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H I G H L I G H T S G R A P H I C A L A B S T R A C T

• At 800 km from the target, satellite data
unveil key soil information.

• Intrinsic soil image reflectance accu-
rately detected several soil spectral
patterns.

• Satellites indicated a relative spectral
similarity with terrestrial observation
data.

• The GEOS3 system revealed 90 % of
bare soil from agricultural areas
worldwide.

• Bare soil pixels represent an unprece-
dented proxy at the service of society.

A R T I C L E I N F O

Editor: Christian Herrera

Keywords:
Soil reflectance spectra
Soil security
Earth observation
Digital soil mapping
Agri-environmental policy

A B S T R A C T

Soils provide a range of essential ecosystem services for sustaining life, including climate regulation. Advanced
technologies support the protection and restoration of this natural resource. We developed the first fine-
resolution spectral grid of bare soils by processing a spatiotemporal satellite data cube spanning the globe.
Landsat imagery provided a 30 m composite soil image using the Geospatial Soil Sensing System (GEOS3), which
calculates the median of pixels from the 40-year time series (1984–2022). The map of the Earth’s bare soil covers
nearly 90 % of the world’s drylands. The modeling resulted in 10 spectral patterns of soils worldwide. Results
indicate that plant residue and unknown soil patterns are the main factors that affect soil reflectance. Elevation
and the shortwave infrared (SWIR2) band show the highest importance, with 78 and 80 %, respectively, sug-
gesting that spectral and geospatial proxies provide inference on soils. We showcase that spectral groups are
associated with environmental factors (climate, land use and land cover, geology, landforms, and soil). These
outcomes represent an unprecedented information source capable of unveiling nuances on global soil conditions.
Information derived from reflectance data supports the modeling of several soil properties with applications in
soil-geological surveying, smart agriculture, soil tillage optimization, erosion monitoring, soil health, and climate
change studies. Our comprehensive spectrally-based soil grid can address global needs by informing stakeholders
and supporting policy, mitigation planning, soil management strategy, and soil, food, and climate security
interventions.

1. Introduction

Soil is essential for sustaining life on Earth and influences changes in
climate, water, and food systems, as well as ecosystem services and
biodiversity (Lal, 2014; Jónsson and Davíðsdóttir, 2016; Evangelista
et al., 2024). Nevertheless, soil is one of the Earth’s systems most
threatened by human activities and requires monitoring to ensure its
protection and restoration. The Food and Agriculture Organization
(FAO) of the United Nations addresses ten processes that lead to global
soil degradation including erosion, organic carbon loss, nutrient
imbalance, acidification, contamination, waterlogging, compaction,
sealing, salinization, and biodiversity loss (FAO and ITPS, 2015). These
processes are exacerbated by intensive human exploitation, urban
spread, unsuitable land-use practices, and climate change (Lal, 2014).
Therefore, soil mapping is crucial to find ways to manage soil for agri-
culture and ecosystem resilience. Importantly, most of the processes
mentioned above occur on the soil surface which is seen by remote
sensing (RS).

This geotechnology is particularly useful for observing the soils when
utilizing the visible-near-infrared (VNIR) and short-wave infrared
(SWIR) spectral ranges (400–2500 nm). Optical RS allows rapid, high-
resolution, and direct measurements of electromagnetic radiation
(EMR) that express the chemical and physical information about the
sensed object (Stenberg and Viscarra-Rossel, 2010). Viscarra Rossel
et al. (2016) demonstrated relationships between various soil properties
and soil spectra via EMR interaction with soil in field and laboratory

settings, laying the foundation for soil spectral modeling at continental
and global scales. The next step was to integrate soil spectral libraries
(SSLs) in laboratory and field domains (Francos and Ben-Dor, 2022).
This made it possible to fuse the spectral data from the ground and
satellites, leveraging the cloud computing to predict soil attributes
(Novais et al., 2025). Modeling studies enabled the creation of a global-
scale soil reflectance grid at finer spatial resolutions (30 m) thereby
enhancing applications such as land-use planning and precision
agriculture.

Despite such progress in the soil spectral sensing domain, several
issues that constrain upscaling from laboratory to field and global scale
needed to be addressed. For instance, Francos and Ben-Dor (2022)
proposed to identify a transfer function to scale sensing from laboratory
to field and then to RS. Having overcome some challenges, a temporal
imaging system was initiated, where a first attempt was performed by
Demattê et al. (2016), on a municipal scale. Afterward, Gallo et al.
(2018) improved the system at a regional scale. Demattê et al. (2018)
implemented an automated system in the Google Earth Engine web
platform (Gorelick et al., 2017). The modeling algorithm is named the
Geospatial Soil Sensing System (GEOS3), which generates a product (the
image), named Synthetic Soil Image (SySi). Simultaneously, a great
automatized work was performed by Rogge et al. (2018) named Soil
Composite Mapping Processor (SCMaP) at a country scale. Finally,
Demattê et al. (2020) applied the GEOS3 to the global domain. This was
tested for the Middle East (Poppiel et al., 2020), Europe (Safanelli et al.,
2020) and Brazil (Safanelli et al., 2021). Rosin et al. (2023) went further
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and upgraded GEOS3 to fill the gaps in areas without bare soil exposure,
reaching a continuous predicted bare soil image.

Wesemael et al. (2024) performed with a similar approach, rather
with different techniques to a continental scale using cloud and
distributed computing, and following a two-pronged approach: one for
detecting bare soils and predicting soil organic carbon (SOC) from the
soil spectra and one for the permanent vegetated areas (grasslands and
woodlands). One key difference between the techniques is that the GEOS
system consistently combines laboratory spectra with satellite data,
while Wesemael’s approach relied on Sentinel-2 imagery, unlike GEOS,
which used Landsat. Moreover, Wesemael’s approach used satellite data
fromMarch to October which includes months where rainfall takes place
in many parts of Europe. Additionally, Wesemael’s method employed
independent validation in specific regions across Europe, whereas GEOS
performed field validations, often correlating image patterns with
extensive soil mapping campaigns. Another distinction lies in the
thresholding techniques for bare soil detection. GEOS applies static
thresholds for the spectral indices (i.e., NDVI and NBR2), while the
SCMaP employed byWesemael uses a histogram-based method to create
custom thresholds for each Sentinel-2 tile independently, enhancing
regional adaptability. These differences highlight the unique contribu-
tions and scopes of each system.

