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Abstract. An operational Digital Soil Assessment was developed to inform land suitability modelling in newly
commissioned irrigation schemes in Tasmania, Australia. The Land Suitability model uses various soil parameters,
along with other climate and terrain surfaces, to identify suitable areas for various agricultural enterprises for a combined
70 000-ha pilot project area in the Meander and Midlands Regions of Tasmania. An integral consideration for irrigable
suitability is soil drainage. Quantitative measurement and mapping can be resource-intensive in time and associated
costs, whereas more ‘traditional’ mapping approaches can be generalised, lacking the detail required for statistically
validated products. The project was not sufficiently resourced to undertake replicated field-drainage measurements and
relied on expert field drainage estimates at ~930 sites (260 of these for independent validation) to spatially predict soil
drainage for both areas using various terrain-based and remotely sensed covariates, using three approaches: (a) decision
tree spatial modelling of discrete drainage classes; (b) regression-tree spatial modelling of a continuous drainage index;
(c) regression kriging (random-forests with residual-kriging) spatial modelling of a continuous drainage index. Method b
was chosen as the best approach in terms of interpretation, and model training and validation, with a concordance
coefficient of 0.86 and 0.57, respectively. A classified soil drainage map produced from the ‘index’ showed good
agreement, with a linearly weighted kappa coefficient of 0.72 for training, and 0.37 for validation. The index mapping was
incorporated into the overall land suitability model and proved an important consideration for the suitability of most
enterprises.
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Introduction

Tasmania has a population of ~500 000 people, with a cool
temperate climate, and rainfall ranging from >500mm year–1 in
the central Midlands to <1800mm year–1 on the West Coast. It
has some of the most productive soils in Australia, ranging from
the fertile and well-draining Red Ferrosols (Isbell 2002)
(Nitisols or Acrisols; IUSS Working Group WRB 2007) in
the north-west, to the more poorly drained duplex (prominent
change in texture between the A and B horizons) Sodosols
(Isbell 2002) (Solonetz or Lixisols; IUSS Working Group WRB
2007) in the drier parts of the state (Cotching and Kidd
2010). Government-commissioned irrigation schemes have
been introduced primarily to intensify and diversify
agricultural and horticultural production, capitalising on the
state’s favourable climate and soils to ensure food security
and economic prosperity.

The Tasmanian Department of Primary Industries, Parks,
Water and Environment (DPIPWE), along with the University

of Sydney Faculty of Agriculture and Environment, the
Tasmanian Institute of Agriculture (TIA), and the Department
of Economic Development, Tourism and the Arts (DEDTA),
have developed the ‘Wealth from Water’ project, which
aims to classify land within these schemes for suitability of
20 agricultural enterprises (http://www.dpiw.tas.gov.au/
wealthfromwater). The land suitability assessment provides
comprehensive soil, climate, and enterprise data,
complemented by market and business information (Kidd
et al. 2012). Completed in late 2012, two irrigation areas
were chosen to pilot the suitability and Digital Soil Mapping
(DSM) process, namely the Meander Valley of Tasmania and
the Tunbridge district of the Midlands Water Scheme, totalling
70 000 ha. Both areas are representative of a range of typical
Tasmanian cropping soils and climatic conditions (Fig. 1).

An integral component of any suitability assessment is
appropriately detailed soils information. Existing soil
mapping for the project areas was not of the scale, format or
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quality for the assessment requirements; it consists of 1 : 100 000
vector soil-type mapping undertaken by CSIRO in the 1950s,
recently updated by DPIPWE (Leamy 1961; Spanswick and
Kidd 2001; Spanswick and Zund 1999). Various DSM
techniques were used to generate soil-property maps for the
suitability process. A multitude of research and references
demonstrates the benefits of DSM and, furthermore, its
acceptance into mainstream land resource assessment
(Grunwald 2010; McBratney et al. 2003). These techniques
are now being adopted by various government agencies around
Australia into core resource-assessment operations.

