
Getting spatial in R

Soil Security Laboratory

2017

R has a very rich capacity to work with, analyse, manipulate and map spatial
data. Many procedures one would carry out in a GIS software, can
more-or-less be performed relatively easy in R. The application of spatial data
analysis in R is well documented in Bivand et al. (2008). Naturally, in DSM,
we constantly work with spatial data in one form or another e.g., points,
polygons, rasters. We need to to such things as import, view, and export
points to, in, and from a GIS. Similarly for polygons and rasters. In this
chapter we will cover the fundamentals for doing these basic operations as they
are very handy skills, particularly if we want to automate procedures.

Many of the functions used for working with spatial data do not come with
the base function suite installed with the R software. Thus we need to use
specific functions from a range of different contributed R packages. Probably
the most important and most frequently used are:

sp contains many functions for handling vector (polygon)
data.
raster very rich source of functions for handling raster data.
rgdal function for projections and spatial data I/O.

Consult the help files and online documentation regarding these packages,
and you will quickly realize that we are only scratching the surface of what
spatial data analysis functions these few packages are able to perform.

1 Basic GIS operations using R

1.1 Points

We will be working with a small data set of soil information that was collected
from the Hunter Valley, NSW in 2010 called HV100. This data set is contained
in the ithir package. So first load it in:

library(ithir)

data(HV100)

str(HV100)

'data.frame': 100 obs. of 6 variables:

$ site: Factor w/ 100 levels "a1","a10","a11",..: 1 2 3 4 5 6 7 8 9 10 ...

$ x : num 337860 344060 347035 338235 341760 ...

1

$ y : num 6372416 6376716 6372741 6368766 6366016 ...

$ OC : num 2.03 2.6 3.42 4.1 3.04 4.07 2.95 3.1 4.59 1.77 ...

$ EC : num 0.129 0.085 0.036 0.081 0.104 0.138 0.07 0.097 0.114 0.031 ...

$ pH : num 6.9 5.1 5.9 6.3 6.1 6.4 5.9 5.5 5.7 6 ...

Now load the necessary R packages (you may have to install them onto your
computer first):

library(sp)

library(raster)

library(rgdal)

Using the coordinates function from the sp package we can define which
columns in the data frame refer to actual spatial coordinates— here the
coordinates are listed in columns x and y.

coordinates(HV100) <- ~x + y

str(HV100)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 100 obs. of 4 variables:

.. ..$ site: Factor w/ 100 levels "a1","a10","a11",..: 1 2 3 4 5 6 7 8 9 10 ...

.. ..$ OC : num [1:100] 2.03 2.6 3.42 4.1 3.04 4.07 2.95 3.1 4.59 1.77 ...

.. ..$ EC : num [1:100] 0.129 0.085 0.036 0.081 0.104 0.138 0.07 0.097 0.114 0.031 ...

.. ..$ pH : num [1:100] 6.9 5.1 5.9 6.3 6.1 6.4 5.9 5.5 5.7 6 ...

..@ coords.nrs : int [1:2] 2 3

..@ coords : num [1:100, 1:2] 337860 344060 347035 338235 341760 ...

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:100] "1" "2" "3" "4" ...

..$: chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 335160 6365091 350960 6382816

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

..@ projargs: chr NA

Note now that by using the str function, the class of HV100 has now changed
from a dataframe to a SpatialPointsDataFrame. We can do a spatial plot of
these points using the spplot plotting function in the sp package. There are a
number of plotting options available, so it will be helpful to consult the help
file. Here we are plotting the SOC concentration observed at each location
(Figure 1).

spplot(HV100, "OC", scales = list(draw = T), cuts = 5,

col.regions = bpy.colors(cutoff.tails = 0.1,

alpha = 1), cex = 1)

The SpatialPointsDataFrame structure is essentially the same data frame,
except that additional “spatial” elements have been added or partitioned into
slots. Some important ones being the bounding box (sort of like the spatial
extent of the data), and the coordinate reference system (proj4string),

c©2017, Soil Security Laboratory 2

Figure 1: A plot of the site locations with reference to SOC concentration for
the 100 points in the HV100 data set

which we need to define for our data set. To define the CRS, we have to know
some things about where our data are from, and what was the corresponding
CRS used when recording the spatial information in the field. For this data set
the CRS used was WGS1984 UTM Zone 56. To explicitly tell R this
information we define the CRS as a character string which describes a
reference system in a way understood by the PROJ.4 projection library
http://trac.osgeo.org/proj/. An interface to the PROJ.4 library is
available in the rgdal package. Alternative to using Proj4 character strings,
we can use the corresponding yet simpler EPSG code (European Petroleum
Survey Group). rgdal also recognizes these codes. If you are unsure of the
Proj4 or EPSG code for the spatial data that you have, but know the CRS,
you should consult http://spatialreference.org/ for assistance. The
EPSG code for textttWGS1984 UTM Zone 56 is: 32556. So lets define to CRS
for this data.

