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and landscape entities in the area using the terron concept that was proposed by Carré and McBratney (2005).
Here soil and landscape variables were assembled and then used to generate 12 terrons or continuous soil-
landscape units which are described quantitatively in terms of their distinguishing characteristics. Each terron
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-l;?r,:g?rms' is characterised by landscape variables (derived from a digital elevation model) and soil variables which include
Terron soil pH, clay percentage, soil mineralogy (clay types and presence of iron oxides), continuous soil classes, and
Digital soil mapping presence or absence of marl. This study demonstrates a number of soil inferential techniques used for assembling
Wine region the soil terron variables, based on common or easy to measure soil properties that populate most soil information
Soil-landscape characteristics databases. The approach is the first step in describing terroir; the next step will be to match the terrons with dif-
WRB ferent grape varietals.
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1. Introduction Given an available soil information database, and information re-

Terron, a soil and landscape concept, with an associated model, was
described by Carre and McBratney (2005). The embodiment of terron is
a continuous soil-landscape unit or class which combines soil knowl-
edge, landscape information, and their interactions together. In some
ways comparable to agroecozones (Liu and Samal, 2002), land systems
(Chrisitan and Stewart, 1953), and terroir (Barham, 2003), terrons (plu-
ral) can be described in terms of their soil and landscape attributes. A
distinguishing characteristic of the terron concept, however, is that it
has an underlying model, which is also based on the continuity of soil
cover and landscape (Carre and McBratney, 2005). Thus terrons are ob-
jectively realised, are observed as continuous entities across the land-
scape, and their defining attributes can be described quantitatively.
This objective and quantitative evaluation of soil and landscape is there-
fore quite amenable for environmental assessment, such as determining
land capability (or land evaluation) (Stewart, 1968), assessing enter-
prise suitability (Kidd et al., 2012), and defining terroir-like zones of
management (Taylor, 2004).
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garding the landscape and digital modelling approaches, this study in-
tends to explore the terron concept further as an initiating effort to
indentifying terroir in the Lower Hunter Valley — a famous viticultural
and wine producing region of Australia.

A value-laden concept (Vaudour, 2002), terroir by definition refers to
an area or terrain, usually small, whose soil and micro-climate impart
distinctive qualities to food products (Wilson, 1998; Macqueen and
Meinert, 2006; Dougherty, 2012). Terroir is usually associated with the
production of wine, but is just as applicable to other agricultural domains
and their related food products (Barham, 2003). Because the Lower
Hunter Valley is situated in a predominantly viticultural zone, the con-
cept is terroir has considerable appeal. From a land management per-
spective, a terroir (or terron map in this case) map may be easier
to interpret and more useful than just a soil map alone (Carre and
McBratney, 2005). Additionally, terroir can be used for the determination
of different agricultural areas or zones, and their suitability to produce or
grow a given agricultural enterprise. In the case of wine production,
identifying terroir could be reduced down to defining areas where viti-
culture can be practiced, what varieties of grape can be grown and
where, and what wine making styles are appropriate (Unwin, 2012).
From a business perspective such as the advertising and labelling of
food and wine products, the identification with and belongingness to a
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particular terroir could be an attractive marketing tool. Here the impor-
tance of terroir is about establishing a point of difference or positioning
the region or a cooperative of primary producers favourably in a compet-
itive and discerning marketplace (Feagan, 2007).

The establishment of terroir, however, is more than some sort of
classification based on what Carey et al. (2002) termed stable natural
factors—soils, geology, landforms and climate. And this is apparent in
Bonfante et al. (2011) and Carey et al. (2009) who used mechanistic
and empirical approaches respectively by also taking into account dy-
namic terroir variables such as crop variety, crop micro-climate, water
availability, and oenological factors. Nonetheless, landscape classification
into relatively homogeneous areas of soil, landform, geology, climate
combinations and their interactions is generally a first investigative
step to identifying terroir. Depending on the spatial extent of the study,
this sort of classification could default to the realm of precision manage-
ment and the defining of site-specific management zones (Taylor, 2004)
if one is considering terroir within a field or a vineyard for example
(Green, 2012). The availability of high resolution environmental infor-
mation gained from proximal sensing systems such as finely resolved el-
evation models from an on-the-go GPS tracking system, electromagnetic
induction, and gamma radiometrics, makes the realisation of site-specific
management zones possible (Bramley and Hamilton, 2007).

Contrastingly, at larger spatial extents, the luxury of very detailed in-
formation is more limiting. Yet there have been many improvements in
digital technologies over time, and will likely to continue into the future,
particularly that of digital elevation models. There are also new devel-
opments in remote sensing, airborne gamma radiometrics, and climatic
information that could assist in the identification of preliminary terroir
at large spatial extents, such as that of a landscape, region or district.

A notable omission from these available data sources is spatial soil
information. Soil information may be available per se, but its scale and
how it is depicted may not be suitable or properly reflect the natural
variations of the soil under study. In previous efforts, conventional
polygon-based soil maps and modal map unit soil information have
been included into the landscape classification process for identifying
preliminary terroir or suitability thereof e.g. Carey et al. (2008) and
Jones et al. (2004). While a pragmatic solution, with new information
technologies, there is a lot that could be done in this space in terms of
using digital soil mapping approaches as a complimentary tool to iden-
tify terroir at larger spatial extents.

Digital soil mapping is embodied within the terron concept. Carre and
McBratney (2005) developed 18 terrons in the La Rochelle area of France
using quantitative soil attribute information extracted from a large data-
base, and landform variables derived from a digital elevation model. The
soil variables included attributes such as colour, organic matter concen-
tration, texture, and others. Their method involved non-hierarchical
clustering methods to define a fixed number of terrons from a given
number of observed sites. Terron-landform rules were then determined
from a regression kriging analysis, which was followed by interpolation
of these rules to create a spatial map of terrons for their study area.

Given environmental variables, an important question in the process
of identifying terrons is what types of soil attributes should be included
into a terron model? In terms of viticulture, but also agriculture in gen-
eral, White et al. (2007), Burns (2012), and similarly Lanyon et al.
(2004) provided much detail on what soil properties might be consid-
ered. A main consideration is assessing first what soil information is
available within a given database. Intuitively, there are considerations
about soil physical and drainage properties which are generally not di-
rectly available, but could be estimated or inferred from data that is
available via pedotransfer functions (e.g. Taylor and Minasny, 2006 or
McBratney et al., 2002). Considerations about soil nutrients are plausi-
ble, as is soil mineralogy. Generally for soil mineralogy, this type of in-
formation is sparse and can be costly to determine via conventional
methods of XRD analysis. With Vis-NIR technology however, there is a
scope to make intelligible inference of clay minerals and iron oxides
from soil spectra (Viscarra Rossel et al., 2009; Mulder et al., 2013).

The first aim of this study is to use digital soil mapping methods
to create soil maps for inclusion into a terron model. This involves
extracting information from an available soil and spectral soil database,
and using these data directly or indirectly to map soil attributes of inter-
est that would generally be useful for the preliminary identification of
terroir. The second aim is to then assemble the portfolio of the soil and
other landscape variables (such as that derived from a digital elevation
model) with the intention of deriving continuous terron classes through
the use of a non-hierarchical fuzzy clustering algorithm.

