon concen-
trations and bulk density, provide a robust foundation for process-based
modelling and assessment of soil carbon changes due to land manage-
ment and climate variability.

Version 2 also introduces mapping of soil types (Soil Order level)
following the 2nd Edition of the Australian Soil Classification (Searle,
2021), and mapping of dominant surface and subsurface soil colours
(Malone, 2022c). Furthermore, Pedogenon mapping offers a conceptual
framework for national soil assessment andmonitoring (Román Dobarco
et al., 2021). Pedogenons represent homogeneous environmental vari-
able groups, which, combined with land use intensity data, facilitate
realistic evaluations of soil conditions and functions (Román Dobarco
et al., 2023a).

3. Accessing SLGA Version 2 products

All collections within SLGA Version 2 are freely available under a
Creative Commons Attribution Licence (CC BY), permitting sharing,
adaptation, and use for any purpose. The datasets can be accessed
through two primary portals:

• CSIRO Data Access Portal: Search for “Soil and Landscape Grid”.
• TERN Data Portal: Soil datasets on TERN.

Products adhere to standardized naming conventions, and contin-
uous attributes comply with the precision requirements of Global-
SoilMap specifications (Arrouays et al., 2014). All raster data are
provided as Cloud Optimised GeoTIFFs (COGs), enhancing efficiency in
cloud storage, retrieval, and processing via features like internal tiling,
pyramidal storage, and HTTP Range Requests.

3.1. Data access and visualisation options

SLGA datasets can be accessed through several mechanisms tailored
for diverse user needs:

(1) GIS Download via Web Coverage Services (WCS)
Open GIS Consortium (OGC) WCS protocols enable direct

integration with most GIS platforms, allowing raster data to be
downloaded and saved locally. Access: GIS Downloads.

(2) Web Clipping Tool
Subset and download rasters via a web browser without addi-

tional software requirements, apart from a GIS tool for viewing
and analysis. Access: SLGA Viewer Tool.

(3) SLGACloud R Package
Programmatically retrieve datasets using the SLGACloud R

package, designed for efficient data access. Further details are
available on GitHub. See Appendix 1 for example scripts for using
SLGACloud to retrieve SLGA data

(4) API for Per-Pixel Data Access
The SLGA web service API (Application Programming Inter-

face) allows users to query specific locations by latitude and
longitude, returning soil attribute data without downloading full
datasets. This service supports formats tailored for open data and
specialized applications. Access: SLGA API.

The API is instrumental in applications such as:

• Research into climate change impacts on soil carbon (Luo et al.,
2019).

• Supporting drought policy through forecast-informed assessments
(ABARES, 2022).

• Providing real-time agricultural decision support tools, such as the
SoilWaterApp (Freebairn et al., 2018).

3.2. Transparency and community engagement

SLGA Version 2 emphasizes transparency, reproducibility, and
updatability through documented workflows and version-controlled
repositories, ensuring robust digital soil mapping (DSM) practices. The
associated production workflows are hosted on GitHub.

Additionally, a dedicated website serves as an information hub for
technical and general audiences, supporting the Australian digital soil
mapping community and aligning with the broader international digital
soil mapping community.

4. Notable advancements of SLGA Version 2

4.1. Soil data

4.1.1. SoilDataFederator
Australia benefits from having extensive publicly available soil

profile data observations and measurements, which support a growing
range of applications. The development of SLGA Version 1 (Grundy
et al., 2015) demonstrated the value of these datasets, which are
collected and managed by a diverse group of custodians across the
country. These custodians maintain data for their specific purposes,
often using disparate management systems. Historically, users seeking
to unify these datasets had to independently approach custodians, ac-
quire the data on a case-by-case basis, and transform it into a format
suitable for their application.

Data unification can conceptually range from centralised databases
to ad hoc collation efforts, such as the national Soil Site Data Collation
that supported SLGA Version 1. For SLGA Version 2 and future de-
velopments, a federation-based approach offers a more dynamic and
efficient solution for integrating and retrieving soil data from disparate
sources. This approach led to the creation of the SoilDataFederator
(SDF), a system where data remains with the original custodians but is
federated on demand into a consistent and usable format (Searle, 2020)
(Fig. 1).

The SDF is implemented as a web-based API developed in the R
programming language. It utilises the Plumber R package (Schloerke &
Allen, 2025) to expose a set of queryable RESTful API endpoints. Being
implemented as an API, users can use their programming language of
choice to access soil data via the API. Details about using the API are
available and code examples in the R language can be downloaded.

B.P. Malone et al.

http://creativecommons.org/licenses/by/4.0/
https://data.csiro.au/search/keyword?q=Soil%20and%20Landscape%20Grid
https://portal.tern.org.au/results?topicTerm=soil
https://esoil.io/TERNLandscapes/Public/Pages/SLGA/GetData-GIS.html
https://shiny.esoil.io/Apps/SLGAViewer/
https://github.com/AusSoilsDSM/SLGACloud
https://asris.csiro.au/ASRISApi/swagger/ui/index
https://asris.csiro.au/ASRISApi/swagger/ui/index
https://github.com/AusSoilsDSM/SLGA/tree/main/Production
https://aussoilsdsm.esoil.io/home
https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederatorHelp.html
https://esoil.io/TERNLandscapes/Public/Pages/SoilDataFederator/SoilDataFederatorR_Examples.R
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There is a SwaggerUI available to explore the syntax of the API. The API
accesses datasets that are already publicly available. The API is used to
query data over the internet via a standardised set of URLs with stand-
ardised parameters. Data can be returned in a range of formats but al-
ways in a standard form optimised for delivering data on a per attribute
basis. The SDF consists of a catalogue of available datasets and a series of
associated “backend” modules which query the individual data systems
and transform the data on the fly to the standard form.