proj4string(HV100) <- CRS("+init=epsg:32756")

HV100@proj4string

CRS arguments:

+init=epsg:32756 +proj=utm +zone=56 +south +datum=WGS84 +units=m

+no_defs +ellps=WGS84 +towgs84=0,0,0

c©2017, Soil Security Laboratory 3

We need to define the CRS so that we can perform any sort of spatial
analysis. For example, we may wish to use these data in a GIS environment
such as Google Earth, ArcGIS, SAGA GIS etc. This means we need to export
the SpatialPointsDataFrame of HV100 to an appropriate spatial data format
(for vector data) such as a shapefile or KML. rgdal is again used for this via
the writeOGR function. To export the data set as a shapefile:

writeOGR(HV100, ".", "HV_dat_shape", "ESRI Shapefile")

Check yor working directory for presence of this file

Note that the object we wish to export needs to be a spatial points data

frame. You should try opening up this exported shapefile in a GIS software of
your choosing.

To look at the locations of the data in Google Earth, we first need to make
sure the data is in the WGS84 geographic CRS. If the data is not in this CRS
(which is not the case for this data), then we need to perform a coordinate
transformation. This is facilitated by using the spTransform function in sp.
The EPSG code for WGS84 geographic is: 4326. We can then export out our
transformed HV100 data set to a KML file and visualize it in Google
Earth.

HV100.ll <- spTransform(HV100, CRS("+init=epsg:4326"))

writeOGR(HV100.ll, "HV100.kml", "ID", "KML")

Check yor working directory for presence of this file

Sometimes to conduct further analysis of spatial data, we may just want to
import it into R directly. For example, read in a shapefile (this includes both
points and polygons too). So lets read in that shapefile that was created just
before and saved to the working directory “HV dat shape.shp”:

imp.HV.dat <- readOGR(".", "HV_dat_shape")

OGR data source with driver: ESRI Shapefile

Source: ".", layer: "HV_dat_shape"

with 100 features

It has 4 fields

imp.HV.dat@proj4string

CRS arguments:

+proj=utm +zone=56 +south +datum=WGS84 +units=m +no_defs

+ellps=WGS84 +towgs84=0,0,0

The imported shapefile is now a SpatialPointsDataFrame, just like the
HV100 data that was worked on before, and is ready for further analysis.

1.2 Rasters

Most of the functions needed for handling raster data are contained in the
raster package. There are functions for reading and writing raster files from
and to different raster formats. In DSM we work quite a deal with data in
table format and then rasterise this data so that we can make a map. To do

c©2017, Soil Security Laboratory 4

this in R, lets bring in a data frame. This could be either from a text-file, but
as for the previous occasions the data is imported from the ithir package.
This data is a digital elevation model with 100m grid resolution, from the
Hunter Valley, NSW, Australia.

library(ithir)

data(HV_dem)

str(HV_dem)

'data.frame': 21518 obs. of 3 variables:

$ X : num 340210 340310 340110 340210 340310 ...

$ Y : num 6362641 6362641 6362741 6362741 6362741 ...

$ elevation: num 177 175 178 172 173 ...

As the data is already a raster (such that the row observation indicate
locations on a regular spaced grid), but in a table format, we can just use the
rasterFromXYZ function from raster. Also we can define the CRS just like
we did with the HV100 point data we worked with before.

r.DEM <- rasterFromXYZ(HV_dem)

proj4string(r.DEM) <- CRS("+init=epsg:32756")

So lets do a quick plot of this raster and overlay the HV100 point locations
(Figure 2).

plot(r.DEM)

points(HV100, pch = 20)

So we may want to export this raster to a suitable format for further work in
a standard GIS environment. See the help file for writeRaster to get
information regarding the supported grid types that data can be exported. For
demonstration, we will export our data to ESRI Ascii ascii, as it is a common
and universal raster format.

writeRaster(r.DEM, filename = "HV_dem100.asc", format = "ascii", overwrite = TRUE)

What about exporting raster data to KML file? Here you could use the KML
function. Remember that we need to reproject our data because it is in the
UTM system, and need to get it to WGS84 geographic. The raster
re-projection is performed using the projectRaster function. Look at the
help file for this function. Probably the most important parameters are crs,
which takes the CRS string of the projection you want to convert the existing
raster to, assuming it already has a defined CRS. The other is method which
controls the interpolation method. For continuous data, “bilinear” would be
suitable, but for categorical, “ngb”, (which is nearest neighbor interpolation)
is probably better suited. KML is a handy function from raster for exporting
grids to kml format.