2. Materials and methods
2.1. Study area

The area of this study is the Hunter Wine Country Private Irrigation
District (HWCPID), situated in the Lower Hunter Valley, NSW (32.83°S
151.35°E), and covers an area of approximately 220 km?. The HWCPID
is approximately 140 km north of Sydney, NSW, Australia (Fig. 1). Cli-
matically, the HWCPID is situated in a temperate climatic zone, and ex-
periences warm humid summers, and relatively cooler yet also humid
winters. Rainfall is mostly uniformly distributed throughout the year.
On average the HWCPID receives just over 750 mm of rainfall annually
(Bureau of Meterology, 2014 ). Topographically, this area consists mostly
of undulating hills that ascend to low mountains to the south-west. The
underlying geology of the HWCPID includes predominantly Early Perm-
ian siltstones, marl, and some minor sandstone (Hawley et al., 1995).
Other extensive parent material includes Late Permian siltstones, and
Middle Permian conglomerates, sandstones and siltstones. As to be indi-
cated below, the soils, or composition thereof is quite variable, but in
general terms are weathered kaolinitic-smectitic type soils, ranging
from light to medium texture grade. In terms of landuse, an expansive vi-
ticultural industry is situated in the area and is possibly most widespread
of rural industries, followed by dryland agricultural grazing systems.

The workflow of this study involves three main tasks: 1) assemblage
of terron variables, 2) identification of terrons (continuous soil and
landscape classification), and 3) terron description.

2.2. Assemblage of terron variables: summary

The model for the identification of terrons in the HWCPID is based
entirely on soil and landform variables for this study. This decision
was made under the consideration that available data indicate that cli-
mate is more-or-less uniform across the area. Similarly available geolog-
ical information or spatial information regarding variations in parent
materials, such as gamma-radiometric data, were unsuitable, as detailed
surveys have not been conducted yet.

As an initial step, a decision is required to determine an appropriate
number of terron classes to generate within the study area. This could
be determined by any number of means — objectively and/or subjective-
ly, but in the case of this study, and similarly in Carre and McBratney
(2005), it was decided to have parity between the number of soil types
that have been observed (during successive soil surveys of the area),
and the number of terrons to generate. In nearly all cases, soils in the
study area have been observed to the sub-order level of the Australian
Soil Classification (Isbell, 2002). Given some consolidation of infrequent-
ly observed soil classes (to the sub-order level) into more taxonomically
broader classes, there are 12 ‘main’ observed soil types—and by default,
12 terrons to generate.

The assemblage of terron variables were generated either from a
digital elevation model (DEM) and its derivatives directly, or from digi-
tal soil mapping efforts using available soil data (points). Seventeen soil
and landform variables were used in this study. As described below in
more detail, 16 of the variables were apportioned for non-hierarchical
cluster analysis. As the remaining variable, the presence/absence of
marl was used as a stratifying variable to which separate clustering
processes were performed. More formally, two terrons were generated
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Fig. 1. Locality map of the HWCPID in reference to the eastern coastline of Australia and associated capital cities. Locality map shows existing soil survey sites conducted throughout the

HW(CPID, beginning 2001 through to 2012. Lines on locality map indicate road network and HWCPID boundary.

for areas where the presence of marl was predicted, and 10 terrons gen-
erated where marl is believed to be absent. Marl in the HWCPID typical-
ly occurs as loose, earthy deposits (indurated marine deposits from the
Permian) consisting chiefly of an intimate mixture of clay and calcium

carbonate. Subsequently, the soils where marl is observed are naturally colluvial deposits.

a series of neighbourhood operations at progressively coarser
resolutions with the goal of identifying both small and large val-
leys. MVF has been used extensively for the delineation and grad-
ing of valley floor units corresponding to areas of alluvial and

described as calcareous, that from a viticultural perspective, are highly 5
valued the world over (White et al.,, 2007).

currently the finest resolution DEM available for the study area. From
the DEM the following 8 variables were extracted: 6

1) Elevation (ELV): The given elevation from the DEM
2) Slope angle (SLP): Measured in degrees, is the first derivative of ELV 7

Vertical distance to channel network (VDC): Difference between ELV
and an interpolation of a channel network base level elevation.
Knowledge of the spatial distribution of channel networks (lines)
is therefore necessary for this parameter.

Mid-slope position (MSP): A relative slope position parameter
which gives a classification of the slope position in both valley and
crest positions.

Diffuse incoming solar radiation (ISR): Measure of potential
incoming solar radiation, and used as a parameter for evaluat-
ing the positional aspect effect. This parameter was evaluated

—

For the landform variables, a 25 m resolved DEM was used. This is

=

~—

in the direction of greatest slope

3) Topographic wetness index (TWI): A secondary landform parameter
which estimates for each pixel, its tendency to accumulate water
(Quinn et al., 1995).

4) Multi-resolution valley bottom flatness index (MVF): Is derived 8
using slope and elevation to classify valley bottoms as flat, low
areas (Gallant and Dowling, 2003). This is accomplished through

step.

g

over the duration of a single calendar year with a 5 day time

Catchment area (CTA): A parameter which describes the amount of
potential water that will drain through a pixel, and derived from the
ELV using theoretical flow direction algorithms.
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Algorithms for deriving these variables were implemented using the
SAGA GIS software (http://www.saga-gis.org/en/index.html).

Eight soil variables (besides the presence of marl) used in this study
included:

1) The whole-soil averaged pH (to 1 m) (Bishop et al., 1999)

2) The average sub-soil clay percentage (0.4-1 m)

3) Soil drainage potential index (Malone et al., 2012)

4) Soil mineralogy, specifically:
4.1. Likelihood of kaolinite presence
4.2. Likelihood of the presence of a kaolinite and smectite mixture
4.3. Likelihood of iron oxide presence

5) Classified soil classes, specifically:
5.1. 1st principal component of continuous soil class predictions
5.2. 2nd principal component of continuous soil class predictions.

These soil variables were selected for two main reasons: 1) to
achieve a reasonable cross-section of attributes describing the physical,
chemical and mineralogical properties of the soil, and 2) to use most ef-
fectively the data that are stored within the available soil information
database. Described in more detail below, the database used in this
study has many observations of soil classes, soil pH, clay percentage
and colour, with limited observations of other usually commonly ob-
served attributes such as soil organic carbon and exchangeable cations.
Thus the intention overall was to make the most use out of what data
was ‘plentiful’. In terms of the soil mineralogical variables, Generally
this information is scarce in soil databases, but because a number of
the soils examined have vis-NIR spectra, some estimate that their min-
eral compositions could be approximated from these, for which is also
described in more detail below.

In terms of available soil data for the calibration of spatial soil predic-
tion functions, there is, in total, 1691 individual locations where soil has
been observed and described in one form or another (Fig. 1). These data
have been collected over successive years beginning in 2001 to the
present time, and more detailed descriptions of them can be found in
Malone et al. (2011) and Odgers et al. (2011). Essentially, all these
data are compiled into a single database table which contains separate
columns for different soil attributes (in addition to columns for labels,
coordinates, soil depths and horizon nomenclature, etc.). Each row is
an observation made for a particular location at a particular genetic ho-
rizon, or sometimes a specified depth interval, and in many cases, the
individual observations have a measured Vis-NIR spectrum as well.
Yet this database is by no means fully populated with a full complement
of measured soil attributes or soil spectra at every sample. Therefore, for
each of the soil terron variables of interest in this study, filtering steps
were performed to remove missing data (instances where no data
was recorded for a whole profile), and other data anomalies such as
missing spatial coordinates.