The general workflow for a SDF request is that the user sends a
request via a URL to the API with a standard set of parameters defining
the soil attribute data to be retrieved. The API then transforms this
request into the specific format required to query each of the provider
datasets. The data provider data sources are made available in a range of
forms, including web APIs, database systems or static data files. There
are no standard format requirements for these data sources, with the one
exception being that the data source needs to be accessible to the SDF.
These requests are then sent to each of the data providers and data is
returned from the data sources in the native data structure of each in-
dividual provider. These variable format data responses are then
transformed into the standard data output structure of the SDF, merged
into a single response and returned to the requestor in JSON, XML or
CSV format.

There is work currently underway in Australia to develop a successor
soil data access platform called the Australian Soil Data Information
System (ANSIS). ANSIS will have similar but improved capabilities to
those of the SDF.

This federation approach streamlines access to Australia’s diverse
soil data, enhancing usability while respecting the autonomy of data
custodians.

4.1.2. Soil spectral libraries
The CSIRO National Soil Site Database (CSIRO, 2020) and the asso-

ciated National Soil Archive (https://www.csiro.au/en/research/n
atural-environment/land/soil-archive) house extensive soil data and
specimens collected across Australia. The archive includes over 32,000
specimens scanned with visible near-infrared (vis-NIR) spectrometers
and more than 4,000 scanned using mid-infrared (MIR) spectrometers,
capturing high-resolution diffuse reflectance data in the 350–2500 nm
and 1334–16,666 nm spectral ranges, respectively.

When paired with soil attribute data from CSIRO National Soil Site

Database, these spectral datasets enable the development of soil spectral
inference models, which often demonstrate high predictive accuracy
depending on the target analyte (Soriano-Disla et al., 2014). As in SLGA
Version 1 (Viscarra Rossel et al., 2015), data inferred from soil spectra
have been pivotal in filling gaps in sparsely sampled regions, contrib-
uting to updates in SLGA Version 2.

The development of new SOC fraction maps also leveraged mea-
surement data and MIR spectra from the Australian Soil Carbon
Research Program (SCARP; Baldock et al., 2013). These resources were
critical in producing new national products for SLGA Version 2.

Another significant asset is the vis-NIR soil spectral library associated
with soil specimens collected under the AusPlots program (Sparrow
et al., 2020). This initiative, part of the TERN Ecosystem Surveillance
platform, supports plot-based monitoring across Australia’s rangeland
environments. As of 2018, the library encompassed over 19,000 speci-
mens with vis-NIR spectra, including reference measurements for soil
attributes from 367 specimens (Malone et al., 2020). The inclusion of
this spectral library has been vital for SLGA Version 2, particularly in
addressing data gaps in remote and rangeland areas of the country.

These combined resources enhance SLGA Version 2′s capacity to
deliver improved national soil attribute mapping, leveraging cutting-
edge spectral methods to address data limitations effectively.

4.2. Landscape attributes

SLGA Version 2 includes a collection of terrain and landscape vari-
able datasets designed for use in digital soil mapping as well as broader
landscape modelling applications. These datasets encompass climate,
relief, geology, landcover, and their derivatives. While the original data
can be retrieved at native resolutions, this compilation provides stan-
dardized layers that ensure consistency in datum, spatial extent, and
resolution, simplifying workflows for tasks such as mapping soil layers
in SLGA Version 2. The data are available as rasters in 1-arcsecond (~30
m) and 3-arcsecond (~90 m) grid cell resolutions.

4.2.1. Terrain and elevation data
Terrain and elevation data are derived from the Shuttle Radar

Topography Mission (SRTM). For SLGA Version 2, these data were
processed by Gallant et al. (2011) for 1-arcsecond DEMs and Gallant
et al. (2009) for 3-arcsecond DEMs. Derivative terrain covariates follow

Fig. 1. Conceptual diagram of the SoilDataFederator web API.

B.P. Malone et al.
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the methods described by Gallant and Austin (2015) for the 1-arcsecond
products.

4.2.2. Climatology data
The climatology layers used in SLGA Version 2 are long-term

(1976–2005) summaries adjusted for elevation and radiation effects,
derived at 3-arcsecond resolution (Harwood et al., 2018). These replace
the 9-arcsecond climatology summaries used in SLGA Version 1, offering
improved spatial resolution and accuracy.

4.2.3. Gamma radiometric data
The SLGA Version 2 incorporates updated gamma radiometric data

from Geoscience Australia (Wilford and Kroll, 2018). These updates
feature new flight survey data and enhanced algorithms for addressing
voids in earlier maps, providing more complete and accurate radio-
metric information.

4.2.4. Optical remote sensing data
New remote sensing datasets have been integrated into SLGA Version

2. Derived from over 30 years of Landsat program data, these layers
were processed using a novel high-dimensional statistical method to
produce noise-reduced, cloud-free estimates of the spectral response
during the least vegetated (barest) states across Australia (Roberts et al.,
2019; Wilford and Roberts, 2020). The resulting data include bare-earth
reflectance values across key optical bands (e.g., red, green, NIR) and
several derived variables, such as normalized band ratios and PCA-
derived variables, optimized for identifying soil components like clays
and iron oxides.