p.r.DEM <- projectRaster(r.DEM, crs = "+init=epsg:4326", method = "bilinear")

KML(p.r.DEM, "HV_DEM.kml", col = rev(terrain.colors(255)), overwrite = TRUE)

Check yor working directory for presence of the kml file

Now visualize this in Google Earth and overlay this map with the points that
were created before.

c©2017, Soil Security Laboratory 5

Figure 2: Digital elevation model for the Hunter Valley, overlayed with the
HV100 sampling sites

The other useful procedure we can perform is to import rasters directly into
R so we can perform further analyses. rgdal interfaces with the GDAL library,
which means that there are many supported grid formats that can be read into
R http://www.gdal.org/formats_list.html. Here we will load in the
“HV dem100.asc” raster that was made just before.

read.grid <- readGDAL("HV_dem100.asc")

HV_dem100.asc has GDAL driver AAIGrid

and has 215 rows and 169 columns

The imported raster read.grid is a SpatialGridDataFrame, which is a
formal class of the sp package. To be able to use the raster functions from
raster we need to convert it to the RasterLayer class.

grid.dem <- raster(read.grid)

grid.dem

class : RasterLayer

dimensions : 215, 169, 36335 (nrow, ncol, ncell)

resolution : 100, 100 (x, y)

extent : 334459.8, 351359.8, 6362591, 6384091 (xmin, xmax, ymin, ymax)

c©2017, Soil Security Laboratory 6

coord. ref. : NA

data source : in memory

names : band1

values : 29.61407, 315.6837 (min, max)

You will notice from the R generated output indicating the data source, it
says it is loaded into memory. This is fine for small rasters, but can become a
problem when very large rasters need to be handled. A really powerful feature
of the raster package is the ability to point to the location of a raster/s
without the need to load it into memory. It is only very rarely that one needs
to use all the data contained in a raster at one time. As will be seen later on
this useful feature makes for a very efficient way to perform digital soil
mapping across very large spatial extents. To point to the “HV dem100.asc”
raster that was created earlier we would use the following or similar command
(where getwd() is the function to return the address string of the working
directory):

grid.dem <- raster(paste(paste(getwd(), "/", sep = ""), "HV_dem100.asc", sep = ""))

grid.dem

class : RasterLayer

dimensions : 215, 169, 36335 (nrow, ncol, ncell)

resolution : 100, 100 (x, y)

extent : 334459.8, 351359.8, 6362591, 6384091 (xmin, xmax, ymin, ymax)

coord. ref. : NA

data source : C:\Users\bmalone\Dropbox\2017\DSM_workshopMaterials\HV_dem100.asc

names : HV_dem100

plot(grid.dem)

2 Advanced Work: Creating interactive maps
in R

A step beyond creating kml files of your digital soil information is the creation
of customized interactive mapping products that can be visualized within your
web browser. Interactive mapping makes sharing your data with colleagues
simpler, and importantly improves the visualization experience via
customization features that are difficult to achieve via the Google Earth
software platform. The interactive mapping is made possible via the Leaflet R
package. Leaflet is one of the most popular open-source JavaScript libraries for
interactive maps. The Leaflet R package makes it easy to integrate and control
Leaflet maps in R. More detailed information about Leaflet can be found at
http://leafletjs.com/, and information specifically about the R package is
at https://rstudio.github.io/leaflet/.

There is a common workflow for creating Leaflet maps in R. First is the
creation of a map widget (calling leaflet()); followed by the adding of layers
or features to the map by using layer functions (e.g. addTiles, addMarkers,
addPolygons) to modify the map widget. The map can then be printed and

c©2017, Soil Security Laboratory 7

visualized in the R image window or saved to HTML file for visualization
within a web browser. The following R script is a quick taste of creating an
interactive Leaflet map. It is assumed that the leaflet and magrittr are
installed.

library(leaflet)

library(magrittr)

leaflet() %>%

addMarkers(lng = 151.210558, lat = -33.852543,

popup = "The view from here is amazing!") %>%

addProviderTiles("Esri.WorldImagery")

You should now see in your plot window a map of an iconic Australian
landmark. Interactive features of this map include markers with text, plus
ability to zoom and map panning. More will be discussed about the layer
functions of the leaflet map further on. What has not been encountered yet is
the forward pipe operator %¿%. This operator will forward a value, or the
result of an expression, into the next function call or expression. To use this
operator the magrittr package is required. The example script below shows
the same example using and not using the forward pipe operator.