Numerous studies demonstrated RS-informed characterization of soil
attributes such as organic carbon (Novais et al., 2025; Tziolas et al.,
2020b; Vaudour et al., 2022), texture (Gomez et al., 2022), color (Rizzo
et al., 2023), micro aggregation (Ben-Dor et al., 2023), and mineralogy
(Rosin et al., 2023). Indeed, all this progress in soil spectral modeling
has been made possible due to the integration of RS and extensive soil
databases. The mosaics formed by RS images permit the fine-scale and
contiguous mapping of soils, thereby addressing the limitations of non-
contiguous approaches that rely on indirect proxies such as relief (Levin
et al., 2004). Furthermore, mosaics of RS serve as proxies for soil-
forming factors (McBratney et al., 2018). It is particularly useful in
characterizing the spatiotemporal variations of dynamic soil-forming
factors such as vegetation, biota, climate, and soil hydrology
(Grunwald, 2021). Moreover, a long-term 40-year time series reveals
trends and changes in the landscape, such as erosion, vegetation dy-
namics, and soil moisture variations, enabling the assessment of soil
degradation, carbon dynamics, and restoration impacts (Mello et al.,
2023). The potential digital soil mapping (DSM) usage remarks this as a
significant step forward in soil science. Despite these advances, chal-
lenges remain in algorithm development and region-specific soil mea-
surement needs.

Despite soil maps being available worldwide, most of them are rep-
resented by a coarse spatial resolution, non-contiguous, and restricted to
a specific area, forming a vast puzzle with missing pieces. As soils pre-
sent a huge arrangement with gradual changes, the current map tech-
niques overgeneralize soil nuances. Problems such as gaps, obsolescence
of data, and different production and validation techniques can hamper
comprehensive soil monitoring (Safanelli et al., 2021). Furthermore,
there are different approaches to soil mapping from classical surveys to
DSM by remote sensing techniques as well as more recent DSM incor-
porating bare soil reflectance (Richer-de-Forges et al., 2023). In addi-
tion, the global soil cartographic information available is limited to a
coarse-scale resolution, typically >1:1,000,000 (Arrouays et al., 2020;
Poggio et al., 2021). Such scales also tend to disregard essential details,
such as fragile soils, salt pans, or rocky outcrops. However, accurate soil
information is essential for management zoning or precision agriculture
(Greschuk et al., 2023). A comprehensive dataset enables effective
management from a farm to a global scale.

The most detailed global-scale soil attributes mapping dataset
currently available is the SoilGrid, with a spatial resolution of 250 m
made with DSM techniques (Poggio et al., 2021). It is important to note
that the original data used to create the maps are point-based, while
DSM, which emerged in the early 2000s (McBratney et al., 2003;
Lagacherie et al., 2006), mobilizes techniques to extrapolate the

observations for unsampled areas. In the DSM approach, it is assumed
that spatially continuous covariates represent soil-forming factors. As
McBratney et al. (2018) demonstrated, this approach offers a relatively
efficient, cost-effective, and environmentally conscious alternative to
traditional soil mapping methods even over vegetated areas. Models
such as machine learning (ML) algorithms can be used in DSM, which
encompasses the spatial modeling of soil properties (Ma et al., 2019;
Padarian et al., 2019; Khaledian and Miller, 2020; Wadoux et al., 2020;
Grunwald, 2021). Optical RS time series have several challenges (i.e.,
clouds and field features such as straw, soil moisture, and rocks), which
interfere with the soil spectral signature as observed in the laboratory
(Ben-Dor et al., 2009).

The indicated temporal image techniques have made efforts to avoid
most of these issues, and more will come with new hyperspectral sat-
ellite systems that are starting to be applicable from Earth orbit such as
the current Earth Surface Mineral Dust Source Investigation (EMIT),
PRecursore IperSpettrale della Missione Applicativa (PRISMA), Envi-
ronmental Mapping and Analysis Program (EnMAP), Copernicus
Hyperspectral Imaging Mission for the Environment (CHIME), and
Surface Biology and Geology (SBG). These sensors have great spectral
resolution, yet limited temporal repetition, making it difficult to perform
mapping that relies on change detection. On the other hand, multi-
spectral sensors, such as Landsat with 40 years of temporal information
can depict sequential imagery of soils with and without tillage coverage.
Accordingly, despite Landsat’s low spectral and spatial resolutions
(30–60 m) outperforms other RS in terms of its temporal resolution.
Most literature shows that Landsat spectra are useful due to their strong
correlation with soil properties, especially clay content (Fongaro et al.,
2018) and carbon content (Padarian et al., 2022).

This work aimed to construct a global soil spectral grid (30 m spatial
resolution) to identify the spatial variability of the world’s soil patterns
in dependence on several spatially and temporally varying environ-
mental factors, using Landsat data. We consider the possible spatio-
temporal relationships to monitor kinetic processes on the Earth’s bare
surface with implications for agriculture and environmental science, soil
management, and climate change mitigation strategies (Ortiz-Bobea
et al., 2021). To achieve this goal, we combine data from extensive SSL,
wet laboratory soil analyses, and optical Earth observations.

2. Methodological procedures

Fig. 1 delineates the steps involved in constructing the global soil
spectral grid. The datasets ensured broad spatial coverage representing
publicly available soil data. A rigorous soil sample preprocessing
screening, including drying, crushing, sieving, and VNIR-SWIR spectral
measurements, was conducted to ensure laboratory consistency. The
GEOS3 is a modeling concept that models satellite data in a temporal
manner (Demattê et al., 2018). Each pixel created is named Temporal
Soil Spectra (TESS), and the entire image is the product finally named
Synthetic Soil Image (SySi). The present case depicts a Landsat time
series providing a robust global representation of soil reflectance.
Clustering methods, including a two-stage self-organizing map process
(SOMP) and Partition Around Medoids (PAM) clustering, reduced the
dimensionality of the SySi data and classified it into spectral groups for
spatial interpretation. The Boruta algorithm determined the significance
of environmental covariates, enabling data-driven analyses of soil-
environment relationships. This approach generates a precise, scalable
soil spectral grid suitable for diverse environmental and agricultural
applications.

2.1. Soil samples and dataset

Data on soil attributes and laboratory spectra were obtained from
two global sources, the WoSIS (Batjes et al., 2020) and the GSSL dataset
(Demattê et al., 2022) (Fig. 2). The former provides data from about
96,000 georeferenced profiles (Batjes et al., 2020), while the latter GSSL
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dataset provides 8004 topsoil samples (Demattê et al., 2022). Only ob-
servations with geographic coordinate accuracy (< 0.0001 degrees, or
about 10m) were included in this case. We focused on soil attributes and
topsoil samples up to 20 cm depth, including clay, sand, silt, and SOC.
The number of samples for particle size fractions and SOC was 125,636
and 30,980, respectively.

For standard quality conditions of soil spectral data, the soil samples
from GSSL were air- or oven-dried, crushed, and sieved to a size<2 mm.

Sample holders were at least 6 cm in diameter and 1 cm deep, except
when measurements were made with a fiber optic. The spectrometer has
a spectral resolution of at least 10 nm in the VNIR-SWIR region (between
400 and 2500 nm). The illumination source was a halogen lamp, and a
spectralon© white reference optimized and calibrated the sensor.
Spectra were recorded as diffuse reflectance varying from 0 to 1 (more
details refer to Demattê et al., 2022).