The soil variables were mapped using the digital soil mapping
scorpan approach (McBratney et al.,, 2003):

Sclx,y,~ t]or Sp[x, y, ~ t]
= f(s[xA,y,N t],c[x,y,~ t]v O[X7y"\‘ t]vr[xvyvN t]7 p[XV.Y'N t]ﬁa[xmys'\‘ t]v n)
(1)

where

Se soil class

Sp soil property

S soils, other attributes of the soil at a point

c climate, climatic properties of the environment at a point
0 organisms, vegetation, or fauna, or human activity
r topography, landscape attributes

D parent material, lithology

a age, the time factor

n space, spatial position

t time (where t is defined as an approximate time)

Xy the explicit spatial coordinates

f function or soil spatial prediction function (SSPF)

2.3. Assemblage of terron variables: specific description of soil variable
mapping

The soil terron variables are mapped in Figs. 2 and 3. Following now
is the description of the pertinent information regarding how these var-
iables were mapped across the HWCPID to 25 m resolution (the same
resolution and extent as for the landform variables). This information
is also summarised in Table 1.

2.3.1. Estimation of marl presence and whole-soil pH average

After data filtering, 1399 soil profiles remained that contained
measurements of soil pH (1:5 soil:water suspension) (Rayment and
Higginson, 1992). These measurements, taken at various times, were
either made directly in the field at the time of soil description or later
in a laboratory. In order to proceed with DSM, a continuous mass-
preserving spline depth function (Bishop et al., 1999) was fitted to
each soil pH profile. This function was then integrated to return the av-
erage for the 0-1 m depth interval. If a soil profile was not observed to
reach beyond 1 m, the average for the whole profile was recorded.

Regression kriging was used as the spatial prediction model for map-
ping. Data were split into calibration and validation datasets (70% and
30% respectively). Cubist regression tree models (Quinlan, 1992) were
used for regressing the averaged soil pH values against a suite of co-
located environmental covariates. Some of the covariates have been
described above, in addition to further terrain variables plus other envi-
ronmental covariates such as normalised difference vegetation index
(NDVI) and other spectral combinations or ratios derived from Landsat
ETM + imagery e.g. Band 3/Band 2, Band 3/Band 7, and Band 5/Band 7
were used. Further information about soil enhancement ratios can be
found in Boettinger et al. (2008). The Landsat ETM + imagery used in
this work was collected during the southern hemisphere spring (Sep-
tember) of 2009, which coincides with a time where rainfall is at its
long-term low, and when exposed soil cover is expected to be greatest.

Variography of the residuals (from the Cubist modelling) was used
to examine their spatial correlation structure. Given the number of
data available, it was deemed suitable to use locally fitted variograms
based on the nearest 200 points for spatial interpolation of the residuals
across the HWCPID. As a final step to regression kriging, the two maps—
the one derived from regression modelling and the other from residual
kriging, were summed (Fig. 2). The validation dataset indicated that the
root mean square error of prediction for the soil pH was 0.76 pH units,
which is similar to that observed in Malone et al. (2011).

Mapping the presence of marl involved application of expert knowl-
edge, traditional GIS data analysis, and digital soil mapping. From the
knowledge developed in the study area, a high soil pH in the sub-soil
at a relatively high elevation and in areas that do not accumulate
water flow, is generally an indicative criterion for detecting marl pres-
ence in a soil. Firstly using the spline fitted depth functions of soil pH
at each profile, described previously, integration was performed to re-
trieve the average soil pH between 0.4 and 1 m depth. Then using this
data and their collocated values of ELV and TWI, each soil profile was
assessed for the presence or absence of marl. From some iteration, the
criteria ultimately used was averaged sub-soil pH > 6.85, ELV > 90 m,
and TWI > 12. The threshold criteria were not optimised; instead, a
number of realistic combinations were tried before deciding that the
final result - number of profiles detected as having marl present - did
not vary that much overall. From this process there were 122 and
1277 soil profiles indicating either the presence or absence of marl re-
spectively. Keeping the calibration and validation data configuration
(70/30 random split) used for the spatial prediction of whole-profile
soil pH, a binary logistic model was used to regress the presence/
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Fig. 2. Maps of soil variables for inclusion into the terron model. Beginning from the top left to right: Presence of marl, whole-soil average pH, sub-soil clay percentage. Bottom left to right:
Likeliness of iron oxide presence, likeliness of kaolinite-smectite mixture presence, likeliness of kaolinite presence.

absence of marl data with the aforementioned environmental covariate
predictors. From the validation dataset, an overall accuracy of 92% was
achieved. Producer's accuracy (error of omission) for predicting the
presence of marl was 41%, while the user's accuracy (error of commis-
sion) was 44%.

The map showing the spatial distribution of marl presence is shown
in Fig. 2. This map was qualitatively validated in a field survey in 2012.
From this, the map was found to be reliable in delineating areas of ap-
preciable amounts of marl in the sub-soil.

2.3.2. Sub-soil clay content

After data filtering, 1532 soil profiles remained for which there were
observations of soil texture, specifically that of clay content. These data
are all field texture observations that had been assigned to texture
grades (Northcote, 1979). Consequently, they were converted to clay
percentage estimates based on a lookup table adapted from Taylor
and Minasny (2006). As with soil pH, a continuous mass-preserving

spline depth function was fitted to each profile, from which the average
clay content between 0.4 and 1 m was evaluated. Similarly, as with soil
pH, regression kriging (with Cubist models) was used to model and spa-
tially predict sub-soil clay content across the HWCPID. 30% of the data
was withheld for model validation purposes. The Cubist model was
able to explain 20% of the variation in the observed data. Modelling of
the spatial structure of the residuals marginally improved the predic-
tions. Using the validation dataset, the RMSEP of the regression kriging
predictions was 9%.

2.3.3. Soil drainage index

The method for estimating soil drainage is given in Malone et al.
(2012), and its application within the HWCPID is summarised there-
in as well. Soil drainage is described as an index on a scale of 100
(very well drained) to 0 (very poorly drained), and is determined
on the basis of the weighted combination of matrix soil colours for
the whole soil profile, excluding the A horizon. It is well established
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Fig. 3. Soil class map of the HWCPID and associated first two principal component maps of the prediction confidences from See5 modelling.

that soil colour can be used as a general purpose indicator of inter-
nal soil drainage (Evans and Franzmeier, 1988). In the HWCPID, a
red — brown — yellow — grey — black matrix soil colour sequence
is often indicative of soils ranging from well draining (red) to poorly
draining (black) (Kovac and Lawrie, 1990).

Because Munsell® HVC is not directly conducive for quantitative
studies; the drainage index calculation of Malone et al. (2012) is first
initiated by converting soil colour descriptions to the CIELAB colour
space (Robertson, 1976; CIE, 1978). Next, archetypal colour/s to each
soil of the drainage sequence is ascertained empirically from the avail-
able soil colour dataset. A Euclidean distance is calculated to compare
each observation with each archetypal soil colour. The distances are
then used for a fuzzy classifier to assign each soil a fuzzy membership
to each soil colour class. An estimate of soil drainage is then calculated
through weighted averaging of the fuzzy memberships and the associ-
ated value assigned to each archetypal colour. In this case, the archetyp-
al red is assigned a value of 100, brown (75), yellow (50), grey (25), and
black (0).