Draw 100 random uniformly distributed numbers between 0 and 1

x <- runif(100)

sqrt(sum(range(x)))

..is equivalent to (using forward pipe operator)

x %>% range %>% sum %>% sqrt

Sometimes what we want to do in R can get lost within a jumble of brackets,
whereas using the forward pipe operator the process of operations is a lot
clearer. So lets begin to construct some Leaflet mapping using the data from a
little earlier regarding the point (HV100.ll) and raster data (p.r.DEM). Note
that these data have already been converted to WGS coordinate reference
system, which is necessary for the creation of the interactive mapping outputs.
Firstly, lets create a basic map — example of not using and then using the
forward pipe operator.

Basic map without piping operator

addMarkers(addTiles(leaflet()), data = HV100.ll)

with forward pipe operator

leaflet() %>% addTiles() %>% addMarkers(data = HV100.ll)

With the above, we are calling upon a pre-existing base map via the
addTiles() function. Leaflet supports base maps using map tiles, popularized
by Google Maps and now used by nearly all interactive web maps. By default,
OpenStreetMap
https://www.openstreetmap.org/#map=13/-33.7760/150.6528&layers=C

tiles are used. Alternatively, many popular free third-party base maps can be
added using the addProviderTiles() function, which is implemented using
the leaflet-providers plugin. For example, previously we used the

c©2017, Soil Security Laboratory 8

Esri.WorldImagery base mapping. The full set of possible base maps can be
found at http:
//leaflet-extras.github.io/leaflet-providers/preview/index.html.
Note that an internet connection is required for access to the base maps and
map tiling. The last function used above the the addMarkers function, we we
simply call up the point data we used previously, which are those soil point
observations and measurements from the Hunter Valley, NSW. A basic map
will have been created with your plot window. For the next step, lets populate
the markers we have created with some of the data that was measured, then
add the Esri.WorldImagery base mapping.

Populate pop-ups

my_pops <- paste0("Site: "

, HV100.ll$site,

"
\n Organic Carbon (%): ",

HV100.ll$OC,

"
\n soil pH: "

, HV100.ll$pH)

Create interactive map

leaflet() %>% addProviderTiles("Esri.WorldImagery") %>%

addMarkers(data = HV100.ll, popup = my_pops)

Further, we can colour the markers and add a map legend. Here we will get
the quantiles of the measured SOC% and color the markers accordingly. Note
that you will need the colour ramp package RColorBrewer installed.

library(RColorBrewer)

Colour ramp

pal1 <- colorQuantile("YlOrBr", domain = HV100.ll$OC)

Create interactive map

leaflet() %>% addProviderTiles("Esri.WorldImagery") %>%

addCircleMarkers(data = HV100.ll,

color = ~pal1(OC), popup = my_pops) %>%

addLegend("bottomright", pal = pal1,

values = HV100.ll$OC, title = "Soil Organic Carbon (%) quantiles"

, opacity = 0.8)

It is very worth consulting the help files associated with the leaflet R
package for further tips on creating further customized maps. The website
dedicated to that package, which was mentioned above is also a very helpful
resource too.

Raster maps can also be featured in our interactive mapping too, as
illustrated in the following script.

Colour ramp

pal2 <- colorNumeric(brewer.pal(n = 9, name = "YlOrBr"),

domain = values(p.r.DEM), na.color = "transparent")

c©2017, Soil Security Laboratory 9

interactive map

leaflet() %>% addProviderTiles("Esri.WorldImagery") %>%

addRasterImage(p.r.DEM,

colors = pal2, opacity = 0.7) %>%

addLegend("topright", opacity = 0.8, pal = pal2,

values = values(p.r.DEM), title = "Elevation")

Lastly, we can create an interactive map that allows us to switch between the
different mapping that we have created.

layer switching

leaflet() %>% addTiles(group = "OSM (default)") %>%

addProviderTiles("Esri.WorldImagery") %>%

addCircleMarkers(data = HV100.ll, color = ~pal1(OC),

group = "points", popup = my_pops) %>%

addRasterImage(p.r.DEM, colors = pal2, group = "raster", opacity = 0.8) %>%

addLayersControl(baseGroups = c("OSM (default)", "Imagery"),

overlayGroups = c("points", "raster"))

With the created interactive mapping, we can then export these as a web
page in HTML format. This can be done via the export menu within the
R-Studio plot window, where you want to select the option for “Save as Web
page”. This file can then be easily shared and viewed by your
colleagues.