Many of the selected enterprises cannot tolerate poorly or
rapidly drained soils and require sufficient moisture-holding
capacity. Consequently, one of the first and potentially most
challenging soil input surfaces developed was soil drainage.
Physical drainage capacities within Australia can be
quantitatively assessed by field hydraulic property
measurements including field saturated hydraulic conductivity
(well permeameter, ponded disc infiltrometer, double ring
infiltrometer, rainfall simulator), and laboratory measurement
of hydraulic conductivity (constant or falling head infiltrometer)
(McKenzie et al. 2002). These methods can be slow and
arduous, requiring significant replication, and are therefore
expensive. Due to insufficient time and resources, the project
did not undertake replicated field measurements to inform
drainage, and required a less resource-intensive alternative. A
lack of detailed groundwater measurements in both areas meant
that hydrological soil-moisture modelling was not feasible
either.

Documented approaches of digital soil drainage mapping
include modelling with multi-spectral satellite remote sensing,
generation of predictive covariates and simulation techniques.
Lemercier et al. (2012) used extrapolation of expert soil
knowledge (as existing conventional soil mapping) with
boosted classification and regression trees, first by predicting
soil parent material, then using this as a predictor of natural soil
drainage to develop a soil-drainage model. The model was used

to extrapolate drainage predictions into surrounding regions
and was tested using a validation set with good results. Niang
et al. (2012) predicted soil drainage based on land-use types
from soil survey data and RADAR-satellite imagery as
predictors, using both a discriminant analysis and decision
tree (DT) classifiers. This approach showed good validation
agreement with an existing conventional soil map, and the
usefulness of RADAR-satellite remote sensing as a predictor
of drainage. Peng et al. (2003) also demonstrated the
effectiveness of remote sensing analyses of various images to
delineate soil drainage classes (limiting this study to bare-earth
examples). Bell et al. (1992, 1994) used multivariate
discriminant analysis to develop a statistical soil–landscape
model, then validated drainage-point estimates using class-
frequency information. Liu et al. (2008) used a combination
of electromagnetic induction (EMI) as apparent electrical
conductivity, hyperspectral satellite imagery, synthetic
aperture RADAR and a GPS-derived digital elevation model
(DEM) as predictors for surveyor soil drainage-class field
estimates. The study found that a combination of these
technologies produced good predictions of spatial drainage
classes, improving overall predictions from using DEM
terrain products alone. Malone et al. (2012) used soil colour
as an indicator of external soil drainage in the Hunter Valley
region of New South Wales, Australia, where point data of soil
colour were used, in conjunction with known colour-based
drainage landscape sequences and terrain-based covariates, to
generate a continuous soil drainage index, based on the
Australian system (National Committee on Soil and Terrain
2009). This method produced an acceptable prediction of soil
drainage validated by randomly held-back data points. This
method was considered somewhat incompatible with this
study as knowledge of soil colour-based drainage sequences
was lacking in substantial areas of the project.

Approaches similar to these were considered; however, ‘Soil
Drainage Class’ was chosen to test as per the National
Committee on Soil and Terrain (2009) as a training dataset to
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predict soil drainage class across the study area directly, without
the added complexity of generating a soil–landscape model or
the time and expense associated with obtaining extra covariates
such as hyperspectral imagery or EMI mapping, which can be
expensive to obtain over large areas. In general, the surveyors’
expert knowledge (in terms of soil drainage at sampled
locations) was spatially extrapolated across the project
landscapes using the available covariates to explain the
spatial variation between these training sites. Various
modelling approaches were trialled for both categorical and
continuous predictions using methods that have been
successfully applied to DSM in recent literature. These
included DT, regression tree (RT) and random forests (RF)
approaches (see Modelling section).

Suitability parameters were derived by the TIA from industry
and expert consultation, including the Australian Soil Drainage
Class Classification standard (National Committee on Soil and
Terrain 2009) used by Tasmanian growers and agronomists.
Common surrogate drainage predictors include soil texture,
depth to mottling, colour, topographic position, or a
combination of these. Although somewhat subjective,
Australian drainage classification uses these to estimate how
quickly excess moisture is removed from the soil profile and
landscape in conjunction with other considerations such as
soil structure, porosity, water-holding capacity, water source,
evapotranspiration, slope gradient and length (National
Committee on Soil and Terrain 2009).