Fig. 1. Procedural steps for global bare soil grid construction. WoSIS: World Soil Information Service; GSSL: Global Soil Sampling and Site Inventory; GEE: Google
Earth Engine; SySi: Synthetic Soil Image; GEOS3: Geospatial Soil Sensing System; SOMP: Self-Organizing Map Process; PAM: Partition Around Medoids.

Fig. 2. Location of soil samples with data of clay, sand, silt, SOC, and VNIR-SWIR spectra measured in the laboratory belonging to the GSSL (red dots) and WoSIS
(black dots) datasets.

J.A.M. Demattê et al.



Science of the Total Environment 968 (2025) 178791

5

2.2. Bare surface composite image production

We analyzed Tier 1 Collection 1 surface reflectance data processed
by the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) and Surface Reflectance Code (LaSRC) algorithms (USGS,
2020a, 2020b) from the Landsat 4 Thematic Mapper (TM), Landsat 5
TM, Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8
Operational Land Imager (OLI) sensors. These datasets are accessible
through the Google Earth Engine (GEE) cloud platform (Gorelick et al.,
2017). Given the different spectral configurations of the OLI sensors,
such as spectral resolution, Landsat 8 imagery was transformed to ETM+

following a harmonization process (Roy et al., 2016).
The GEOS3 was used to identify bare surfaces in each available

Landsat satellite image from 1984 to 2022. These images have a tem-
poral resolution of 16 days and a spatial resolution of 30 m. The bare
surfaces were labeled based on several indices: the greenness index
(GREEN), the normalized difference vegetation index (NDVI), the
normalized burn ratio index (NBR), and the normalized burn ratio index
2nd version (NBR2). The term ‘bare surface’ was assigned when the
following conditions were met: GREEN <0.65, − 0.05 < NDVI <0.25,
NBR > − 0.23, and − 0.05 < NBR2 < 0.15. Clouds, shadows, and other
non-bare ground pixels were removed using the quality assessment band
(QA band). Each pixel in the QA band has a decimal value indicating
surface, atmospheric, and sensor conditions that affect the overall use-
fulness of the data (USGS, 2020a, 2020b). The band is in unsigned 16-bit
format and provides information on various pixel conditions, including
water, cloud, cloud shadow, and snow.

We created amask to eliminate pixels not marked as “clear” to ensure
that only land surface reflectance was retained. The mask was then
created and applied to the entire satellite image collection, preserving
only bare land surface reflectance data, thereby eliminating the influ-
ence of clouds or snow. It is noteworthy that the GEOS3 enables the
assessment of spatiotemporal variability in two forms: Firstly, by
analyzing all the time series (i.e., from 1984 to 2024), and secondly, by
periods, which may be annually, monthly, or even daily, depending on
the sensor revisit. The resulting product was a space-time cube of
masked images containing bare surface pixels, characterized by a 30 m
resolution and 16 days of revisit.

The images within the space-time cube were then aggregated, using
the sparse spatiotemporal occurrences, into a single composite product
representing the median surface reflectance value named SySi. SySi
captures natural abiotic surfaces, such as bare soil, sand, and rock out-
crops, where vegetation negligibly affects the reflected signal (Demattê
et al., 2020). Masked pixels had no data on the SySi and did not impact
processing; these areas are typically associated with natural vegetation
fragments or soil surfaces under frequent succession or crop residues.

2.3. Comparison between SySi and GSSL

The initial assessment involved comparing data from SySi with the
GSSL spectral library. Given their different spectral resolutions, the
spectra from the GSSL were resampled to align with the six reflectance
bands from Landsat sensors, namely, blue (450–520 nm), green
(520–600 nm), red (630 nm - 690 nm), NIR (770–90 nm), SWIR1
(1550–1750 nm), and SWIR2 (2080–2350 nm) (Demattê et al., 2018).
Afterward, Spearman’s correlation coefficients served as comparison
parameters for the two spectra types, where |r| ≥ 0.7: Strong relation-
ship; 0.4 ≤ |r| < 0.7: Moderate relationship; and |r| < 0.4: Weak rela-
tionship, generally considered poor for meaningful predictions.

2.3.1. Definition of SySi spectral groups
A quantitative analysis of spectra patterns was conducted at various

locations worldwide to assess the consistency of SySi. This process
involved a clustering process of SySi’s pixels, followed by detailed
interpretation. The spectral groups (SGs) were defined using six image
bands through a SOMP, an unsupervised neural network capable of

reducing the dimensionality of large datasets (Kohonen, 2001). This
algorithm attenuates the impact of data complexity or potential outliers.
Initially, SOMP was applied solely to SySi reflectance data at the WoSIS
sampling locations.

SOMP used the spectra data (“input space”) to generate a lower-
dimensional representation (“map space”). The map space is divided
into a specific number of components (also known as nodes), resulting in
a hexagonal or rectangular grid. In this study, we defined a hexagonal
grid with 36 nodes, which allows for representing the variability of the
data and drastically reducing the dimensionality of the dataset. Every
node in the map space is associated with a weight vector, representing
the node’s position in the input space. While the nodes in the map space
remain fixed, the algorithm moves the weight vectors toward the input
data, aiming to minimize the Euclidean distance without compromising
the topology from the map space.

During the process, SOMP performs several successive iterations
until the weight vectors represent, as closely as possible, the input pat-
terns closer to the nodes in the two-dimensional map. In the second stage
of the process, the spatial analysis occurred using a classical clustering
algorithm called the PAM (Kaufman and Rousseeuw, 1990). The SOMP
vectors are considered as local averages of the input data. The final
number of clusters was defined according to the methodology proposed
by Zappia and Oshlack (2018), resulting in 10 clusters. The two-stage
method reduces sensitivity to outliers and noise while lowering
computational costs.

Finally, SGs were extrapolated to the entire data SySi by classifying
each pixel according to the similarity to the closest medoids. The simi-
larity between medoids and pixels was calculated using the Euclidean
distance metric. Euclidean distance is particularly suitable for this task
due to its simplicity, intuitive interpretation, and computational
efficiency.

2.3.2. Relationship between SySi spectral groups and environmental factors
We compared various environmental covariates previously used in

global DSM (Hengl et al., 2017) with the six synthetic reflectance bands
from SySi. This comparison enabled us to assess associations between 13
relief attributes (i.e., Aspect, Eastness, Elevation, Gaussian Curvature,
Hillshade, Horizontal Curvature, Maximal Curvature, Mean Curvature,
Minimal Curvature, Northness, Shape Index, Slope and Vertical Curva-
ture) and the SySi bands (blue, green, red, NIR, SWIR1 and SWIR2). The
importance of each covariate was calculated using the Boruta algorithm
(Kursa and Rudnicki, 2010). During this process, covariates were ranked
by considering five specific soil attributes: clay, sand, silt, carbonates,
and soil organic carbon. We selected these attributes because they are
spectrally active soil constituents frequently used as physicochemical
and biological indicators for soil quality assessments (Liu et al., 2020).