From Malone et al. (2012), statistical relationships were found be-
tween the soil drainage index and a number of terrain variables, nota-
bly, the distance to a channel network and topographic wetness index
in the HWCPID. Independently validated, the spatial model (regression
kriging using Cubist models) of soil drainage index revealed a RMSEP of
22 points. The map in Fig. 2 shows the spatial variation of the soil drain-
age index across the HWCPID.

2.3.4. Soil mineralogy

Vis-NIR spectroscopy was used for the detection of clay mineral spe-
cies and iron oxides as an analytical step prior to mapping their spatial
distribution across the study area. Clay minerals and iron oxides absorb
at specific wavelengths in the vis-NIR range of the electro-magnetic
spectrum (Clark et al., 1990). Subsequently, previous studies have dem-
onstrated the use of soil vis-NIR spectra in soil compositional studies
with notable success (Viscarra Rossel et al., 2009; Brown et al., 2006).
In the present work, 354 soil profiles (1571 soil horizons) have vis-NIR
spectra for each of their recorded depths. Spectroscopic measurement
was made with an Agrispec portable spectrophotometer with a contact
probe attachment (Analytical Spectral Devices, Boulder, Colorado). This

particular instrument has a spectral range between 350 and 2500 nm.
Soil samples were in air-dry condition and ground to <2 mm prior to
scanning. To reduce signal-to-noise ratios of the spectra, five scans
of each sample were performed, from which an averaged reflectance
spectrum was derived. Calibration of the instrument was made with a
Spectralon white tile and was re-calibrated after every 15 scans or 3
samples.

Reference mineral spectra of the following end member clay min-
erals and iron oxides were retrieved from U.S. Geological Survey digital
spectral library (Clark et al., 2007): kaolinite (KGa-2), illite (GDS4),
smectite (SWy-1), kaolinite-smectite 50/50 mixture (H89-FR-2), goe-
thite (GDS240), and hematite (GDS576). Clark et al. (2003) document
the diagnostic wavelengths of these end member specimens which
are summarised in Table 2. The idea behind assessing the mineral com-
position of soils with vis-NIR spectroscopy is to compare the reflectance
of the diagnostic wavelengths from the reference spectra with the re-
flectance at the same wavelengths of the soil samples. To initiate this,
for each of the reference and soil spectra, the wavelength ranges specif-
ically diagnostic to each clay mineral and iron oxide specimen were iso-
lated. Each range was then normalised separately by fitting a convex
hull to it, followed by computation of the deviation from the fitted
hull (Clark and Roush, 1984). Fig. 4 shows an example of the fitted con-
vex hulls to the diagnostic reflectance ranges from the reference spectra
for smectite and kaolinite and the associated spectra once the continu-
um is removed.

Once all the soil spectra have been normalised, the likely presence of
each clay mineral and iron oxide in each soil is estimated when it is
compared to that of the normalised reference spectra. The method
used in this study is based on the approach developed by the U.S. Geo-
logical Survey and implemented in their Tetracorder decision making
framework (Clark et al., 2003). Fundamentally, Tetracorder uses a
shape-fitting algorithm, which essentially reduces down to a least-
squares fit between the reference spectra and the observed soil spectra.
The correlation coefficient of this fit (F) is a quantitative estimate of the
shape similarity between the reference and soil spectra. The importance
of this measure can be exemplified in Fig. 4 where both smectite and ka-
olinite have similar diagnostic wavelength ranges yet quite different re-
flectance behaviour—kaolinite with the distinctive doublet feature,



Table 1

Summary of soil terron variables and their inference, method of spatial mapping and associated result of validation using a withheld dataset. SSPF (soil spatial prediction function), RMSE (root mean square error), OA (overall accuracy).

Notes

Validation
RMSE

Predictors

SSPF

Nos. of soil Soil inference

profiles

Source data

Depth

Soil terron variable

OA
92%

Selected topographic and Landsat

ETM + spectral imagery.

Binary logistic regression

Subsoil pH threshold, and

1399

Field and lab pH
measurements

Sub-soil (0.4-1 m)

Marl

thresholds for ALT and TWI

Mass-preserving splines

Terrain variables: (as described in  0.76 pH units

the text) ALT, SLP, TWI, MVF, VDC,

MSP, ISR. Further variables

Cubist regression and
residual kriging

1399

Field and lab pH
measurements

Whole-soil (1 m)

Soil pH

Clay texture lookup table and

mass-preserving splines

1532

Field texture grades

Sub-soil (0.4-1 m)

Clay percentage

included hillshading, multi-

22 drainage
index units

resolution ridge top flatness, and
terrain ruggedness index

Inferred soil colour-drainage

sequence

1486

Moist soil colours

Sub-soil (0.4-1 m)

Soil drainage

Probabilities of class

3 mapped

80%

Landsat variables: NDVI, band

Spectral shape matching with ~ Ordinal regression model

reference material at

Vis-NIR spectra 354

Sub-soil (0.4-1 m)

Likelihood of kaolinite

ratios b3/b2, b3/b7, and b5/b7

(3 ordinal classes)

presence
Likelihood of the

44%

diagnostic wavelengths

Vis-NIR spectra 354

Sub-soil (0.4-1 m)

presence of a

kaolinite and

smectite mixture
Likelihood of iron oxide Sub-soil (0.4-1 m)
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354

Vis-NIR spectra

presence
Continuous soil classes

38% First two principal

C5 classification trees

Soil class consolidation

1679

Field classified soil

classes

Whole-soil

components of C5
model prediction
confidences
mapped.

which is absent from smectite. Other criteria used for estimating simi-
larity to the reference spectra are the relative depth and relative area
of the soil spectral feature (to the reference). The depth of a spectral fea-
ture is calculated by:

D=1-"0. 2)

D is the depth of the spectral feature, and R, is the reflectance value of
the raw isolated spectra where the minimum reflectance value of the
continuum-removed spectra is observed. R. is the minimum reflectance
in the continuum-removed feature. The relative depth is calculated as
the ratio of the spectral feature depth of a soil sample over that of the
given reference spectra. This is the same as for relative areas, where
areas (of the spectral features) are estimated by the conventional area
calculation method. The ‘relative abundance’ of a clay mineral or iron
oxide in a particular soil sample is derived by:

My, =F X1 xT1, (3)

where My, is the relative abundance of a given soil mineral, rp is the rel-
ative depth of the spectral feature for the diagnostic wavelength for a
given reference mineral species and, finally, 4 is the relative spectral
feature area. In the case where there is more than one diagnostic spec-
tral feature for a clay mineral (illite) or iron oxide (both hematite and
goethite), Mgy, is derived by:

n
My, = Zci x Fy xTp xTy (4)
f

where n is the number of diagnostic spectral features, and c; is the pro-
portional area of the reference spectral feature i to the total summed
area of the (reference mineral) spectral features. Fig. 5 shows that se-
lected continuum removed soil spectra for the diagnostic wavelengths
of each mineral species. For each, the minimum, maximum, first, second
and third quartiles of Mg, were selected, followed by plotting the corre-
sponding continuum removed spectra in association with the reference
spectra (bold dark lines Fig. 5).