The objectives of this paper are therefore to: (i) test the
integration of qualitative expert-based soil drainage estimates
with quantitative DSM methods to produce predictive soil
drainage surfaces; and (ii) compare DSM methods for both
class and index mapping of soil drainage, and test their
applicability to enterprise suitability mapping.

Materials and methods

Study areas

The Tasmanian geology generally determines soil pattern due
to the strong influence of rock type upon soil formation
(Spanswick and Zund 1999). The Meander study area aligns
with the Meander Irrigation Scheme and it was selected to test
a variety of different soils, land uses and landscapes. The area
contains soils of the Launceston Tertiary Basin to the east,
comprising a series of Quaternary alluvium river terraces of
imperfectly to poorly drained Sodosols (Isbell 2002) (Lixisols
or Solonetz; IUSS Working Group WRB 2007), and Black
cracking Vertosols (Isbell 2002) (Vertisols; IUSS Working
Group WRB 2007) in drainage depressions and recent flood
plains. Well-drained Tertiary basalt soils (Red Ferrosols; Isbell
2002) (Nitisols or Acrisols; IUSS Working Group WRB 2007)
are dominant on the hills surrounding Deloraine, and to the
south, a ridge of undifferentiated conglomerate and Permian
Sandstone sequences has formed shallow skeletal Rudosols
(Isbell 2002) (Regosols; IUSS Working Group WRB 2007).
Poorly drained, complex alluvial soils are common in the
southern Dairy Plains area, previously mapped as a
miscellaneous soil unit consisting of stream alluvium, marsh
and swamp deposits, formed by past weathering and
depositional processes from diverse surrounding lithology

types (Spanswick and Zund 1999). Soil complexes consist of
Hydrosols, Kandosols and Chromosols (Isbell 2002) (Gleysols,
Fluvisols, and Lixisols; IUSS Working Group WRB 2007) in
this area.

The Midlands project area covers 27 000 ha of the southern
part of the Midlands Irrigation Scheme, an area from Oatlands
and north to Tunbridge. The Tunbridge area comprises recent
and higher level alluvial terraces of Sodosols (Isbell 2002)
(Lixisols or Solonetz; IUSS Working Group WRB 2007),
with Black cracking Vertosols (Isbell 2002) (Vertisols; IUSS
Working Group WRB 2007) in drainage depressions and recent
alluvial deposits. Stony Brown Dermosols (Isbell 2002)
(Luvisols; IUSS Working Group WRB 2007) have formed on
Jurassic dolerite hills to the south. Triassic sandstone has been
capped by the dolerite on foot-slopes to the east, and alluvium
has been covered by intermittent dolerite fans, adding to the
spatial soil complexity. Annual rainfall is <500mmyear–1,
resulting in widespread sodicity (exchangeable sodium
percentage >6%), with small areas of primary salinity (Kidd
2003). Triassic sandstone and Permian mudstone hills in the
Oatlands vicinity have formed imperfectly to moderately well-
drained Chromosols and Sodosols (Isbell 2002) (Luvisols,
Lixisols, Phaeozems; IUSS Working Group WRB 2007)
(Spanswick and Kidd 2001).

Enterprise suitability

Land suitability rules comprising soil, climate and landscape
parameters were developed by TIA for 20 different enterprises
using a four-class (well-suited, suitable, moderately suited,
unsuited) most-limiting factor approach (Klingebiel and
Montgomery 1961). Enterprises included a range of broad-
acre and horticultural crops, with suitability parameters and
ranges determined through interrogation of existing literature,
TIA agricultural trials, expert advice, and formal workshops
with industry representatives, agronomists and growers
(Table 1). This work identified the key soil and climate
parameters for each enterprise and their threshold values with
respect to physical or chemical agronomic limitations. Climate
surfaces were generated using digital modelling from 271
temperature sensors and terrain covariates. Input parameter
and final suitability surfaces were produced at a ground
resolution of 30m. A sample drainage-suitability rule-set for
blueberries is listed in Table 2 (Tasmanian Institute of
Agriculture 2012).