Additionally, once the SGs were defined, they were compared to
environmental factors directly related to soils and their formation. The
factors considered in our analysis included global temperature-moisture
domains, relief, land use for the year 2015 (Sayre et al., 2020), world
lithology (Hartmann and Moosdorf, 2012), soil classes (FAO-UNESCO,
1974), and topsoil textural classes derived from WoSIS samples. Asso-
ciations between factors and SySi were investigated using correspon-
dence analysis (CA) (Lele et al., 2007). This analysis enables the
reduction of data dimensions into orthogonal components, which
explain most of the variation. Continuous and categorical data can be
managed with CA in a contingency table (Viscarra Rossel et al., 2016). In
our case, a contingency table with units (spectral group) and variables
(environmental factor) was computed and later converted into a smaller
set of dimensions (principal coordinates). Those dimensions were visu-
alized by plotting the scores for SGs alongside each environmental factor
in ordination graphs.

2.3.3. Boruta algorithm to define SySi importance in soil mapping
The Boruta algorithm provides a means to a robust evaluation of

SySi’s importance in DSM processes. The method relies on the random
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forests (RF) classifier to rank the most important covariates for pre-
dicting a specific soil attribute (Kursa and Rudnicki, 2010). Initially, the
algorithm extends the covariate space by adding randomly permuted
existing covariates (pCs), which eliminates their correlation with the
response variable (soil attribute). Later, RF predicts a specific soil
attribute and calculates the Z-scores (a covariate importance indicator).

The maximum Z-score (MaxZ) among the pCs is defined and actual
covariates that scored better than MaxZ are defined as “important” and
retained. Attributes with undetermined importance are submitted to a
two-sided test of equality with the MaxZ. Attributes with an importance
significantly lower than MaxZ were defined as ‘unimportant’ and
permanently removed from the system. Finally, all pCs were removed
and the procedure was repeated. The algorithm was performed recur-
sively until importance was assigned for all the attributes, or the algo-
rithm had reached the previously set limit of the RF runs.

3. Results and discussion

3.1. Data consistency

Addressing the need for more detailed soil information, this research
“uncovered” 90% of Earth’s bare soils under agricultural or natural land
use and land cover at a resolution of 30 m. This product not only offers
finer resolution than those previously available (≥ 250 m) but also
demonstrates high consistency considering early attempts (i.e., Demattê
et al., 2018, 2020). This approach can be considered a method of sus-
tainable survey, as it minimizes environmental impacts, costs, and the
time required for execution, reducing analyses needed for large-scale
surveys (McBratney et al., 2018). None of the other studies that pro-
duced images of bare surfaces at global scales had reached this scope and
detail level (Poggio et al., 2021). The EMR is regionally dependent, and
the algorithm evaluates each case throughout the entire globe.
Furthermore, only a limited number of these studies evaluated the
reliability of RS data (cf. Safanelli et al., 2020; Tziolas et al., 2020a,
2020b).

On data consistency, a rigorous control process for soil sampling and
laboratory measurements showed correlation values between observed
and predicted data. Accuracy concerning field observation data varies
from moderate to strong relationships (Huete and Escadafal, 1991). The
values ranged from 0.5 to 0.9. As an example of this consistency, spectra
over the Syrian territory exhibited higher correlation values than those
reported in studies with a local focus. This endeavor is noteworthy,
considering the constraints imposed by the scale of our analysis and the
utilization of a global dataset derived from multiple sources (Poggio
et al., 2021).

Table 1 presents the spectra obtained by SySi in comparison with
those from the Global Soil Spectral Library (GSSL), which yielded sig-
nificant results (p < 0.0001). Spearman’s correlations (r) ranged from
0.67 to 0.84, with higher values observed for the blue, green, and SWIR
spectral bands, key ranges for soil properties modeling (Demattê et al.,
2020). This observation indicates that considering the whole studied
area of bare soil, the filtering of the GEOS3 system found relative con-
sistency between the ground and space sensing data.

3.2. Relation between SySi’s spectral behavior and environmental factors

The SySi successfully captured the Earth’s surface reflectance pat-
terns intrinsic to environmental variability (Fig. 3a), enabling the
observation of spectral characteristics at various locations worldwide
(Fig. 3b). Despite focusing on only six bands from Landsat sensors, it
represents the wavelengths in the VNIR-SWIR spectral ranges and a
practical evaluation was achieved by analyzing spectral shapes and
reflectance patterns using SySi. Ten spectral groups (SG) represented the
diversity of the world’s soils. Subsequently, these groups were compared
with environmental factors directly influencing soil formation and
characteristics.

SGs 1 and 2 were the most common groups (Fig. 3b), primarily
associated with hilly croplands and grasslands in tropical and temperate
regions. The parent material consists of unconsolidated sediments,
metamorphic rocks, or, in some cases, evaporites. These factors are
predominantly found in medium-textured soils (in SG1). Furthermore,
SG 1 and 2 spectra showed similar characteristics, with medium
reflectance intensity and convex shape. The higher reflectance intensity
of SG1 is attributed to the increased presence of coarse particles and the
soils’ lower soil organic carbon content (SOC), distinguishing it from
SG2 (Demattê et al., 2020). This finding can be used to distinguish soil, i.
e.: by texture (Fongaro et al., 2018; Gomez et al., 2022), SOC (Padarian
et al., 2022), color (Rizzo et al., 2023), or floodplains (Mello et al.,
2023).

Joint observations of Fig. 3a and b show that SG3 prevailed in plain
pastures and croplands, highlighted in western China and western Asia.
Similarly, SGs 4 and 5 predominated in natural landscapes with complex
relief. SGs 3, 4, and 5 exhibited the lowest reflectance intensities, with
shapes varying from convex (SG3) to flat or concave (SG5) caused by the
soil physicochemical conditions. These three SGs also exhibited the
highest SOC among all SGs, which reduced reflectance in the VNIR re-
gion, particularly in the visible region, as Stoner and Baumgardner
(1981) observed. Interestingly, SG3 was associated with soils containing
argic horizons (i.e., Phaeozems, and Planosols), resulting in lower soil
surface clay content due to remotion processes (Buol et al., 2011).