With some estimate of the likely presence of clay minerals and iron
oxide in each soil sample, spatial predictive models were fitted for the
intended purpose of generating maps of their spatial variation across
the HWCPID, specifically that of the subsoil (0.4-1 m). As for some
of the other soil-based terron variables, the mass-preserving spline
depth function was used to generate continuous soil profile representa-
tions from a limited number of observations. From the fitted splines of
each soil profile, for each mineral species, the average abundance for
the 0.4-1 m depth interval was derived.

Spatial modelling of the soil mineral species involved ordinal logistic
regressions. A preparatory step to this was to derive four ordinal classes
of ‘mineral abundance’ for each soil mineral. Cut points were made at
the 0.25 spaced intervals. In other words, the abundances for each
class were: Class 1 (0-0.25), Class 2 (0.26-0.50), Class 3 (0.51-0.75),
and Class 4 (0.76-1). For most soil mineral species, very few samples
had relative abundances in Class 4. Therefore, these few exceptions
were collapsed down into Class 3. The occurrence of illite was rare,
meaning no attempt was made to build a predictive model of their spa-
tial distribution. Additionally, goethite and hematite have quite similar
absorbance features, making their individual identification difficult.
The approach in this situation was to combine the estimated ‘mineral
abundances’ of these iron oxides (by taking the maximum), to form
an agglomerated iron oxide class for the spatial modelling. In summary
the soil minerals used for spatial modelling in this study were kaolinite,
smectite, kaolinite-smectite mixture, and iron oxides.

As for the other DSM efforts already discussed, validation of these
models was performed via a random-holdback procedure. Here 25% of
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Table 2
Diagnostic wavelength ranges of clay minerals and iron oxides investigated in this study.

Mineral Diagnostic wavelength range/s
Kaolin 2079-2277 nm
Smectite 2118-2287 nm

2128-2258 nm

2155-2266 nm, 2306-2385 nm
457-563 nm, 776-1266 nm
455-612 nm, 765-1050 nm

Kaolin-smectite 50-50 mixture
Mllite

Goethite

Hematite

the available data for each model was withheld from the model fitting
process.

Specifically in terms of the spatial modelling, ordinal logistic regres-
sion is an extension of logistic regression such that regression coeffi-
cients are estimated (typically by maximum likelihood estimation) to
predict the probability of a discrete outcome (such as a class) occurring
(Hastie et al., 2001). This is performed using a logit link function, which
is the natural logarithm of the odds (log-odds) of a particular class or
event being observed. The proportional odds model (POM) is the most
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popular model for ordinal logistic regression (Agresti, 1984), and is an
extension of logistic regression because it allows ordered data to be
modelled by analysing it as a number of dichotomies. For example, a bi-
nary logistic regression model compares one dichotomy (e.g. the pres-
ence or absence of marl model), whereas the proportional odds model
compares a number of dichotomies by arranging the ordered categories
into a series of binary comparisons. A binary logistic regression models a
single logit; the POM on the other hand models several cumulative
logits. Therefore, in the case of having 3 ordinal classes, 2 logits are
modelled, one for each of the following class cut points: Class 1 vs.
Class 2, Class 3 vs. Class 1, and Class 2 vs. Class 3. From simple inference
of these models, the probability of each ordinal class occurring can be
made. Agresti (1984) describes the theoretical framework of POMs in
greater detail. From validation (n = 89), the overall accuracy of the or-
dinal models was: iron oxides — 75%, kaolinite — 80%, smectite — 40%,
and kaolinite-smectite mixture — 44%. In consideration of the terron
model, the 3 most accurately predicted variables for inclusion were se-
lected. Mapping the three soil minerals (sub-soil iron oxides, kaolinite,
and kaolinite-smectite mixture) involved mapping the probabilities of

Continuum
Convex hull fitted removed
Specimen to diagnostic diagnostic
wavelength range | wavelength range
:
Smectite (Swy-1) |~ el
2118-2137nm |i%
o wave::):th (nm) “e e wave::?;h (nm) e
Kaolinite (KGa-2) |{*
2079-2267 nm L i
= M S .

Fig. 4. Diagnostic wavelength ranges for smectite and kaolinite. To prepare for analyses, spectra need to be normalised by fitting a convex hull. Soil spectra and reference spectra are then

compared on the basis of the continuum removed spectra.
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Fig. 5. Continuum removed soil spectra (dashed lines) with comparison to reference spectra at their given diagnostic wavelength ranges. The dashed lines represent (as numbered for
kaolinite) the spectra for soils where Mg, is 1) the minimum, 2) first quartile, 3) second quartile, 4) third quartile, and 5) maximum of the given M, distribution for each mineral species.

class 3 for each. The maps are shown in Fig. 2. These indicate that where
the probabilities are closer to 1, there is a high likelihood of the presence
(in appreciable concentration) of a given soil mineral. Conversely, low
probabilities indicate either the presence of a soil mineral in a relatively
minor abundance or the absence entirely from the soil.

2.3.5. Soil classes

The inclusion of soil class information into the terron model is rea-
soned on the fact that soil classes embody much useful information
about pedogenesis and soil processes that cannot be satisfactorily
or easily be explained by measurable soil attributes alone. 1679 soil
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profiles in the available database have been classified to the sub-order
level of the Australian Soil Classification System (Isbell, 2002). A general
guide on their World Reference Base (WRB) (IUSS Working Group WRB,
2007) and Soil Taxonomy (Soil Survey Staff, 2010) counterparts can be
found in Morand (2013) or Isbell et al. (1997). At the Sub-Order level of
the Australian Soil Classification, there have been 53 different soil types
observed in the HWCPID. However 72% or 1201 are one of either four
soils: Brown Dermosol or Chromosol, or Red Dermosol or Chromosol
(WRB Luvisols or Lixisols). As may be surmised, many of the soil types
have been observed once or only a few times. Therefore to facilitate
soil class modelling, soil classes were consolidated into the following
generalised soil types (their proportion of the total observed population
in brackets): Calcarosols (Calcisols) (2%), Red Chromosols (8%), Brown
Chromosols (12%), other Chromosols (2%), Brown Dermosols (26%),
Red Dermosols (26%), other Dermosols (7%), Hydrosols (Gleysols,
Stagnosols, Fluvisols) (2%), Red Kurosols (Acrisols) (5%), other Kurosols
(Acrisols) (4%), Tenosols (Regosols, Cambisols) (4%), and Kandosols
(Cambisols) (2%).

After intersecting these observations with a suite of environmental
covariates, followed by splitting the data into calibration-validation
datasets (75%-25%), Quinlan's C5.0 algorithm (Quinlan, 1993) was
used to fit a classification tree model to the calibration data. As de-
scribed in Moran and Bui (2002), classification trees (or the algorithm
that builds them) partition a dataset into successionally more homoge-
neous subsets. Nodes are where trees branch or split the dataset; termi-
nal nodes are called leaves. At each node of the tree, C5.0 splits the data
in such a way that most effectively results in subsets enriched in one
class or another, and is more formally expressed as the normalised in-
formation gain or difference in entropy (Quinlan, 1993). The attribute
with the highest normalised information gain is chosen to make the de-
cision. Validation of the C5.0 model fitted to the soil class data resulted
in an overall accuracy of 38%. The kappa (k) statistic for this model was
of fair agreement (k = 0.2).