3 Some R packages that are useful for digital
soil mapping

Notwithstanding to the rich statistical and analytical resource provide through
the R base functionality, the following R packages (and their contained
functions) are what I think are an invaluable resource for DSM. As with all
things in R, one discovers new tricks all the time, which subsequently means
that what functions and analyses are useful now, are superseded or made
obsolete later on. There are four main groups of tasks that are critical for
implementing DSM in general. These are: (1) Soil science and pedometric
type tasks; (2) Using GIS tools and related GIS tasks; (4) Modelling; (4)
Making maps, plotting etc. The following are short introductions about those
packages that fall into these categories.

Soil science and pedometrics

• aqp: Algorithms for quantitative pedology.
http://cran.r-project.org/web/packages/aqp/index.html. A
collection of algorithms related to modeling of soil resources, soil
classification, soil profile aggregation, and visualization.

• GSIF: Global soil information facility.
http://cran.r-project.org/web/packages/GSIF/index.html. Tools,
functions and sample datasets for digital soil mapping.

c©2017, Soil Security Laboratory 10

GIS

• sp: http://cran.r-project.org/web/packages/sp/index.html. A
package that provides classes and methods for spatial data. The classes
document where the spatial location information resides, for 2D or 3D
data. Utility functions are provided, e.g. for plotting data as maps,
spatial selection, as well as methods for retrieving coordinates, for
sub-setting, print, summary, etc.

• raster:
http://cran.r-project.org/web/packages/raster/index.html.
Reading, writing, manipulating, analyzing and modeling of gridded
spatial data. The package implements basic and high-level functions and
processing of very large files is supported.

• rgdal:
http://cran.r-project.org/web/packages/rgdal/index.html.
Provides bindings to Frank Warmerdam’s Geospatial Data Abstraction
Library (GDAL) (¿= 1.6.3) and access to projection/transformation
operations from the PROJ.4 library. Both GDAL raster and OGR vector
map data can be imported into R, and GDAL raster data and OGR
vector data exported. Use is made of classes defined in the sp package.

• RSAGA:
http://cran.r-project.org/web/packages/RSAGA/index.html.
RSAGA provides access to geocomputing and terrain analysis functions
of SAGA GIS http://www.saga-gis.org/en/index.html from within
R by running the command line version of SAGA. RSAGA furthermore
provides several R functions for handling ASCII grids, including a flexible
framework for applying local functions (including predict methods of
fitted models) and focal functions to multiple grids.

Modeling

• caret:
http://cran.r-project.org/web/packages/caret/index.html.
Extensive range of functions for training and plotting classification and
regression models. See the caret website for more detailed information
http://topepo.github.io/caret/index.html.

• Cubist:
http://cran.r-project.org/web/packages/Cubist/index.html.
Regression modeling using rules with added instance-based corrections.
Cubist models were developed by Ross Quinlan. Further information can
be found at Rulequest https://www.rulequest.com/

• C5.0: http://cran.r-project.org/web/packages/C50/index.html.
C5.0 decision trees and rule-based models for pattern recognition.
Another model structure developed by Ross Quinlan.

• gam: http://cran.r-project.org/web/packages/gam/index.html.
Functions for fitting and working with generalized additive models.

• nnet: http://cran.r-project.org/web/packages/nnet/index.html.
Software for feed-forward neural networks with a single hidden layer, and

c©2017, Soil Security Laboratory 11

for multinomial log-linear models.

• gstat: http://cran.r-project.org/web/packages/gstat/.
Variogram modelling; simple, ordinary and universal point or block
(co)kriging, sequential Gaussian or indicator (co)simulation; variogram
and variogram map plotting utility functions. A related and useful
package is automap

(http://cran.r-project.org/web/packages/automap/index.html),
which performs an automatic interpolation by automatically estimating
the variogram and then calling gstat.

Mapping and plotting

• Both raster and sp have handy functions for plotting spatial data.
Besides using the base plotting functionality, another useful plotting
package is ggplot2

(http://cran.r-project.org/web/packages/ggplot2/index.html).
This package is an implementation of the grammar of graphics in R. It
combines the advantages of both base and lattice graphics: conditioning
and shared axes are handled automatically, and you can still build up a
plot step by step from multiple data sources. It also implements a
sophisticated multidimensional conditioning system and a consistent
interface to map data to aesthetic attributes. See the ggplot2 website for
more information, documentation and examples
(http://ggplot2.org/).

References

Bivand, R. S., E. J. Pebesma, and V. Gomez-Rubio
2008. Applied Spatial Data Analysis with R. UseR! Series, Springer.

c©2017, Soil Security Laboratory 12