As shown in Fig. 3a, SG4 corresponded to soil classes with dark
surface horizons because the curve presents low albedo in the visible
region. As an example of these soil types, we identified the Chernozems,
Vertisols, or Rendzinas, with blackish colors due to organic matter
accumulation or moisture (Liu et al., 2020). The map of soil groups
(Fig. 3b) showed a higher occurrence of SG4 in some regions of Russia,
Ukraine, and Kazakhstan, which is consistent with the occurrence of the
soil as mentioned earlier in classes of the FAO-UNESCO (1974) world
soil map (see Supplemental Figs. S1 and S2). Nevertheless, the low
reflectance of SG 5 (Fig. 3a) is influenced by parent material, specifically
volcanic rocks rich in mafic minerals. These minerals absorb more
electromagnetic energy, producing a distinctive pattern in the soil
spectra (Stoner and Baumgardner, 1981). Moreover, the fine and very
fine soil texture of the locations with SG5 (Fig. 3b) also contributed to
the predominance of these reflectance patterns.

In contrast, SGs 6 to 10 have been observed mainly in tropical,
subtropical, or temperate deserts, where soils are mainly unconsolidated
with higher quartz or salt concentrations reflecting most light that af-
fects them. These characteristics and the low SOC content are the main
reasons for the highest reflectance (Howari et al., 2002; Stenberg and
Viscarra-Rossel, 2010). SG 6 was observed sparsely throughout Asia,
while SG 7 was predominantly found in the Namibia Desert (south-
western Africa) and the Thar Desert (India). These two groups were
primarily associated with Yermosols, soils common in semiarid to arid
hot climates.

SG 8 corresponded to Arenosols and Solonchaks, sandy and salic
soils, observed in a semi-desert area south of the Sahara, the Simpson
Desert (Australia), or temperate deserts such as the Taklamakan in
China. Desert areas with salt-affected soils (e.g., Solonchaks) were also
observed in SG 9, highlighting the potential of remote sensing products

Table 1
Spearman correlation values between satellite data and laboratory spectra (n =

104,004).

Simulated bands (SySi) Landsat bands

Blue Green Red NIR SWIR l SWIR 2

Blue 0.84 0.83 0.69 0.71 0.64 0.51
Green 0.82 0.82 0.71 0. 72 0.65 0.51
Red 0.71 0.74 0.69 0.70 0.63 0.53
NIR 0.75 0.78 0.73 0.75 0.69 0.59
SWIR 1 0.77 0.80 0.76 0.79 0.77 0.66
SWIR 2 0.74 0.77 0.74 0.77 0.75 0.67
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such as SySi in identifying and mapping such soils (Naimi et al., 2021;
Wang et al., 2021). Finally, SG 10 was the dominant group in the Sahara
and is strongly associated with Yermosols (FAO-UNESCO, 1974).
Considering the characteristics of such soils and the regional climatic
conditions (tropical desert), we expected a higher intensity of this SG
due to its very convex shape. Middle-Western and boundary of the
Sahara, with sandy soil prevalence, are the most representative regions
with the SG 10 (Fig. 3b).

3.3. SySi relevance for Earth topsoil modeling

The findings indicate a strong correlation between SySi and topsoil
attributes or soil classes suggesting that it is a valuable tool for soil
characterization, mapping, and classification (Demattê et al., 2020)
although only the soil surface was evaluated. It has been demonstrated
that bare surface images can enhance DSM, particularly at local and
regional scales (Ng et al., 2023; Urbina-Salazar et al., 2023; Rizzo et al.,
2023). Consequently, we compared the environmental covariates pre-
viously utilized in the global DSM (Hengl et al., 2017; Poggio et al.,
2021) and the six reflectance bands from the SySi. Similarities in soil
patterns can be observed in both grids (Fig. 4a and b). The potential of

these variables to support global mapping, such as the mapping of
topsoil color, was discussed following Rizzo et al. (2023).

Spectral patterns are present at specific positions due to combina-
tions of specific environmental factors such as climate, land use, and
geology. The long-term mean of precipitation and temperature, repre-
senting climatic covariates, were weakly to moderately relevant to infer
soil properties (Fig. 5a). We expected a more robust correlation, espe-
cially considering that different soil moisture regimes affect the leaching
of base cations, enriching the surface layers of soil with pigments such as
oxide. This climatic factor is the leading cause of horizontal and vertical
variations in soil color (Liu et al., 2020). Many factors influence the
comparison with climate zones, but an important consideration is the
low accuracy of the climate maps. Soil spectral data can change drasti-
cally within a small area, thus, higher spatial resolution covariates could
enhance inference on spatially explicit soil properties and soil forming
processes.

Among the LULC covariates (Fig. 5b), Forest, Cropland, Shrubland
and Grassland achieved the highest importance in the model, as these
LULC types exert a strong influence on reflectance (Demattê et al.,
2020). We found that only the plain areas were moderately relevant
among relief data (Fig. 5c). Topographic landscape covariates are

Fig. 3. Soil spectral patterns worldwide. a) Mean spectra for the ten soil spectral groups with minimum and maximum values and b) map of the ten soil spectral
groups (SG).
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related to water dynamics and indicate erosion intensity, redistribution
of soil material, particle sorting processes, and thermal regimes. Some of
the terrain attributes are critical covariates (e.g., Topographic Wetness
Index, Multiresolution Index of Valley Bottom Flatness, and LS factor) in
DSM (McBratney et al., 2018). However, these secondary topographic
data were not used in our study due to their computational demand
which makes the processing difficult, even on cloud computing plat-
forms (Safanelli et al., 2020). Fig. 5c shows the relation of SG. SG1
predominates arid (i.e., Middle East) and semiarid areas (i.e., north-
eastern Brazil) while SG4 prevails in mountainous landscapes (i.e., north
and southwestern Asia).

Lithology showed a strong relationship with soil spectral behavior.
Basaltic rock areas were close to SG5 (Fig. 5d) as are Ferralsols (Fig. 5f).
Indeed, these patterns are consistent with field observation, such as the
typical occurrence of Ferralsols on Basalt in southwestern Brazil (Gallo
et al., 2018). In summary, all this information is essential for decision-
making regarding managing or protecting specific areas.

3.4. Remote sensing informed global analysis of soil variation and
diversity

Using a surface soil proxy is essential in quantifying various soil at-
tributes as Demattê et al. (2020) have already observed. This approach is
well supported by >50 years of laboratory research focused on estab-
lishing relationships between soil attributes and reflectance, mainly
conducted in laboratory settings (Knox et al., 2015; Viscarra Rossel

et al., 2015; Clingensmith and Grunwald, 2022; Ben-Dor and Demattê,
2024). Indeed, the statistics of each variable of the matrix (Fig. 6) from
our study show the significant importance of soil properties and spectral
data on a global scale. Elevation and SWIR2 band show the highest
importance with 78 and 80 %, respectively, followed by spectral data,
while the lowest values were found for SOC and calcium carbonate. The
combination of elevation and spectral data achieved a higher R2 than
using elevation alone, which is in agreement with the findings of Fon-
garo et al. (2018).