4.2.5. Lithology data
A new dataset on simplified surface lithology classes (Gray et al.,

2016, unpublished) enhances geological information for digital soil
mapping. Lithology is categorized into 11 classes, including eight sili-
ceous material types (e.g., ultramafic to extremely siliceous) and three
non-alumino-silicate materials (calcareous, sesquioxide, and organic).
This streamlined classification improves the performance of geological
covariates in soil modelling tasks, as compared to less defined or overly
complex geological units. See Table 1 and follow relevant links there for
further information on this data resource.

4.2.6. Access and use
These libraries of covariate data can be accessed from the TERN

Landscapes platform, providing an essential resource for both soil and
landscape modelling projects. By standardizing and enhancing these
datasets, SLGA Version 2 supports a wide array of applications, from soil
attribute mapping to broader environmental and landscape analyses.

4.3. Modelling advancements

4.3.1. Quantitative improvements made with SLGA Version 2 products
SLGA Version 2 marks a significant advancement in data systems,

workflow transparency, and readiness for future updates to national soil
mapping products.

Table 2 provides a quantitative comparison between SLGA Versions
1 and 2, focusing on the data used in modelling and their associated
accuracies. Metrics include Lin’s concordance correlation coefficient
(CCC) and root mean square error (RMSE) for continuous variables, and
overall accuracy and, occasionally, the kappa coefficient for categorical
variables. These metrics summarize model performance and product
comparisons. Readers are encouraged to refer to the cited sources for
detailed descriptions of methods and additional evaluation approaches
specific to each SLGA Version 2 product.

Notably, SLGA Version 1 did not report Lin’s CCC values. To enable
quantitative comparison, Lin’s CCC values for Version 1 were calculated
using the external validation sets employed in Version 2. However, some
of the data used in the Version 1 CCC calculations may have contributed

to model development, potentially inflating these values for Version 1.
A suite of new approaches was applied in Version 2 to enhance the

previously created products, leading to improvements based on external
model evaluations. Real-time access to data through the SDF contributed
to significant increases in the data available for modelling. For instance,
the number of observations used for SOC mapping grew from over
43,000 in Version 1 to over 90,000 in Version 2, despite limiting the data
to between 1970 and 2020. This resulted in improved spatial pattern
capture at local levels given the product was modelled and created at 1-
arcsecond resolution (~30 m) (Wadoux et al. 2023).

For total phosphorus and nitrogen mapping, the number of available
data cases remained similar between the versions, but model accuracy
improved significantly. Concordance, measured by Lin’s CCC, increased
from 0.09 to 0.79 for total phosphorus and from 0.20 to 0.89 for total
nitrogen across all depth intervals. Additionally, Version 2 showed that
90 % of test data cases were encapsulated within the model’s prediction
envelopes at a 90 % confidence level, demonstrating a marked
improvement over Version 1, where discrepancies were larger.

Version 2 also addressed issues in soil texture modelling by
employing compositional data analysis, resolving summing in-
consistencies between clay, silt, and sand fractions. This improvement
contributed to a more accurate product compared to Version 1 and
SoilGrids Version 2 (Malone and Searle 2021b). Furthermore, the
modelling of soil thickness was refined, with Version 2 successfully
incorporating previously overlooked areas such as rock outcrops and
deep soils (Malone and Searle 2020).

In summary, SLGA Version 2 reflects clear advancements in terms of
data coverage, model accuracy, and systematic incorporation of uncer-
tainty quantification evaluations. These improvements underscore the
ongoing commitment by TERN and the Australian soil information
community to enhance soil spatial data, ensuring that users have access
to the most reliable information available at any given time.

4.3.2. Integration of soil morphological and field data into models
Integration, both in terms of models and data, has been a key feature

of SLGA Version 2. For example, the modelling of soil thickness (Malone
and Searle 2020) was achieved by integrating three models: one for
predicting rock outcrops, one for predicting deep soils, and one for
predicting thickness between these extremes. This integrated approach
was more effective in addressing the right-censored nature of soil
thickness data than standalone methods.

Another significant integration occurred through the incorporation
of field-observed data into digital soil mapping. Methods were devel-
oped to integrate field observations of soil texture with lab-based mea-
surements (Malone and Searle 2021b). An algorithm was created to
estimate complete soil profile characterizations from field hand texture
measurements (Malone and Searle 2021c). The uncertainty associated
with this process was incorporated into spatial modelling workflows
alongside lab measurements, which were treated as error-free. This
integration resulted in substantial improvements, with field observation
data contributing over 180,000 sites to the approximately 17,000 sites
from laboratory data alone.

For soil pHmapping (both 1:5 H2O and 1:5 CaCl2), large quantities of
field-measured data from Raupach’s indicator test method (Raupach
and Tucker 1959) were integrated into the spatial models. Over 55,000
field measurements were assessed, allowing the development of a
transfer model to relate field measurement data to pseudo-lab mea-
surements, with associated uncertainty. While laboratory measurements
of soil pH are more common in soil databases, the inclusion of field
measurement data significantly expanded spatial coverage and
increased depth information. For example, 45 % of sites with field data
had measurements deeper than 1 m, compared to only 29 % of sites with
lab data. Although field measurements are generally considered less
precise, when properly integrated, they help fill significant gaps in
spatial and vertical coverage. A direct comparison of SLGA Version 1
and Version 2 for soil pH (1:5 CaCl2) found modest improvements based

B.P. Malone et al.
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Table 2
Quantitative model evaluations based on external data of SLGA Version 2 and 1 digital soil mapping products. Where possible, numbers of data cases used in modelling
are provided (excluding test data) for each depth interval. Model evaluations focus on either Lin’s concordance correlation coefficient (CCC) and root mean square
error (RMSE), or for categorical variables, overall accuracy and sometimes the kappa coefficient (as indicated by * in row entries).