The C5.0 model was applied for the whole study area, resulting in the
map of Fig. 5 which displays the soil classes as Australian soil classes.
Possibly due to the relative proportions of each soil class, four of the
soil classes were not predicted using this C5.0 model. As can be seen,
it is quite clear of the dominance of Brown and Red Dermosols across
the HWCPID. This map however, because of its categorical nature is
not suitable to be included into the terron model, which can only permit
continuous variables in its current form. To avert this issue, the predic-
tion confidence values that are determined from the C5.0 model were
investigated. The confidence values of each class are given for every
case or prediction location, and range between 0 (no confidence) and
1 (undoubtable confidence), and sum to unity across all classes. If a
case is classified by a single leaf of a decision tree, the confidence
value is the proportion of training cases at that leaf that belong to the
predicted class (pers. comm. R. Quinlan). If more than one leaf is in-
volved (i.e., one or more of the attributes on the path has missing
values), the value is a weighted sum of the individual leaves' confi-
dences. Principal component analysis was used to reduce the vari-
able dimension of the class confidences (12) to just a few (2) main
variables. The first two principal components captured 82% of the
variation in the prediction confidences. These maps are displayed
in Fig. 3, and by all accounts display the spatial variation patterns
of the predicted soil classes.

2.4. Identification of terrons

Non-hierarchical fuzzy cluster analysis was performed on the fully
assembled suite of soil and landform variables. This was performed
separately for the areas where marl was predicted as being present
and where it was absent. For the area with marl present, the fuzzy
k-means algorithm (Bezdek et al., 1984) was used to generate two clas-
ses based on the 16 terron variables. Similarly, for the area with marl ab-
sent, 10 classes were generated. The fuzzy-k algorithm was implemented

through the stand-alone FuzMe software (Minasny and McBratney,
2002). Besides setting the number of specified classes, Mahalanobis
distance was used for evaluating distance metrics in the fuzzy-k
algorithm - unlike Euclidean distance, the Mahalanobis distance
takes into account the correlation between input variables - and a
fuzzy exponent value of 1.2 was used. See McBratney and de Gruijter
(1992) for a more detailed explanation of the algorithm. The outputs
from both separate analyses, namely the membership classes, were
re-assembled for mapping the spatial distribution of each terron.

3. Results

The two terrons for where marl was predicted to be present were la-
belled as HVT_001 and HVT_002. The other 10 terrons were labelled se-
quentially from HVT_003 to HVT_012. Maps of the terrons and their
membership grades are shown in Fig. 6 with black colouring indicating
a high membership to a particular terron. By assigning each grid cell to
the terron of highest membership (i.e. hardening), a summary of each
terron's soil and landscape attributes is provided in Table 3. The
quantitative variables are summarised as a range of the 2.5% and
97.5% quantiles. Regarding the soil classes, instead of summarising
the principal components of the soil class probabilities, they are
summarised according to the most relevant consolidated Australian
Soil Classes that are mapped/occur in the given terron. Fig. 7 displays
the associated spatial distribution of the hardened terrons across the
HWCPID.

As a further aid to interpreting the different terron classes, Ward's
method (Ward, 1963) of clustering or agglomerative hierarchical clus-
tering was performed to examine their taxonomic similarities and
differences. The dendrogram depicted in Fig. 8 shows the result of
this agglomeration, whereby the terron centroids (resultant from the
fuzzy clustering procedures) were used for the analysis. To accompany
Fig. 8, Table 4 shows to Mahalanobis distance (taxonomic distance ma-
trix) between terrons, and which was used for the hierarchical cluster-
ing. Based on 1-way ANOVA tests between terron class and each input
terron soil and landscape variable, a significant difference (P < 0.001)
was observed. But as can be observed from Table 4 and Fig. 8, some
terron classes can be easily distinguished, while others share similari-
ties. Fig. 9 shows the score plots of the first two principle components
of the terron input variables. The scores of each terron class are coloured
separately. The first principle components explain 38% of the whole
data variation while the second component explained a further 18%. In
the principle component space it is possible to visually distinguish be-
tween the terrons, and also detect similarities. For example HVT_001
and HVT_002 occupy similar regions of the principle component
space, but together are quite distinct from the other terrons. Similar-
ly, HVT_005 and HVT_008 are similar, which are both quite distinct
from either HVT_006 or HVT_007 etc.

3.1. Terron descriptions

Using the information contained in Tables 3 and 4, and Figs. 7, 8 and
9, a summary of the pertinent characteristics of each terron class is
provided.

3.1.1. HVT_001

This terron is first of the marl terrons, and appears to be dominantly
situated to the south-west of the study area. Soils are dominantly Red
and Brown Dermosols. Some Calcarosols are also present which is to
be expected given the calcareous nature of some of the parent material
here. Subsequently the soils in this terron relative to other terrons have
a higher pH. Soil clay content varies considerably in this terron which
could be resultant from the nature of the parent material and the vari-
ability of the terrain. In terms of landform, this terron is situated in a rel-
atively high elevation position and is quite variable in terms of the slope.
Soils are generally moderate to well draining, based on the soil drainage
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[
HVT_010

" HVT 011 HVT 012

Fig. 6. Membership grades for each terron. This is a continuous grading from one (complete membership to terron) to zero (no membership to terron).

index distribution for this terron. Soil factors such as the prevalence of 3.1.2. HVT_002
iron oxides in this terron is also another indication of relatively well This terron is the second of the marl terrons. As can be seen in Fig. 8,
draining soils. the two marl terrons are quite similar in terms of their separation or
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Table 3

Soil and landform characteristics of each terron. Ranges are 2.5% and 97.5% quantiles of the distributions. Reported soil classes are those that cumulatively make up over 80% is the predicted soils types in the terron. The Australian Soil classes are: DEAB

(Brown Dermosol), DEAA (Red Dermosol), DEXX (other Dermosols), CAXX (Calcarosols), CHAA (Red Chromosols), TEXX (Tenosols), and KUAA (Red Kurosols).