The evidence presented here suggests that SySi bands provide critical
information to describe the spatial variability of topsoil color, which is
consistent with findings by Rizzo et al. (2023). This statement is justified
because bare surface images capture real-time data about soils through
reflectance. While SySi bands effectively capture topsoil color vari-
ability, they have several limitations: weak correlations with specific
soil properties, inadequate representation of certain soil groups,
spatially varying accuracy due to environmental factors, uncertainties
arising from the sensor or atmospheric conditions, and the generaliza-
tion of temporal aspects by harmonizing the pixels. These issues should
be considered to improve the reliability of soil map products.

3.5. Insights for societal issues

The majority of DSM studies do not use SySi information and
therefore may face difficulties in capturing adequate soil variability,
which is a challenge for accurate pedological delineation and mapping.

Fig. 4. Distribution of spectral patterns and statistics over Earth’s bare surfaces. (a) True-color image of bare surfaces (Landsat ETM+ band 1 = blue, band 2 = green,
and band 3 = red). (b) Red, green, and blue (RGB) image depicting pixel-based spatialization of the three principal components (PC1, PC2, PC3) on the bare surfaces.
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For example, users cannot observe soil variation beneath the soil surface
(Fig. 7a). In Fig. 7b, a comparison is shown between pedological
delineation without SySi (cyan line) and with SySi (brown line). SySi
provides critical important background information that makes the
result different and affects several subsequent decisions, such as soil
management, fertilization, and conservation. Fig. 7c highlights a clas-
sical soil survey delineation (yellow line) based on the site (borehole)

plot and relief. Applying the SySi (Fig. 7d), the areas with different
spectra (related to other soil properties) are highlighted and affect new
locations to insert the sites, causing an utterly new delineation, as
Safanelli et al. (2021) observed in a similar situation.

Both conventional (Hartemink et al., 2013; Negasa et al., 2017) and
digital (Chen et al., 2022; Ma et al., 2019) soil sampling methods may
fail to capture the full range of soil variation if they do not consider soil

Fig. 5. Comparison of the position of spectral groups (red circles) to a) climate zones of the world (Sayre et al., 2020), b) land use and land cover (Sayre et al., 2020),
c) landforms distribution (Sayre et al., 2020), d) Earth’s geological groups (Hartmann and Moosdorf, 2012), e) soil textural classes (Batjes et al., 2017), and f) soil
classes (FAO-UNESCO, 1974) (a, b, c, d, e, in black circles).
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as a continuous feature across the landscape. Conventional surveying
typically relies on manual sampling and observation, with surveyors
collecting soil samples based on predefined locations, often using relief-
focused approaches. In contrast, digital surveying incorporates tech-
nology, spatial data, and modeling techniques, such as RS and GIS, to
map soil properties more continuously across a landscape. Traditional

surveyors typically use relief to delineate soil classes on the landscape;
however, when bare soil information is added, multiple underlying
variations are revealed, leading to significant changes in delineation. In
summary, when positioning soil samples, SySi data could be considered,
when available, to ensure a more accurate representation. For instance,
incorporating SySi data in stratified random sampling designs is a

Fig. 6. Contribution of SySi bands and terrain covariates with soil attributes modeling (sand, silt, clay, carbonate, and SOC). Values in percentage (%).

Fig. 7. Scale is not presented due to high variability ranging from farm to state scale. The examples are from Brazil. a) A Google image in true color composition
showing sugarcane crop in Goiás state, Brazil, b) SySi 5R4G3B composition with traditional soil survey (using only relief) in blue lines, and new soil type surveyed in
brown lines (using relief plus SySI), c) conventional soil survey delineation (yellow line) at a site; d) the same site with new delineation using SySi and the locations to
soil sampling, e) precision agriculture grid sampling, f) same site with new soil site allocation using SySi, g) a Google Earth image with natural color covered by
sugarcane cultivation, h) the same site with SySi, highlighting soil variations, i) the same area with elevation model, j) SySi image of São Paulo, and Párana States,
Brazil, in 5R4G3B color composition, k) soil potential productivity map(green indicates a high potential and red indicates a low potential) (Greschuk et al., 2023), l)
Google Earth image of a cropland area, and m) same area with SySi 5R4G3B composition (Mello et al., 2023), the red arrows go from the laboratory sample pictures
to the sampling places.
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valuable asset to improve the placement of soil sampling locations in
future studies.

Precision agriculture and soil management zoning are strategies for
collecting soil samples at specific locations to guide nutrient manage-
ment with optimized fertilizer applications. Optimizing soil manage-
ment relies on accurately mapping soil variability controlled by various
soil-environmental factors (Fig. 7e, f). In the first case, if a farmer makes
a regular grid, it is not possible to observe the differences. However,
with SySi the sampling allocation can be targeted to areas of soil vari-
ation, which subsequently improves the accuracy of the precision
farming system. Fig. 7g, h, and i compare a standard image, an image
with SySi, and an image with only relief (DEM). Soil variation does not
necessarily correspond to relief variation; thus, a pedologist can only
interpret the delineation using this traditional information. Indeed, pe-
dologists frequently delineate the soil transitions based on landforms,
with or without the support of aerial photographs or altitude maps.
However, SySi provides new information to be integrated into this
process. It captures direct measurements of the topsoil, representing the
diversity of multiple soil properties. Thus, while the relief may appear
uniform, spectra reveal changes that would otherwise go unnoticed.
Pedologists likely lose accuracy in their delineations of soils without
incorporating soil spectral information.

Spectral reflectance can be linked to particle size distribution, carbon
content, carbon stock, pH, chemistry elements, clay content and
mineralogy (Nocita et al., 2015; Novais et al., 2025). Therefore, it is
reasonable to expect that spectral data could not only help improve DSM
and agricultural productivity but also be applied to assess soil health.
Fig. 7j shows areas of bare soil in four Brazilian states (Paraná, São
Paulo, Minas Gerais, and Mato Grosso do Sul), where lighter colors
represent soils formed from sandstone, and dark purple indicates basalt.
Fig. 7k shows a map of soil potential productivity (Greschuk et al.,
2023), where green features represent higher potential productivity,
while red areas represent lower potential productivity. These latter areas
are characterized by high clay, iron, and carbon content. Notably, areas
of high productivity correlate with regions shown in dark blue in the
SySi images.

Fig. 7l and m shows that SySi images reveal sandy areas (patches)
with poor drainage within a generally clayey site, which agrees with
Mello et al. (2023). In addition, significant relationships between the
bare color composition images and soil types could be observed
worldwide. Supplemental notes 1 and 2 detail the performance of
spectral clustering for Asia and America in Figs. S1 and S2. We observe
in many cases that areas indicated as sandy soil were clayey. This
behavior occurs because straw plays a critical goal and sometimes
cannot be depicted by the algorithm (Demattê et al., 2018).