SLGA Version 2 SLGA Version 1

Attribute Units Depth
(cm)

Number of observations
used in spatial modelling

Lin’s CCC
or Overall
Accuracy

RMSE or
Kappa
Statistic

Number of
observations used in
spatial modelling

Lin’s CCC
or Overall
Accuracy

RMSE or
Kappa
Statistic

Further
information

Soil Physical Properties
Clay % mass 0–5 112 602 0.71 10.6 14 227 0.51 12.8 − Malone and

Searle (2021b,
2021c)
− Webpage: https:
//aussoilsdsm.esoi
l.io/slga-versi
on-2-products/soi
l-texture
− See Table 1 for
details on
accessing dataset.

5–15 111 804 0.72 10.8 14 095 0.51 13.1
15–30 107 055 0.69 12.8 12 970 0.46 15.2
30–60 101 032 0.66 14.0 12,290 0.41 16.4
60–100 82 033 0.63 13.5 10 560 0.40 15.4
100–200 50 016 0.63 13.5 6239 0.40 15.4

Silt % mass 0–5 112 602 0.44 5.8 14 227 0.36 7.9
5–15 111 804 0.50 5.2 14 095 0.39 7.7
15–30 107 055 0.49 5.1 12 970 0.37 7.1
30–60 101 032 0.43 5.0 12,290 0.33 6.6
60–100 82 033 0.37 5.2 10 560 0.27 6.9
100–200 50 016 0.34 5.0 6239 0.27 6.7

Sand % mass 0–5 112 602 0.72 13.1 14 227 0.54 16.4
5–15 111 804 0.73 13.1 14 095 0.53 16.8
15–30 107 055 0.70 15.0 12 970 0.49 18.7
30–60 101 032 0.68 15.9 12,290 0.47 19.1
60–100 82 033 0.64 16.0 10 560 0.45 18.8
100–200 50 016 0.64 15.6 6239 0.42 18.6

Volumetric soil
moisture at
–33 kPa
moisture
potential

% vol 0–5 Models of soil moisture
specified soil moisture
potentials and AWC were
based off 20,545 soil
profiles with these data.
Those data were estimated
for these profiles using a
pedotransfer function that
included soil texture, soil
organic carbon and bulk
density. The pedotransfer
function was constructed
from data collected at 1190
sites from across Australia
(Searle et al. 2022c)

0.87 4.19 − − − − Webpage: http
s://aussoilsdsm.
esoil.io/slga-versi
on-2-products/soi
l-hydraulic-prop
erties
− See Table 1 for
details on
accessing dataset.

5–15 0.87 4.22 − −

15–30 0.85 4.63 − −

30–60 0.82 4.85 − −

60–100 0.84 4.58 − −

100–200 0.82 4.59 − −

Volumetric soil
moisture at
− 1.5 MPa
moisture
potential

% vol 0–5 0.92 3.02 − − −

5–15 0.91 3.21 − −

15–30 0.88 3.69 − −

30–60 0.85 3.99 − −

60–100 0.87 3.74 − −

100–200 0.85 3.76 − −

Available
Water
Capacity

% 0–5 0.64 1.96 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 11,440
cases.

− −

5–15 0.63 1.86 − −

15–30 0.59 1.85 − −

30–60 0.61 1.73 − −

60–100 0.65 1.76 − −

100–200 0.50 1.69 − −

Bulk Density
(whole soil)

g/cm3 0–5 21 277 0.79 0.10 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 17,498 data
cases.

0.49 0.16 − Webpage:
https://aussoilsd
sm.esoil.io/sl
ga-version-2-prod
ucts/whole-soil
-bulk-density
− See Table 1 for
details on
accessing dataset.

5–15 21 277 0.80 0.09 0.47 0.14
15–30 14 973 0.70 0.11 0.52 0.13
30–60 9 456 0.79 0.08 0.43 0.13
60–100 7 880 0.79 0.07 0.38 0.13
100–200 3 940 0.79 0.06 0.49 0.10

Coarse
Fragments

% vol 0–5 95 380 67 0.39 − − − − Román Dobarco
et al. (2023b)
− Webpage:
https://aussoilsd
sm.esoil.io/slga-
version-2-prod
ucts/soc-fractions
− See Table 1 for
details on
accessing dataset.

5–15 100 625 66 0.38 − −

15–30 101 529 63 0.37 − −

Carbon Materials
Soil Organic
Carbon (30
m)

% mass 0–5 24 372 ​ 1.25 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 43,404 data
cases.

− − − Wadoux et al.
(2023)
− Webpage:
https://aussoilsd
sm.esoil.io/slga
-version-2-prod
ucts/total-soil-orga
nic-carbon-content
− See Table 1 for

5–15 24 055 ​ 1.07 − −

15–30 17 301 ​ 0.90 − −

30–60 10 378 ​ 0.74 − −

60–100 8 028 ​ 0.50 − −

100–200 4 592 ​ 0.38 − −

(continued on next page)
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Table 2 (continued )

SLGA Version 2 SLGA Version 1

Attribute Units Depth
(cm)

Number of observations
used in spatial modelling

Lin’s CCC
or Overall
Accuracy

RMSE or
Kappa
Statistic

Number of
observations used in
spatial modelling

Lin’s CCC
or Overall
Accuracy

RMSE or
Kappa
Statistic

Further
information

details on
accessing dataset.

Soil Organic
Carbon
Fractions:
MAOC

0–1 0–5 14 399 0.85 0.08 − − − − Román Dobarco
et al. (2023b)
− Webpage:
https://aussoilsd
sm.esoil.io/slga-
version-2-prod
ucts/soc-fractions
− See Table 1 for
details on
accessing dataset.