Table 1. Enterprise suitability parameters

Soil Climate Terrain

pH (1 : 5 in water) (0–0.15m)
EC (1 : 5 in water) (0–0.15m)
Stone content (0–0.15m)
Soil depth (m)
Clay % (0 to 0.15m)
Depth to sodic layer (ESP >6)
Exchangeable calcium
(0 to 0.15m)

Exchangeable magnesium
(0 to 0.15m)

Soil drainage class

Frost risk
(seasonal, by enterprise)

Mean max. monthly temp.
Rainfall

Slope %
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Covariate data

SCORPAN environmental variables (soil covariate data)
(McBratney et al. 2003) were compiled for both study areas
to enable spatial predictions of each soil parameter. This
involved co-registration of available covariate surfaces into a
commonmapping grid-base and generation of terrain derivatives
from the DEM (Table 3).

For Meander, the existing soil map (Spanswick and Zund
1999) was partially disaggregated from original soil-association
map units to predicted association components using a DT
approach, and extrapolated into unmapped areas for use as a
covariate. Ground-based gamma radiometric mapping was
undertaken by CSIRO Land and Water to complete the
partial coverage in Meander West (Viscarra Rossel et al.
2013). A GPS-enabled gamma radiometer recorded total
count, potassium, uranium and thorium over a series of

transects; the data were extrapolated into unmapped areas
using terrain covariates as environmental predictors, by RF
modelling (see Modelling section). The estimated radiometrics-
terrain surfaces were then compared against an existing,
overlapping radiometric-mapped area to derive a linear
relationship, which was applied to the estimated surface to
make it consistent with the ‘true’ measurement. This
approach could introduce a degree of ‘circularity’ in using
terrain for both soil and radiometric predictions and may
therefore introduce some error into the DSM models;
however, model training and validation metrics improved
when using the estimated radiometric covariates compared
with their non-use. The radiometric-terrain estimate provided
a complex measure of covariance to the target variable that
most modelling approaches would otherwise miss.

In general, the estimated radiometric map highlighted the
complexity of the unmapped region where large, featureless,
alluvial expanses had been mapped as stream alluvium, marsh
and swamp deposits (Spanswick and Zund 1999), with little
chance of predicting their properties based on terrain alone
without proximal radiometric sensing (Viscarra Rossel et al.
2013). This process allowed gamma radiometrics to be used
across the whole project area, and it was shown to be an
important predictor of many soil properties (see Results and
discussion).

Table 2. Enterprise suitability for soil drainage, blueberries

Suitability rating Drainage class

Well suited Well to moderately well
Suited Imperfect
Moderately suited Imperfect
Unsuited Poor to very poor

Table 3. Spatial predictors (covariates)
SAGA GIS: System for Automated Geoscientific Analyses: http://www.saga-gis.org; DEM, digital elevation model

Scale Spatial covariates Scale/resolution Reference/source

Categorical data
Regional Soil map 1 : 100 000 Leamy 1961; Spanswick and Zund 1999; Spanswick

and Kidd 2001
Regional Land capability map 1 : 100 000 Noble 1993
Regional Land-use map 1 : 50 000 DPIPWE 2012 unpubl. data
Regional Vegetation map (TASVEG) v 2.0 1 : 25 000 DPIPWE 2009 (http://www.dpiw.tas.gov.au/tasveg)
Regional Surface geology map 1 : 25 000 Mineral Resources Tasmania 2008 (http://www.mrt.

tas.gov.au/portal/page?_pageid=35,832332&_
dad=portal&_schema=PORTAL)

Remote sensing
Local Rapid eye multispectral 5m Cradle Coast Authority 2010 (see http://blackbridge.

com/rapideye/mosaics/index.html)
Local SPOT Bands 1,2 and 3 5m SPOT Image 2009 (see http://www.astrium-geo.com/

en/143-spot-satellite-imagery)
Local SPOT NDVI 30m (processed) SAGA GIS
Local LandSat principal components 30m (processed) SAGA GIS
Local Gamma radiometrics (radioactive

nuclides: K, U, Th, total dose)
Mineral Resources Tasmania 2004 http://www.mrt.