4. Challenges and limitations of the approach

Despite the promising results, there is still room for improvement in
the bare soil spectra. We observed inconsistencies in areas with high
straw covering the soil surface. We also observed the importance of
laboratory spectral libraries to train the model and validate the data
from a satellite. The more robust and representative SSL the better the
model at the satellite level. Thus, obtaining these inconsistencies in the
final product is plausible, while human experts must be involved in the
interpretation of the spectra. We strongly encourage efforts to improve
algorithms on the detection of bare soil, for instance, identifying soils
free of vegetation but remaining wet. On the one hand, upcoming
hyperspectral images (i.e., EMIT, PRISMA, EnMAP, CHIME, and SBG)
may partially address this issue as they are relatively recent in terms of
spatial coverage and are not designed to capture the entire globe (except
the Terrestrial Ecosystem and Airborne Observatory with Global
Ecosystem Resolution - TANAGER-1). On the other hand, globally
available Landsat and Sentinel data, for instance, are valuable because
they can image larger areas with bare soil, particularly as no-till agri-
cultural practices become more common. The new hyperspectral data

will gain in quality but lose coverage over larger spatial areas. There-
fore, we should focus on both spatial resolution and spectral range in the
future.

Working with RS and open (public) data poses several issues and
limitations. Traditionally, soil carbon analysis has been performed by
Walkley and Black’s method, despite the combustion method being
considered the most accurate (Drover and Manner, 1975). Although,
currently an extensive dataset is unavailable. Thus, we have to work
with what we have until soil carbon monitoring adopts state-of-the-art
soil analytics and new-generation global databases (Novais et al.,
2025). Another point is that wet soil laboratories can have differences in
their analysis, which will also impact the sensor analysis (Paiva et al.,
2022). Importantly, the spectral reflectance is dependent on the soil
analysis. Open data, even when fused with private data, comes from
different soil laboratories which add uncertainties. The timing of the soil
analysis also matters, mostly for carbon. A carbon analysis from 1980 in
a given site, can be different in the same site 20 years later. Thus, carbon
analysis made at different times also interferes with the relationship of
spectral modeling.

The RS technique also has issues. In the laboratory, there are fewer
uncertainties in measuring the reflectance and harmonization of SSL can
be done today using the IEEE P4005 WG strategy (Ben-Dor et al., 2024).
Orbital sensor harmonization and calibration is still an issue that needs
more attention when compared to laboratory settings (Ben-Dor et al.,
2024). The sensors inside the Landsat system, and any other platform,
also degrade over time which may impact the spectral result if routine
radiometric calibration is not well performed. The spectral resolution is
another issue for multispectral sensors since it is not able to detect the
spectral features of straw or any other residue in the field. Other issues
could be cloud interference, soil moisture variations, and aggregation
(Ben-Dor et al., 2009). Many of these issues were overcome by auto-
mated systems that can choose the best images and low cloud coverage,
evaluate the best pure pixel for soil, and create the median of the spectra
to diminish the error.

An overlap between the dates of RS data acquisition and the soil
sampling can be achieved in projects that use legacy and continuous
sampling when new data is being collected. The use of historical soil
data, such as many of the soil sampling points in the WoSIS dataset,
typically leaves a significant time gap between the date of sampling and
the date of RS data acquisition. This would be expected to introduce
additional uncertainty, especially if the work is using bare soil com-
posite images to quantify soil properties such as SOC. This element is
known to change under agricultural land management practices. The
same is true for other work using remotely sensed data stacks for pre-
diction. For example, Sothe et al. (2022) produced a SOCmap of Canada
using soil sample data from 1977 to 1995 and RS data from 2000 to
2019. Does this work reflect SOC nowadays? It is more likely a map of
SOC from the median age of the data, as we have also stated in our
manuscript. Significant losses of SOC in agricultural landscapes over the
last 40 years make this temporal gap a notable challenge for future
research. Despite this problem, the technique still provides useful in-
sights into SOC, with less uncertainty in some regions and more uncer-
tainty in others. Therefore, SOC content assessments must be
approached with caution.

In summary, spatial resolution matters to capture a mixture of soil
types in a given field. The spectral resolution limitation may not mimic
the absorption bands of many chromophores, and thus, underestimate
the real soil condition. The mismatch between soil sample support (i.e.,
a small soil sample collected over an area of about 20 cm2, considering
the augered borehole) and spatial resolution of the sensor (e.g., Landsat
with 30 m spatial resolution) may add ambiguities in the soil-spectral
modeling. It is necessary to consider that electromagnetic energy
comes from the sun for 149,600,000 km at lightspeed until it reaches the
Earth’s surface. The EMR crosses the atmosphere, reaches the soil and
reflects and goes back to the sensor for >800 km from the target. In this
way, it suffers interference from aerosols such as clouds and smog. After

J.A.M. Demattê et al.
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addressing all these challenges and issues, we achieved a Spearman’s
correlation between soil laboratory and satellite spectra between 0.51
and 0.84, with 80 % of the correlations over 0.7 (Table 1). This outcome
demonstrates coherence between bare soil information and field data.

5. Conclusions

We successfully developed Earth’s topsoil reflectance spectra at a 30
m spatial resolution. The GEOS3 processing is the system and the SySi
the product that effectively covers agricultural and natural areas,
providing societal insights. The Landsat time series spanned over 38
years of imaging, and its overlapping data has demonstrated a signifi-
cant similarity to field truth spectra. Therefore, the system has “un-
covered” soil in over 90 % of the world’s agricultural areas. Considering
that the spectral signature was captured by a sensor 800 km above the
ground with a spatial resolution of 30 m, while the soil sample was
collected in the field at 0.1 × 0.1 m, this outcome is an impressive
advancement in soil science. We also obtained ten different spectral
groups regarding the shape and intensity of specific soil properties.

The spectral data, even being limited, showed remarkable variation,
reflecting each specific soil type’s unique and complex nature. As a rich
information source, the spectra can be integrated into pedo-transfer
functions to estimate several soil properties, such as sand, silt, clay,
cation exchange capacity, mineral composition, and nutrients, which
showed a significant correlation with SySi. Elevation and SWIR 1 and 2
were the variables that explained the higher importance in correlation
with these attributes. GEOS3 also presented a contiguous map that im-
proves soil synoptic visualization, decreasing errors in mapping. This
may pave the way for improved soil monitoring and facilitate an un-
derstanding of soil variation and the operationalization of smart
agriculture.