5–15 14 389 0.85 0.09 − −

15–30 13 078 0.82 0.10 − −

POC 0–5 14 399 0.80 0.07 − −

5–15 14 389 0.79 0.06 − −

15–30 13 078 0.74 0.07 − −

PyOC 0–5 14 399 0.89 0.08 − −

5–15 14 389 0.89 0.08 − −

15–30 13 078 0.87 0.09 − −

Soil Chemical attributes
Soil pH (1:5
water)

pH units 0–5 140 834 0.69 0.67 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 132,226
data cases.

Digital soil mapping
product for this
attribute was not
published.

− Webpage: https
://aussoilsdsm.eso
il.io/slga-versio
n-2-products/so
il-ph-15-water
− See Table 1 for
details on
accessing dataset.

5–15 139 828 0.74 0.62
15–30 133 280 0.73 0.69
30–60 125 805 0.73 0.75
60–100 102 809 0.73 0.83
100–200 61 759 0.73 0.86

Soil pH (1:5
CaCl2)

pH units 0–5 134 358 0.68 0.70 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 81,123 data
cases.

0.53 0.83 − Webpage: https
://aussoilsdsm.eso
il.io/slga-versio
n-2-products/so
il-ph-15-cacl2
− See Table 1 for
details on
accessing dataset.

5–15 133 442 0.73 0.65 0.59 0.78
15–30 128 245 0.70 0.74 0.62 0.82
30–60 120 193 0.71 0.80 0.64 0.88
60–100 97 271 0.72 0.86 0.63 0.97
100–200 57 871 0.71 0.89 0.59 1.05

Total Nitrogen % mass 0–5 7197 0.83 0.09 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 43,721 data
cases.

0.41 0.15 − Webpage: htt
ps://aussoilsdsm.
esoil.io/slga-versio
n-2-products/total
-soil-nitrogen
− See Table 1 for
details on
accessing dataset.

5–15 6963 0.89 0.07 0.31 0.14
15–30 6421 0.89 0.06 0.22 0.13
30–60 4380 0.89 0.06 0.09 0.17
60–100 3302 0.94 0.05 0.07 0.15
100–200 1861 0.61 0.06 0.11 0.08

Total
Phosphorus

% mass 0–5 8911 0.79 0.06 From Viscarra
Rossel et al. (2015)
models were
constructed from a
pool of 55,915 data
cases

0.09 ​ − Webpage: https
://aussoilsdsm.eso
il.io/slga-versio
n-2-products/total
-soil-phosphorus
− See Table 1 for
details on
accessing dataset.

5–15 8896 0.76 0.05 0.16 0.08
15–30 9179 0.81 0.04 0.15 0.07
30–60 8829 0.80 0.04 0.15 0.07
60–100 7770 0.77 0.04 0.10 0.07
100–200 5982 0.77 0.05 0.14 0.07

Available
Phosphorus

mg/kg 0–5 13 948 0.52 24 − − − − Webpage: http
s://aussoilsdsm.
esoil.io/slga-versi
on-2-products/avai
lable-phosphorus
− See Table 1 for
details on
accessing dataset.

5–15 13 948 0.51 19 − −

15–30 12 311 0.24 14 − −

30–60 10 568 0.25 10 − −

60–100 9969 0.35 6 − −

100–200 8930 0.16 11 − −

Cation
Exchange
capacity

cmol(+)/kg 0–5 17 366 0.78 7.56 − − − − Webpage: https
://aussoilsdsm.eso
il.io/slga-versio
n-2-products/catio
n-exchange
-capacity
− See Table 1 for
details on
accessing dataset.

5–15 17 128 0.74 8.72 − −

15–30 11 981 0.78 7.63 − −

30–60 8453 0.77 7.96 − −

60–100 6583 0.75 7.96 − −

100–200 3954 0.83 7.55 − −

Other attributes
Australian soil
classes

Categorical
data

​ 195 383 61 − ​ − − − Webpage: https
://aussoilsdsm.eso
il.io/slga-versio
n-2-products/austr
alian-soil-classific
ation-map
− See Table 1 for

(continued on next page)
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on concordance evaluations (Table 2). Despite the increase in data and
improvements in machine learning capabilities, challenges remain in
modelling soil pH, particularly due to land management practices
influencing pH in ways that are difficult to account for with available
covariate data. The accuracy of subsoil pH modelling also remains
challenging, as models typically decrease in accuracy with depth,
compounded by difficulties in assembling appropriate covariate data (e.
g., geological or lithological data) to improve estimates.

Additional soil morphological data integrated into SLGA Version 2
included soil colour (Malone 2022c) and coarse fragment data (Román
Dobarco et al. 2023b). These attributes are critical for soil classification
and estimating SOC stocks. They are commonly observed in the field and
are well-represented in soil databases. When appropriately mapped,
these data provide valuable contributions to models and processes that
rely on such attributes.

4.3.3. Spatial prediction functions to expand data coverage of difficult to
measure soil attributes

Several important soil attributes are difficult and time-consuming to
measure, resulting in limited collections of attributes like soil hydraulic
properties and bulk density in soil databases, despite their relevance in
soil moisture studies and SOC fraction estimations. SLGA Version 2
addressed this data sparsity through the use of pedotransfer functions
and spatial prediction models. Pedotransfer functions infer difficult-to-
measure soil attributes using more commonly measured, easier-to-
collect data. Searle and Somarathna (2022a, 2022b) effectively
applied these functions to model and map soil water drained upper and
lower limits by leveraging the more widely available data on soil
texture, organic carbon, and bulk density.