tas.gov.au/portal/page?_pageid=35,832439&_
dad=portal&_schema=PORTAL

Terrain
Local SRTM DEM-S 30m 1 arc-second DEM, adaptively smoothed, Geoscience

Australia 2011 (http://www.ga.gov.au/meta/
ANZCW0703014016.html)

Local Slope, aspect, curvatures (plan and profile), topographic
wetness index (TWI), SAGA wetness index (SWI),
multi-resolution valley bottom flatness (MrVBF),
multi-resolution ridge top flatness (MrRTF), northness
(Sin(Aspect)), eastness (Cos(Aspect)), normalised height,
slope height, vertical distance to channel network, height
above channel network

30m SAGA GIS
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Soil sampling and validation sites

A conditioned Latin Hypercube sampling design was used for
an initial 20 000-ha Meander area for model training, a stratified
random sampling approach based on maximally stratifying the
full multivariate distribution (Minasny and McBratney 2006).
An alternative, stratified random sampling approach was used
for both training and validation of the remaining 50 000 ha of
both areas. Fuzzy k-mean clustering of available covariates was
used as stratification, where sampling sites could be spatially
adjusted within cluster areas if access to an intended site was
not possible (D. B. Kidd, B. P. Malone, A. B. McBratney,
B. Minasny, M. Webb, unpubl. data).

Field sampling and soil analysis

Soil was sampled using a 0.05-m-diameter percussion soil corer
to a depth of 1.5m and subsampled by horizon. Cores and
surrounding landscape position were described according to
Australian Soil and Land Survey guidelines, including soil
drainage-class estimates with corresponding drainage-class
code (Table 4) (National Committee on Soil and Terrain
2009). This is a general, but expert-based, field observation
that describes the soil and site drainage likely to occur in
most years, and considers several both internal and external
influences. Internal influences include soil structure, texture,
porosity, hydraulic conductivity, moisture-holding capacity,
colour and mottling, while external considerations include
slope length, landscape position and likely water sources,
(National Committee on Soil and Terrain 2009). The field
surveyor determines a combination of the above factors to
make an estimate on the soil drainage class at the site
location, based on expert knowledge of the environment and
the following observations as per the National Committee on
Soil and Terrain (2009).

Very poorly drained soils
Very poorly drained soils are most often identified by

landscape position and current moisture status. They remain
wet for most of the year, and often occur in depressed areas. Soils
have strong gleying throughout the profile and accumulated
surface organic matter. Any or all of surface, subsurface or
groundwater flow are identified as the main water sources.

Poorly drained soils
Poorly drained soils are wet for several months of the year

and may be affected by perched watertables or surface ponding.
Most horizons have gleyed or mottled clays close to the surface.
Subsurface or groundwater is the main water source, which is
supplemented by rainfall.

Imperfectly drained soils
Imperfectly drained soils occur in flatter areas and are wet

for several weeks at a time. Lower horizons show mottling and
rust-coloured linings of root channels. Rainfall is considered the
main water source for soils with high water-storage capacity, or
groundwater if water-storage capacity is low.

Moderately well-drained soils
Soils are usually medium to fine in texture (e.g. light to

medium clays), with drainage impeded by a combination of lack
of slope, shallowwatertable, or low permeability due to structure
(weakly structured soils). Soils have few or no mottles and will
remain wet for up to a week after a rainfall event.

Well-drained soils
Well-drained soils are often medium in texture (e.g. clay

loams, and well-structured light clays), allowing excess water to
be removed by either vertical or lateral subsurface flow, and will
only remain wet for several days after a rainfall event.

Rapidly drained soils
Rapidly drained soils are usually coarse-textured and/ or

shallow (e.g. aeolian sands). Highly permeable layers will
allow excess water to rapidly flow downwards through the
profile, with rapid subsurface lateral flow on steeper slopes.
These soils will only remain wet for less than a day after a
rainfall event.

Data preparation

Soil observations were spatially intersected with all available
covariates using SAGAGIS (System for Automated Geoscientific
Analyses release 2009; http://www.saga-gis.org) to allocate
individual covariate values to each drainage estimate for
model training data. All covariates for each study area were
spatially amalgamated into a set of values for each pixel. Model
relationships (between the observations and covariate values)
were applied to the combined covariates for drainage class or
index value predictions at each pixel.