The global SySi provides a valuable tool for monitoring and
analyzing soil properties across diverse landscapes. These findings can
impact disciplines such as DSM, soil surveying, precision agriculture,
soil productivity, land use planning, tillage, conservation management,
and irrigation. This product can guide the future allocation of soil
sampling sites, thereby reducing the costs of human labor, soil analysis,
and field campaigns. They can also be helpful for scientists, consultants,
farmers, and policymakers and complement climate monitoring efforts.
In the future, as higher spectral, spatial and temporal resolution data
become available, this paper can serve as a proof of concept to inform
future global studies mapping topsoil properties in a novel way. Despite
this, we advocate that there is still space to explore create new algoritms
for bare soil detection.
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José A.M. Demattê: Writing – review & editing, Writing – original
draft, Supervision, Resources, Funding acquisition, Formal analysis,
Data curation, Conceptualization. Rodnei Rizzo: Visualization, Meth-
odology, Investigation, Formal analysis, Conceptualization. Nícolas
Augusto Rosin: Software, Methodology. Raul Roberto Poppiel: Soft-
ware, Methodology, Formal analysis, Conceptualization. Jean Jesus
Macedo Novais: Writing – review & editing, Visualization, Validation,
Investigation, Formal analysis. Merilyn Taynara Accorsi Amorim:
Software, Methodology. Heidy Soledad Rodriguez-Albarracín: Soft-
ware, Methodology. Jorge Tadeu Fim Rosas: Software, Methodology.
Bruno dos Anjos Bartsch: Software, Methodology. Letícia Guadagnin
Vogel: Software, Methodology. Budiman Minasny:Writing – review &
editing, Supervision, Formal analysis. Sabine Grunwald: Writing – re-
view & editing, Data curation. Yufeng Ge: Writing – review & editing,
Data curation. Eyal Ben-Dor: Writing – review & editing, Supervision,
Formal analysis. Asa Gholizadeh: Writing – review & editing, Data
curation. Cecile Gomez: Writing – review & editing, Data curation.
Sabine Chabrillat: Writing – review & editing, Data curation. Nicolas
Francos: Writing – review & editing, Data curation. Dian Fiantis:

Writing – review & editing, Data curation. Abdelaziz Belal: Writing –
review & editing, Data curation. Nikolaos Tsakiridis:Writing – review
& editing, Data curation. Eleni Kalopesa: Writing – review & editing,
Data curation. Salman Naimi: Writing – review & editing, Data cura-
tion. Shamsollah Ayoubi: Writing – review & editing, Data curation.
Nikolaos Tziolas: Writing – review & editing, Data curation. Bhabani
Sankar Das:Writing – review& editing, Data curation. George Zalidis:
Writing – review & editing, Data curation. Marcio Rocha Francelino:
Writing – review & editing, Data curation. Danilo Cesar de Mello:
Writing – review & editing. Najmeh Asgari Hafshejani: Writing – re-
view& editing, Data curation. Yi Peng:Writing – review& editing, Data
curation. Yuxin Ma: Writing – review & editing, Conceptualization.
João Augusto Coblinski: Writing – review & editing, Data curation.
Alexandre M.J.-C. Wadoux: Writing – review & editing, Conceptuali-
zation. Igor Savin:Writing – review & editing, Data curation. Brendan
P. Malone: Writing – review & editing, Data curation. Konstantinos
Karyotis:Writing – review & editing, Data curation. Robert Milewski:
Writing – review & editing, Data curation. Emmanuelle Vaudour:
Writing – review & editing, Data curation. Changkun Wang: Writing –
review & editing, Data curation. Elsayed Said Mohamed Salama:
Writing – review& editing, Data curation. Keith D. Shepherd:Writing –
review & editing, Investigation, Formal analysis, Data curation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

First Author ackowledge the CNPq for a researcher scholarship. The
authors would like to express their gratitude to the São Paulo Research
Foundation (FAPESP) for the financial support provided through grant
number 2021/05129-8. The authors also wish to thank researchers and
institutions in other countries for providing data. We thank the GeoCiS
research group https://esalqgeocis.wixsite.com/english for technical
support.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2025.178791.

Data availability

The authors do not have permission to share data.

References

Arrouays, D., McBratney, A., Bouma, J., Libohova, Z., Richer-de-Forges, A.C., Morgan, C.
L.S., Roudier, P., Poggio, L., Mulder, V.L., 2020. Impressions of digital soil maps: the
good, the not so-good, and making them ever better. Geoderma Reg. 20, e00255.
https://doi.org/10.1016/j.geodrs.2020.e0025z.

Batjes, N.H., Ribeiro, E., van Oostrum, A., Leenaars, J., Hengl, T., Mendes de Jesus, J.,
2017. WoSIS: providing standardized soil profile data for the world. Earth Syst Sci
Data 9, 1–14. https://doi.org/10.5194/essd-9-1-2017.

Batjes, N.H., Ribeiro, E., Van Oostrum, A., 2020. Standardized soil profile data to support
global mapping and modelling (WoSIS snapshot 2019). Earth Syst Sci Data 12,
299–320. https://doi.org/10.5194/essd-12-299-2020.
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Demattê, J.A.M., Paiva, A.F.d.S., Poppiel, R.R., Rosin, N.A., Ruiz, L.F.C., Mello, F.A.d.O.,
Minasny, B., Grunwald, S., Ge, Y., Ben-Dor, E., Gholizadeh, A., Gomez, C.,
Chabrillat, S., Francos, N., Ayoubi, S., Fiantis, D., Biney, J.K.M., Wang, C., Belal, A.,
Silvero, N.E.Q., 2022. The Brazilian Soil Spectral Service (BraSpecS): a user-friendly
system for global soil spectra communication. Remote Sens. 14 (3), 740. https://doi.
org/10.3390/rs14030740.

Drover, D.P., Manner, H., 1975. A comparison between the walkley-black and a dry
combustion method for determining organic carbon in a humic brown soil, Papua
New Guinea. Communica- tions in Soil Science and Plant Analysis 6 (5), 495–500.
https://doi.org/10.1080/00103627509366586.

Evangelista, S.J., Field, D.J., McBratney, A.B., Minasny, B., Ng, W., Padarian, J.,
Dobarco, M.R., Wadoux, A.M.J.-C., 2024. Soil security-zstrategizing a sustainable
future for soil. Adv. Agron. 183. https://doi.org/10.1016/bs.agron.2023.10.00.

FAO, 1974. Soil Map of the World. Volume I, Legend. Unesco, Paris. https://data.apps.fa
o.org/map/catalog/srv/eng/catalog.search#/metadata/cc45a270-88fd-11da
-a88f-000d939bc5d8.

FAO and ITPS, 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food
and Agriculture Organization of the United Nations and Intergovernmental
Technical Panel on Soils, Rome, Italy. http://www.fao.org/3/a-i5199e.pdf (650 p.).
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Safanelli, J.L., Chabrillat, S., Fiorio, P.R., Salama, E.S.M., 2023. Remote sensing of
the Earth’s soil color in space and time. Remote Sens. Environ. 299, 113845. https://
doi.org/10.1016/j.rse.2023.113845.

Rogge, D., Bauer, A., Zeidler, J., Mueller, A., Esch, T., Heiden, U., 2018. Building an
exposed soil composite processor (SCMaP) for mapping spatial and temporal
characteristics of soils with Landsat imagery (1984–2014). Remote Sens. Environ.
205, 1–17. https://doi.org/10.1016/j.rse.2017.11.004.
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