Landform variables

ELV

Soil variables

MSP ISR CTA

VDC

MVF
0-0.5
0-1
0-2
0-4
2-6
0-7
0-3
0-3

TWI

SLP

Australian soil classes
DEAB, DEAA

Iron oxides

Kaolin-smectite

Area pH Clay %  Drainage index  Kaolin
14-50

Terron

7-10
7-11

751-1631
671-1601

1025-1381

0.11-0.84
0.10-0.87
0.10-0.83
0.03-0.88
0.25-0.92
0.00-0.95

21-90
26-114
15-63

23-91

8-11
8-11
9-15
9-16

14-21

4-24
2-26
1-10

139-224
84-192
60-146
81-209
49-121
33-118
65-142
45-122
72-203
52-104
52-104
49-124

0.03-0.83
0.22-0.97

0.01-0.55
0.00-0.70

0.00-0.20
0.00-0.35

46-77

5.2-8.0
5.4-8.1

5 km? (3%)
4 km? (2%)
18 km? (9%)
13 km? (6%)

HVT_001
HVT_002

DEAB, DEAA, CAXX
DEAB, DEAA

DEAB
DEAB

54-80

1-50
23-48
25-48
37-49
11-40

42-52

HVT_003

7-13

0.38-0.94
0.03-0.81

0.08-0.50
0.04-0.44
0.22-0.50
0.05-0.33
0.22-0.60
0.17-0.54
0.08-0.47
0.16-0.45
0.12-0.44
0.19-0.56

0.10-0.60
0.01-0.44
0.07-0.40

52-77
0.04-0.34

43-67

5.0-7.8

HVT_004

7-13
11-18

12-19

914-1413
1134-1270
1117-1260
1034-1344
1038-1314

1-18

48-74

HVT_005

0-25
0-34
6-42
2-30
0-45

0-32

0-4
0-5

0.02-0.47
0.01-0.51
0.12-0.85

0.05-0.61

32-60
24-62
59-78

5.2-7.6
5.4-7.2
4.8-7.0

32 km? (15%)
22 km? (10%)

33 km? (1

HVT_006

14-22
10-17

DEAB, TEXX

DEAA

DEAB

HVT_007

8-14
11-18

0.04-0.74
0.05-0.88
0.15-0.94

0.04-0.91

1-9
1-8
1-17

0-5

0.14-0.54
0.10-0.43

0.02-0.31

6%)

HVT_008

13-20

37-64

30-50
31-64

33-51

5.0-7.4
4.9-7.7

33 km? (16%)
14 km? (7%)
16 km? (8%)

HVT_009

8-16
10-17

897-1446
1103-1275
1077-1318

0-4
0-6

9-19
12-19

10-18

DEAB, DEXX

DEAB
DEAB

KUAA

0.00-0.56

33-51

HVT_010
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0.05-0.77

0.26-0.71

36-50
33-48

36-51

4.7-6.6

HVT_011

12-19

0.05-0.83
0.04-0.79

8-59

4-31

0-4
0-3

1-7
1-8

0.05-0.73
0.21-0.91

0.12-0.49
0.25-0.72

31-59

59-77

5.0-7.0
4.6-6.7

7 km? (3%)
11 km? (5%)

HVT_012

9-15

1038-1327

11-18

taxonomic distance, which together, are quite apart (dissimilar) from
the other terrons. This terron does appear to be more concentrated to
the north east of the study area, and shares more-or-less similar soil
and landscape characteristics to HVT_001. A distinguishing characteris-
tic between HVT_001 and HVT_002 is that currently HVT_002 supports
less area of viticultural landuse. From the soil information, sub-soil clay
textures appear to be more variable in this terron compared with
HVT_001. Together HVT_001 and HVT_002 account for 5% of the land
area in the HWCPID.

3.1.3. HVT_003

This terron (9% of land area) is most concentrated to the north of the
study area and is composed dominantly of Red and Brown Dermosols. It
is taxonomically most similar to HVT_004, HVT_005, and HVT_008
which share commonalities in relatively high clay subsoils. This terron
occurs at moderate elevation on slightly to moderately sloping terrain.
The soils appear moderate to well draining, and clearly indicate the
presence of iron oxides in them. Kaolinite and kaolinite-smectite
seem detectable in these soils in appreciable quantities as well.

3.1.4. HVT_004

This terron (6% of land area) is most concentrated to the peripheral
zones of the study area that is best described as of higher elevation
and more variably sloping than HVT_001. Dominant soils are Brown
Dermosols. It is likely that soil pH in this terron can verge on being acid-
ic. Variables such TWI and MVF indicate that there is quite some varia-
tion in the hydrology of this terron in terms of water movement and
accumulation, which is reflected by a moderate soil drainage index.

3.1.5. HVT_005

Brown Dermosols are the most dominant soils of this terron. This
terron is quite widespread spatially across the HWCPID where it oc-
cupies approximately 15% of the land area. It is situated in the lower
parts of the area, on slightly to gently sloping land. Soils are generally
not acidic, and while the general observation of higher sub-soil clay is
apparent, the detection of kaolinite or kaolinite-smectite was relative
to other terrons, moderate. These soils also appear not to have apprecia-
ble iron oxides, and given the estimated soil drainage for this terron and
associated landform parameters, waterlogging of these soils occurs here
on occasions.

3.1.6. HVT_006

This terron occupies one of the lowest parts of the HWCPID which
covers the area of old and existing channel course lines (10% of land
area). Brown Dermosols are dominant, as are Tenosols. The soils are
best described as being non-acidic, can be susceptible to drainage prob-
lems, and do not, relative to other terrons, have significant quantities of
the examined soil clay minerals or iron oxides. Lower sub-soil clay con-
tents and position relative to water channels indicate that this terron is
more alluvially dominated than the other terrons. Taxonomically, this
terron is most similar to HVT_005, but distinguished in terms of differ-
ences in sub-soil clay content.

3.1.7. HVT_007

This terron is the only one where Red Dermosols are singly the most
dominant soil type. Soils here are particularly clayey, but are generally
moderate to well draining. Kaolinite, kaolinite-smectite and iron oxides
all appear to be in appreciable quantities in these soils. Soil pH ranges
from acidic to neutrality. Occupying 16% of the land area, this terron is
mainly concentrated to the middle of the HWCPID. Topographically, it
is moderately elevated and sloping. Hydrological indices indicate that
water passes through this terron efficiently, rather than accumulates,
which would cause problems for soil drainage.
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Fig. 7. Map of terrons (highest fuzzy membership) for the HWCPID.

3.1.8. HVT_008

Occupying 16% of the land area, Brown Dermosols are the most dom-
inant of all soils in this terron. It is taxonomically similar to HVT_005, and
occurs more-or-less geographically adjacent to HVT_006. Such that
HVT_006 occurs predominantly around the creek lines, while this terron
occupies a position slightly more elevated. As a result, the soils are heavily
textured, and they contain appreciably more clay minerals and iron ox-
ides. Soil pH does not appear to be that much of a limiting factor in this
terron.

3.1.9. HVT_009

This terron is taxonomically associated with HVT_005 and HVT_008.
It is mainly concentrated to the south-west peripheral of the HWCPID,
and is quite variable in terms of topography. Elevation ranges consider-
ably, as do other terrain parameters such as SLP, MVF, and VDC. Gener-
ally soils have a moderate to high clay percentage. The most dominant
soils here are Brown Dermosols. Other Dermosols (not red or brown)
are also common in this terron. These included Yellow and Black
Dermosols which indicate that internal soil drainage is an issue in the
terron. This is corroborated by the relatively low drainage index values
for this terron compared to others.

3.1.10. HVT_010

Soils here are best described as dominantly Brown Dermosols,
being moderate to heavy textured, and have a tendency to be acidic;
distinguishing it from HVT_008. Kaolinite is the most dominant clay
mineral and iron oxides also appear to be present also in these soils.
In terms of landform, this terron is slightly sloping and can be found
to the lower landscape positions of the HWCPID.

3.1.11. HVT_011
This small terron (3% of land area) is almost exclusively situated to
the northern locality of the HWCPID, where Brown Dermosols are the

most dominant soils. This terron is taxonomically quite distinct, relative
to other terrons, but is closest to HVT_008. Soils range from slightly
acidic to neutral, and lightly to moderately textured.