Modelling

Decision-tree classification of soil types and discrete properties
is a popular DSM methodology that analyses and partitions
covariate patterns to create predictive rules (Moran and
Bui 2002; Hollingsworth et al. 2006; MacMillan 2008). This
approach was used for soil drainage-class predictions. However,
as these classes can be considered ordered by a numerical coding
system, it was also decided to test whether predictions of
drainage could also be made as a continuous index. With this
approach, one can show gradational landscape trends and
spatially display the subtle variations in soil water movement
that are otherwise masked by the class thresholds. Another well-
documented approach that has had success in predicting
continuous soil properties is RT modelling (DTs with linear
regression models at the nodes) (Moran and Bui 2002), and it
was used to generate the soil drainage index. Another popular
approach, RF (Cutler et al. 2007; Grimm et al. 2008; Liaw and
Wiener 2002; Wiesmeier et al. 2011), was also tested as an

Table 4. Reclassification ranges of continuous soil drainage index

Drainage class code Drainage class Index ranges

1 Very poorly drained <1.5
2 Poorly drained 1.5–2.5
3 Imperfectly drained 2.5–3.5
4 Moderately well-drained 3.5–4.5
5 Well-drained 4.5–5.5
6 Rapidly drained >5.5
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alternative method for developing the drainage index; RF
generates many regression trees from a random bootstrap
sample, with the remaining data (called ‘out-of-bag’ data)
used for validation of the tree. Splits are made from a
random selection of covariates and based on the strongest
predictors (Stum et al. 2010). Regression kriging, a
hybridised modelling approach that incorporates regression
modelling and interpolated model residuals, has been shown
to improve model performance (Odeh et al. 1995; Hengl et al.
2007), and was tested to determine improvements in validation
metrics. From these approaches, the best predictions in terms of
statistical and field validation were selected as an input for the
suitability modelling.

Decision tree modelling

The software See5� (RuleQuest Research:http://www.rulequest.
com) was used to construct a series of DTs using the available
covariates and sampling site descriptions to spatially predict
drainage class estimates as categorical data (Table 3). Several
prediction settings were trialled until the best overall training and
validation relationships were obtained (see Results and
discussion). Covariates were ‘winnowed’ to determine and
use only the most correlated predictors for the model. The
‘Rule Utility Ordering’ option was also selected to use as a
priority, higher in the DT process, those covariates that
introduce the least amount of error into predictions,
improving overall accuracy. ‘Boosting’ (for 10 trials) was
selected in order to reduce overall error by concentrating
subsequent trees on misclassified instances in the preceding
classifier, and improving these in the next. Validation site-
drainage estimates were used to test the DT model using
confusion matrices.

Regression tree modelling

The software Cubist� (RuleQuest Research:http://www.
rulequest.com) was used to construct regression tree rule-
sets to spatially predict soil drainage class expressed as a
continuous drainage index (Table 4), such that the class
codes (1–6) were treated as a continuous variable. A five-
member committee model was assembled where the first rule is
constructed, and subsequent rules are formed to minimise the
errors present in the previous rule-set, improving overall
predictive accuracy. Due to the scarcity of poorly (Class 1)
or rapidly (Class 6) drained sites in the training and validation
sampling (see Results and discussion), the model was allowed
an extrapolation of up to 20% outside the training data range to
ensure that the full range of drainage conditions for both areas
was covered. Regression kriging of the Cubist predictions was
tested to ascertain any improvement to validation rates;
however, a semi-variogram fit of RT residuals showed poor
spatial correlation (no trend of variance with distance).
Consequently, incorporation of the residuals as a spatial
random variable by kriging did not improve validation rates
and so it was not used in model outputs. Principal components
of the available covariates were also tested with both the RT
and DT approaches, they but did not improve model training or
validation metrics.