For mapping whole soil bulk density (Malone 2023) and cation ex-
change capacity (CEC) (Malone 2022a), a spatial prediction approach
was used. This method first exploited the relationships between these
attributes and more easily measured variables, such as soil texture and
organic carbon, and then modified the models using environmental
covariate data. While pedotransfer functions are typically limited to the
data and region from which they are developed (Van Looy et al. 2017),
incorporating spatial environmental covariates and machine learning
techniques allows for greater applicability across different regions and
facilitates the use of larger soil databases.

The integration of actual and inferred data, coupled with an
expanded suite of environmental covariate predictors, led to consider-
able improvements in the estimation of whole soil bulk density

compared to Version 1, as indicated by model evaluations with test data
(Table 2). For both CEC and bulk density mapping, the machine learning
process accounted for the inherent imprecision of the inferred data,
ultimately quantifying uncertainties in the final estimates. Despite some
increased uncertainty due to the integration of less precise data, pre-
diction interval ranges were narrower for bulk density in Version 2
compared to Version 1. Evaluation of the uncertainties, based on pre-
diction interval coverage probability plots, indicated that the quantified
uncertainties were appropriately defined.

4.3.4. Uncertainty quantification
Uncertainty quantification is a crucial aspect of digital soil mapping.

In SLGA Version 2, several approaches were employed to quantify un-
certainty for continuous soil attributes, including non-parametric boot-
strapping (Wilford et al. 2016), prediction intervals via quantile
regression forests (Vaysse and Lagacherie 2017), and a local errors and
fuzzy clustering method (Solomatine and Shrestha 2009). The choice of
quantification method did not demonstrate a clear advantage over the
others, except that both the non-parametric and local errors and fuzzy
clustering approaches can be applied universally to any machine
learning algorithm.

One drawback of using non-parametric bootstrapping is its high
computational demand, as it requires multiple model iterations and
extension to covariate data for mapping. Additionally, internal testing
revealed that the variance attributed to sampling data with replacement
during model iterations was minimal, with the bulk of variance (at least
95 %) being attributed to systematic (bias) and random errors, as esti-
mated from external data. This resulted in relatively uniform prediction
interval widths at each mapping grid cell.

The local errors and fuzzy clustering approach, by contrast, is
computationally less demanding. Importantly, this method allows pre-
diction intervals to be defined based on the landscape setting. In this
way, model errors can vary between locations depending on the attri-
butes of the landscape at each site. This is particularly useful at a na-
tional scale, where considerable variability exists in soil-forming factors.
The local errors and clustering approach, therefore, offers desirable
properties compared to non-parametric bootstrapping for uncertainty
quantification in such diverse landscapes.

For categorical variables, such as soil classes, uncertainties were
expressed as probabilities using the random-forest algorithm’s built-in
method. For soil thickness, a continuous attribute, uncertainties were
expressed in terms of exceedance probabilities, indicating the likelihood

Table 2 (continued )

SLGA Version 2 SLGA Version 1

Attribute Units Depth
(cm)

Number of observations
used in spatial modelling

Lin’s CCC
or Overall
Accuracy

RMSE or
Kappa
Statistic

Number of
observations used in
spatial modelling

Lin’s CCC
or Overall
Accuracy

RMSE or
Kappa
Statistic

Further
information

details on
accessing dataset.

Soil Colour CIELAB
colour space

Topsoil L 129 153 61 0.31 ​ − − − Webpage: https
://aussoilsdsm.eso
il.io/slga-versio
n-2-products/soil
-colour
− See Table 1 for
details on
accessing dataset.

Topsoil A 129 153 0.81 2.69 − −

Topsoil B 129 153 0.55 5.05 − −

Subsoil L 113 381 46 0.29 − −

Subsoil A 113 381 0.72 4.84 − −

Subsoil B 113 381 0.48 8.84 − −

Soil thickness m Rock
Outcrops

184 197 99 0.88 ​ − − − Malone and
Searle (2020)
− Webpage: https
://aussoilsdsm.eso
il.io/slga-version-
2-products/soil-th
ickness
− See Table 1 for
details on
accessing dataset.

Deep Soil
(>2m)

277 943 85 0.64 − −

0–2 m 184 197 0.77 0.26 − −

B.P. Malone et al.
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that soil thickness exceeds a given depth threshold. This approach was
deemed appropriate, given that a significant proportion of the data were
right-censored due to the nature of soil sampling (Malone and Searle
2020).

4.3.5. Quantifying model extrapolation risk
The assessment of digital soil mapping models in terms of their

ability to operate outside the spatial domain of sample points used for
training is central to quantifying extrapolation risk. This topic has been
extensively researched and explored through various approaches.
Lagacherie et al. (1995) developed a quantitative and probabilistic
assessment method for automating the extension of soil pattern rules
from a reference area to unmapped regions. Grinand et al. (2008) used a
classification and regression tree algorithm to test the extent to which
predictions could remain valid beyond the training domain. More recent
approaches have involved distance-based methods (Malone et al. 2019;
Meyer and Pebesma 2021) and hull-based methods (van den Hoogen
et al. 2019). Distance-based methods calculate the differences between
the multidimensional space of model training data and the entire pre-
dictor space. Hull-based methods, on the other hand, project the broader
multidimensional predictor space into convex hull geometries defined
by the model training data.