3.1.12. HVT_012

This terron (5% of land area) is the only one where Kurosols are the
most dominant soil class. Naturally soils will verge on being acidic. Ka-
olinite, kaolinite-smectite, and iron oxides are all present in appreciable
quantities, in soils of moderate to heavy clay content. Generally soil
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Fig. 8. Dendrogram resulting from Ward's hierarchical clustering, indicating taxonomic
similarities and separations between terrons.
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Table 4
Mahalanobis distances between each terron.
HVT_001 HVT_002 HVT_003 HVT_004 HVT_005 HVT_006 HVT_007 HVT_008 HVT_009 HVT_010 HVT_011
HVT_002 2.65
HVT_003 4.16 3.15
HVT_004 3.77 3.41 297
HVT_005 422 4,07 2.68 2.94
HVT_006 4.83 441 331 3.60 2.57
HVT_007 428 4.16 3.05 3.40 2.81 3.36
HVT_008 4.48 4.19 2.73 2.98 1.95 3.04 2.85
HVT_009 3.70 447 3.52 3.49 2.94 3.40 3.51 3.02
HVT_010 4.79 4.73 3.22 3.51 2.50 343 3.22 2.77 3.50
HVT_011 5.60 527 4.45 439 431 4.49 4.58 4.05 494 445
HVT_012 4.96 484 3.42 3.84 3.67 3.44 3.70 3.39 3.91 3.40 5.03

drainage does not appear to be an issue here in this moderately sloping
and elevated terron.

4. Discussion and further perspectives

The terrons that have been described embody the most complete
knowledge of soil and landscape characteristics for this region, to this
date. It would therefore be expected, that in consideration of the soil in-
formation that was used to populate the model, in addition to knowl-
edge about the landforms, the terrons will be a good starting point to
further study on realising terroir in the HWCPID.

A characteristic feature of this study was the novelty of enhancing
the value of field collected data through the use of soil and spectral in-
ference functions. The motive for this was essentially to estimate and
map difficult and expensive to measure soil attributes, namely soil
clay minerals, iron oxides and soil drainage. Or in other words, soil var-
iables are often scarce in a legacy soil information database. Further-
more the treatment of soil classes as continuous variables by using the
confidence estimates rather than using nominal class estimates provid-
ed a means to capture additional soil information for inclusion into the
terron model, namely information about pedogenesis and soil process-
es. These processes are implicit to the soil classification but not neces-
sarily available in terms of measured data.

The approach for the creation of terrons used in this study relies
much on both pedometric and digital soil mapping techniques. The ad-
vantage (sometimes disadvantage) of this is that the modelling is objec-
tive, quantitative, and importantly validated. From the current study;
clearly the results indicate that there's a need to have a systematic im-
provement in the accuracy of the soil spatial prediction models. There
also exist a number of caveats and technical difficulties in making infer-
ence of the soil properties that were investigated in this study. For ex-
ample the use of vis-NIR for soil clay mineral detection is complicated
by the co-occurrence of absorption feature at similar wavelengths.
This is notable for kaolinite and smectite which is illustrated in Fig. 3,
and similarly for the iron oxides hematite and goethite as another ex-
ample. In the case of soil drainage estimation, the implicit assumption
that is made is that soil drainage and the corresponding soil colour
are related. This phenomenon is a function of landscape position and
weathering intensity, and there is scientific evidence to support this
e.g. Bouma (1983).

Despite the issues with uncertainty, and implied assumptions it is
difficult to ascertain whether statistically more accurate digital soil
maps will drastically change the configuration and character of the
terron units. However, some refinement should be expected naturally.
Efforts to address the accuracy issues of the soil mapping include contin-
ued soil survey in the HWCPID (which occurs on an annual basis cur-
rently). Secondly, it is expected that over time, available predictive soil
covariate information will improve and be rich enough to capture the
complexity of soil cover across this region. The refinement of the terrons
in the HWCPID also needs to be put into context of longer term research
objectives in this region, which is the realisation of terroir. This in-
corporates not only refining the soil and landscape characteristics

(the terrons), but also an assessment of management practices, detailed
climate information, and wine grape varietal knowledge — a more-or-
less holistic approach to define terroir.

One of these ongoing efforts for refining the terron includes prelim-
inary investigations into the design and setting up of a weather moni-
toring programme to detect finer scale variations in climate conditions
such as temperature, incidences of frost risk, and growing degree days
as a few exemplar climatic variables. This monitoring network will re-
quire the installation of strategically placed weather recording systems
from which data can be regularly retrieved from.

Another innovation is the detailed measurement of gamma-ray
sources from the soil surface (radiometric data). Important information
about the constituent properties of soil can be inferred with this technol-
ogy (Taylor et al., 2002). Currently however, the radiometric information
that is available is too coarse to use. Detailed proximal radiometric sur-
vey is currently in progress or in active planning (Stockmann et al., in
review).

Another vital piece of data for realising terroir is the linking of grape
varieties with soil and landscape information. Currently resources are
being put in place to not only map varieties, but also populate a spatial
database with other relevant factors such as year of planting and root
stock type (pers comm. L. Riley).

On the point of the number of terrons, and what is the optimal
number; one could surmise that the more terrons identified, the
more complex the map will be, together with an increased difficulty
in differentiating between them. Currently with the available soil and
landscape information, 12 terrons may be optimal. Already with this
number of terrons, taxonomically, a few are quite similar as indicated
in Fig. 8 and Table 4. For example, both marl terrons (HVT_001 and
HVT_002) are quite similar, as are HVT_005 and HVT_008. As additional
landscape and/or soil information come to hand, and improve in accura-
cy, separation between the terrons may increase (or may even coa-
lesce). Reducing the number of terrons could also be investigated in
further work for the reason that greater generalisation may need to be
made across the region. In this case, agglomerating classes based on tax-
onomical distance either through hierarchical clustering or some other
method will provide the objectivity to this type of procedure.

5. Conclusions

Overall some important outcomes were achieved in this study:

It identified, mapped and described 12 continuous soil and landscape
entities or terrons for the HWCPID, which will be a preliminary out-
come for the realisation of terroir in this region.

Each terron is characterised by landscape variables (derived from a
digital elevation model) and soil variables which include soil pH,
clay percentage, soil mineralogy (clay types and presence of iron ox-
ides), continuous soil classes, and presence or absence of marl.

This study has been an example of harnessing a soil information data-
base, and using innovative inference and predictive methods to derive
useful soil information to be fed into a terron model.
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» The map of terrons is more useful than a soil class map alone (it actu-
ally includes it), or a map of a given soil attribute. The embodiment of
soil and landscape will provide a more complete picture of the natural
environment. From a landowner's or manager's perspective, this com-
prehensive data will ideally lead to more informed decisions about
how land management plans are implemented.

The approach detailed in this paper is the first step in describing
terroir for the HWCPID. Over time this work will be bolstered with
the acquisition of new and additional environmental variables in-
cluding gamma radiometrics, and temperature and climate related
indices. Furthermore, the matching of terrons with different grape
varietals will be a significant step to the full realisation of terroir in
this prominent Australian wine region.

Appendix A. Supplementary data

Supplementary data associated with this article can be found in the
online version, at http://dx.doi.org/10.1016/j.geodrs.2014.08.001. These
data include the Google map of the most important areas described in
this article.
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