Random forests–residual kriging (RF-RK) modelling

Drainage class estimates at each site were used to construct a
continuous soil drainage index (as per the RT approach) by
regression-kriging using RFs (R statistical software; Liaw and
Wiener 2002; R Development Core Team 2012), with kriging
of the model residuals (Odeh et al. 1995; Hengl et al. 2007).
Principal components were derived for the covariates to de-
correlate and reduce co-linearity (Hengl et al. 2004). The RF
model was constructed using the principal components with the
highest variable importance (determined by a stepwise linear
regression) with bootstrapping using 10% of samples for 100
iterations, and 1000 regression trees (Liaw and Wiener 2002).
Predictive errors showed a reasonable spatial correlation when
fitted to a semi-variogram (i.e. semi-variance increased with
distance to ~2 km); thus, kriging was applied to the residuals of
the RF model.

Reclassification of continuous drainage indices

The continuous soil drainage index generated by the RT and RF-
RK methods principally aligned to the numerical soil drainage-
class system. Suitability rules were applied to this index where,
for example, an enterprise that required drainage class better than
imperfect had a requirement of a rating >3 applied to the index.
To aid testing of the developed surfaces, values were
‘reclassified’ to align with discrete drainage classes (outlined
in Table 4), essentially ‘rounding’ the index values to the nearest
whole number. Classification matrices were constructed using
validation sites intersected with the class surface to measure the
level of agreement.

Potential surrogate—depth to mottling

To assess the feasibility of using depth to significant mottling
(National Committee on Soil and Terrain 2009) as a surrogate
for soil drainage class, the relationship between depth to
mottling and drainage-class prediction was investigated to
determine whether this single depth to mottling measurement
would be sufficient to train a drainage model. The coefficient of
determination was derived from a bivariate fit between depth
to mottling and the corresponding drainage class estimate at
each site.

Statistical validation

Drainage class observations of the validation dataset were
intersected with the corresponding predictions from the RT
and RF-RK models, and validation was quantified by the
coefficient of determination (R2), concordance correlation
coefficient (Lin 1989), and residual standard error (RSE).
Validation for the DT modelling and re-classified RT and
RF-RK models was performed by intersecting the
independent validation site numerical drainage class with the
predicted drainage class, or re-classified predictions. Agreement
statistics (kappa coefficients; Cohen 1960) and classification
accuracies were generated from confusion matrices determining
the proportion of successfully predicted classifications and
overall model performance.

Field validation

Roadside field validation was undertaken for both the soil
drainage index and soil drainage-class mapping using a GPS-
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enabled laptop with GIS. Mapping agreement was determined
by expert assessment of visual indicators such as landscape
position, vegetation, land use, management, infrastructure and
post-rainfall surface ponding.

Results and discussion

Potential surrogate—depth to mottling

A bivariate fit of depth to significant mottling, as defined in the
Australian Soil Survey handbook (National Committee on Soil
and Terrain 2009), against soil drainage showed a poor
relationship, with an R2 of 0.12, and root mean-square error
(RMSE) of 27.3. This is due to other external influences such
as landscape position and soil colour and texture informing
soil drainage-class estimates in the field. Consequently,
methods that directly predicted soil drainage class from field
site descriptions were favoured over using depth to mottling as
a surrogate.

Site data

The majority of both training and validation sites for each area
was classified by the surveyors as imperfectly drained (Class 3),
which fits with existing soil survey drainage estimations for
known soil profile classes and expert knowledge of the two
areas (Leamy 1961; Spanswick and Zund 1999; Spanswick
and Kidd 2001; Kidd 2003). Figures 2 and 3 show the
cumulative frequency of drainage estimates for both areas.

Modelling methods (Meander)

Decision tree

The DT modelling using available terrain, satellite and
radiometric covariates showed good results. Table 5 lists the
covariates used in the model trees, and the percentage of training
data for which each covariate is used in predicting a class.
Elevation, aspect, slope derivatives, and wetness indices were all
good predictors of soil drainage, which is consistent with
knowledge of Tasmanian landscapes and influence on soil
drainage and moisture movement (Kidd 2003). Radioactive
potassium tends to follow water-borne soil deposition zones
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Fig. 2. Relative frequency of Meander soil drainage classes.
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Fig. 3. Relative frequency of Tunbridge soil drainage classes.