For SLGA Version 2, a combination of these methods was used to
assess extrapolation risk. The hull-based method (multidimensional
convex hull assessment, van den Hoogen 2019) served as a binary “in/
out” estimator to determine if a mapping pixel lies outside the domain of
the multidimensional covariate used for model training. This was paired
with the distance-based count-of-observations method (Malone et al.
2019), which counts the number of training data observations with a
near-pattern match at each mapping grid cell. The hull-based method is
computationally efficient, providing a quick assessment where data
points outside the convex hulls do not match any training data, given a
distance threshold. The count-of-observations method, though more
computationally intensive, offers a significant advantage: it is not bi-
nary, allowing for the quantification of gradients of risk.

Fig. 2 illustrates the outputs from the combined hull assessment and
count-of-observations methods. The distribution of data points across
Australia is shown, with measurements from 6,116 sites with directly
measured bulk densities, as well as 15,735 sites where bulk density was
inferred using a spatial prediction function. The extrapolation risk maps
reveal a clear disparity in the available training data for capturing
environmental variation at depth. The model data space appears rela-
tively consistent with the data space for the 0–5 cm depth interval,
indicating a high concentration of measurements near the surface.
However, for the 100–200 cm depth interval, there are notably fewer
measurements, suggesting a higher level of extrapolation risk for deeper
soil layers.

While these methods effectively illustrate disparities in observation
data across different soil depths and provide a useful assessment of
training data relative to the broader multivariate data space, they must
be linked to uncertainty quantification approaches and the type of
model used. Factors such as the coefficient of variation and the differ-
ences between surface and subsoil observations need to be considered,
as some attributes vary depending on whether the measurements are
taken near the surface or at greater depths in the soil profile. Addi-
tionally, the contribution of covariates in the model may vary across
depth intervals, meaning the current assumption of equal covariate
contributions in the paired approach may not be realistic. Nonetheless,
the work undertaken for SLGA Version 2 model extrapolation risk as-
sessments has laid the foundation for integrating these workflows into
the national digital mapping system. This helps address broader scien-
tific concerns regarding the use of sparse and potentially non-
representative reference data in map generation, particularly in the
context of increasing reliance on machine learning for predictive tasks
(Meyer and Pebesma 2022).

Fig. 2. Top map shows the distribution of site observations of measured (red
dots) and inferred (grey dots) data about whole soil bulk density. Middle and
bottom maps show the potential model extrapolation risk for the 0–5 cm and
100–200 cm depth layers respectively. The color ramp ranges from dark blue
(low extrapolation risk) to yellow (high extrapolation risk). Extrapolation risk
was quantified through combination of convex hull and distance measurement
approaches. Low risk means available model data adequately covers landscape
features, while high risk means few available data on hand to cover landscape
variability, and therefore reliance on model estimates should be moderated.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

B.P. Malone et al.
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4.3.6. An improved soil carbon materials package to advance data-driven
spatio-temporal modelling

SLGA Version 2 products, including updated SOC and whole soil bulk
density mapping, along with new soil coarse fragment mapping, provide
an enhanced data suite for national carbon accounting inventories. At
regional and local scales, the development of 30 m resolution SOC
mapping will complement baseline measurements for soil carbon
auditing programs. Future national efforts to monitor soil carbon
changes will be significantly informed by the new SOC fraction map-
ping. Additionally, the new microbial diversity mapping will serve as a
foundation for investigations into the functional traits of microbial
populations and their role in driving carbon and nutrient cycles across
large spatial scales.

4.3.7. Soil moisture integration and prediction system
The SMIPS provides a systematic modelling and predictive platform

offering daily estimates of plant-available soil moisture to a depth of 90
cm at a 1 km spatial resolution. This represents a significant advance-
ment for the SLGA, enhancing its ability to deliver spatiotemporal soil
information to end-users and marking the initial steps in a staged
approach to soil system dynamics. Fig. 3 presents a snapshot of the
interactive SMIPS data visualization and download tool.

The SMIPS system is primarily driven by a two-layered soil water
balance model based on the methodology outlined inWimalathunge and
Bishop (2019). The model consists of two linked soil moisture stores: a
shallow 10 cm upper store, which responds quickly, and a deeper 80 cm
lower store, which responds more slowly. The soil water parameter-
s—soil moisture at –33 kPa and − 1.5 MPa soil water potential —
developed for SLGA Version 2, provide the boundary conditions for
plant-available water fluxes. The lower limit of soil moisture is defined

by air-dry soil moisture, derived using SLGA cation exchange capacity
data and the Shaw (1994) methodology, while the upper limit is set by
soil saturation, derived using SLGA bulk density data and McKenzie
et al. (2002). The total available soil moisture at all locations is further
constrained by soil thickness estimates. Internal soil drainage, runoff,
and deep drainage parameters are functions of soil texture and bulk
density, calibrated through simulation experiments using soil moisture
sensor data distributed across Australia (Stenson et al. 2018).

The SMIPS model incorporates precipitation and potential evapo-
transpiration data from the Bureau of Meteorology’s AWRA (Australian
Water Resources Assessment) model (Frost et al. 2016). To enhance
model accuracy, the internal states of the upper layer are adjusted (with
a 50 % weighting) using observational data from the European Space
Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite mission.
SMOS data are available at a 3-day temporal resolution across the entire
country. The model processes for SMIPS are shown in Fig. 4.

Further refinements to SMIPS are currently underway, incorporating
new climate forcing data and entailing more extensive evaluations of the
model’s predictive performance.

4.3.8. Establishing the basis for a national soil monitoring program
Soil monitoring networks are essential for establishing baselines,

tracking the status and trends of soil resources, and facilitating early-
warning systems that identify and delineate soil threats. At their core,
soil monitoring is critical for supporting evidence-based policies aimed
at incentivizing sustainable soil management (Van Leeuwen et al. 2017).
Priority Action 1 of the Australian National Soil Action Plan (DAFF
2023) emphasizes the need for a national framework to support mea-
surement, monitoring, mapping, reporting, and sharing of soil state and
trend information, which in turn informs best practices, decision-

Fig. 3. Snapshot of the SMIPS data portal (https://shiny.esoil.io/SMIPS/) for basic visualization and download of daily soil moisture estimates across Australia for
0–90 cm depth and 1 km grid cell resolution.

B.P. Malone et al.
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making, and future investment. Given this context, the question arises:
what should a national soil monitoring program for Australia look like?

There is no one-size-fits-all approach to establishing soil monitoring
networks, but their design typically follows a set of established princi-
ples, shaped by the specific objectives they aim to achieve. Broadly,
there is consensus that land management impacts on soils are not uni-
form, as they are influenced by both the inherent properties of the soil
and variations in local settings. A key design principle is, therefore, to
select sites based on shared soil and landscape attributes, regardless of
land management practices, and compare these sites with others in the
same setting that are considered undisturbed. Frameworks such as the
Soil Security Assessment Framework (Evangelista et al. 2023), the Soil
Health Assessment Protocol and Evaluation Tool (Nunes et al. 2021),
and the more specialized ‘Soil Health Gap’ approach focused on soil
carbon (Maharjan et al. 2020) all emphasize the need for establishing a
reference condition. Román Dobarco et al. (2023a) introduced the
concept of “Genosoils”—soils least affected by contemporary anthro-
pogenic pressures—against which “Phenosoils” (soils impacted by land
use and management) can be compared. The differences between these
soils are primarily determined by land management practices, making it
more realistic to infer changes and potential change trajectories when
soils share common soil and landscape conditions.

A soil monitoring program built upon these assessment frameworks
would begin with Pedogenon mapping (Román Dobarco et al. 2023a),
followed by the delineation of Genosoils and Phenosoils within these
Pedogenon Units. SLGA Version 2 enables the development of methods
and mapping approaches to define these Pedogenon Units as a founda-
tion for a future national soil monitoring program. Pedogenon classes
aim to group homogeneous environmental variables that act as proxies
for soil-forming factors at a given reference time (e.g., the time of Eu-
ropean settlement in Australia). These units represent soil systems in
quasi-steady state, shaped by the combination of soil-forming factors at
the selected time (Román Dobarco et al. 2021). The assumption is that in
large areas where soil-forming factors are consistent, pedogenetic

processes would have been relatively uniform, leading to the develop-
ment of soils with similar properties. Pedogenon classes can then be
divided into subclasses along a gradient, from less anthropogenically
impacted soils (Genosoils) to those more influenced by human activity
(Phenosoils).

5. General discussion

At the start of the SLGA update program, scientists and practitioners
from across Australia and internationally gathered to assess the progress
and future of digital soil mapping. Kidd et al. (2020) examine the drivers
that have transitioned digital soil mapping from a research-focused tool
to an operational resource used by soil mapping agencies and private
entities. The foundation for quantitative soil mapping began in the 1960
s with numerical soil taxonomy and multivariate analysis to study soil
variation (Lee 1998). With vast land areas and limited soil data, geo-
statistical methods evolved into digital soil mapping (McBratney et al.
2003), utilizing data sources like digital elevation models and remote
sensing.

Kidd et al. (2020) also review the SLGA alongside other digital soil
mapping projects in Australia, highlighting the shared need for detailed
soil information to address climate, ecosystems, and food production
challenges. Grundy et al. (2020) extended this analysis by assessing
seven case studies, including the SLGA, using an impact assessment
framework to quantify the benefits of digital soil mapping. Their find-
ings revealed that impact pathways for these projects are often complex,
with the SLGA’s openness enabling widespread data access while
complicating the tracking of specific uses and benefits. Despite this, the
high demand for soil data is evident through frequent downloads and
widespread scientific applications. As digital systems integrate further
into diverse sectors, the SLGA’s influence is expected to grow.

Searle et al. (2021) surveyed soil scientists on the future of digital soil
mapping, emphasizing the importance of technological advancements
and the rising demand for soil experts with digital and data science

Fig. 4. SMIPS model flow chart showing processes modelled in each of the two layers.
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skills. Emerging fields such as human health, climate change, food
provenance, and ecosystem services are expected to drive an even
broader user base for digital soil data.

As previously noted, this revision of the SLGA represents potentially
the first update of digital soil mapping products at a continental scale.
Conceived as a dynamic data system, the SLGAwas designed to evolve as
new data and methods became available. Realizing this vision requires
long-term resource commitments. The recent SLGA revision was
significantly supported by consistent funding from TERN, under the
Australian Government’s National Collaborative Research Infrastruc-
ture Strategy. This stable funding enabled researchers to maintain close
collaborative working relationships, learn from previous iterations,
share knowledge and experiences, and sustain a vibrant community of
practice. These factors were crucial in improving this national data
resource and ensuring its ongoing relevance.

6. Conclusions

The development of SLGA Version 2 builds on over 80 years of efforts
to create national soil mapping products that benefit Australian society.
Digital soil mapping has proven to be a valuable tool, providing quan-
titative insights into soil attributes at specific depths with greater
granularity. One key advantage is the transparency of the process,
allowing for continuous refinement and improvement. The update to
SLGA Version 1 within 10 years highlights the advancements in enabling
technologies and the ongoing commitment of TERN and the Australian
soil information community to continuous improvement. SLGA Version
2 is not only broader in scope but also more efficient, setting the stage for
future updates and enhancements. SLGA Version 3 is already underway.
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