Table 5. Decision tree (See5�) covariate usage
See Table 3 for covariate information

Covariate Model (rule) usage
(%)

SRTM DEM (m) 100
Normalised height 100
Slope height 100
Eastness 100
SWI 99
MrRTF 99
Radioactive potassium (%) 96
MrVBF 94
Northness 81
Total radiometric dose 76
Curvature class 66
Mid-slope position 63

Table 6. Decision tree soil drainage class classification matrix: Meander training and validation

Drainage Drainage class (no. of times classified), training, [validation] User
class 1 2 3 4 5 6 Totals accuracy (%)

1 0,[0] 0,[0] 2,[2] 0,[0] 0,[0] 0,[0] 2,[2] 0,[0]
2 0,[0] 65,[6] 0,[14] 0,[1] 0,[1] 0,[0] 65,[22] 100,[27.3]
3 0,[0] 1,[6] 243,[37] 0,[10] 0,[5] 0,[0] 244,[58] 99.6,[63.8]
4 0,[0] 0,[1] 2,[10] 84,[9] 1,[4] 0,[0] 87,[24] 96.6,[37.5]
5 0,[0] 0,[0] 1,[4] 0,[1] 59,[7] 0,[0] 60,[12] 98.3,[58.3]
6 0,[0] 0,[0] 0,[1] 0,[0] 0,[0] 0,[0] 0,[1] x,[0]
Totals 0,[0] 66,[13] 248,[68] 84,[21] 60,[17] 0,[0] 458,[119]
Producer
accuracy (%)

x,[x] 98.5,
[46.2]

98.0,
[54.4]

100,
[42.9]

98.3,
[41.2]

x,[x]
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(Viscarra Rossel et al. 2013), and was also correlated with
drainage.

Table 6 shows the DT classification rates for each drainage
class for both model training and independent validation in the
Meander area. The model performed well, with the majority of
classes classifying correctly. Thorough testing of the ‘very poor’
or ‘rapidly’ drained classes was not possible due to a scarcity of
these conditions in the study area. The independent validation
set showed that the DT model tended to classify the majority of
‘poorly drained’ and ‘well drained’ sites as ‘imperfectly
drained’. The ‘imperfectly drained’ class had the lowest
misclassification rate due to the higher proportion of this
class in the Meander area and the subsequent high number of
training data to better construct the DT model for this class.
While both producer and user accuracies were good for training,
the validation user accuracy rates (the percentage of classes
correctly classified) were reasonable for ‘imperfectly’ and ‘well’
drained sites but generally poor for ‘poorly’ and ‘moderately
well’ drained sites (27.3% and 37.5% correctly classified
samples, respectively). The overall accuracy (the total of
correctly classified sites compared with the overall number of

sites as a percentage) was excellent at 98.5% for training but was
reduced to 49.6% for validation.

Regression tree

Table 7 shows the percentage usage of each covariate for both
partitioning the model trees and the model usage percentage
within each partition. The model was partitioned mainly using
geology and elevation, and to a lesser extent radioactive
potassium and terrain ruggedness, with regressions dominated
by the Terrain Ruggedness Index, slope and valley depth.

RT predictions

Table 8 shows the training and validation model agreements
for the Meander area. The drainage indices (treated as
continuous data) include the coefficient of determination and
concordance coefficient (agreement around a 1 : 1 line; Lin
1989). The classified drainage index (as discrete classes)
includes the kappa coefficient and ‘kappa with linear
weighting’ as a measure of correct classification for both
model training and validation (Cohen 1960, 1968). Numerical
drainage class can be considered as ordered data. Therefore,
a misclassification one drainage class either side of the actual
category implies a better model fit than if the data were nominal.
This meets the conditions for partial credit where kappa with
linear weighting can be used as a more realistic measure of
classification than using an unweighted kappa coefficient
(Cohen 1968). Some of the performance metrics used were
not applicable for either continuous or ordinal datasets and
were therefore excluded from Table 8 (denoted by ‘x’).
Unweighted kappa values were computed using JMP®

(version 9; SAS Institute Inc., Cary, NC, USA) and linearly
weighted kappa values computed using VassarStats online
statistical computational software (http://www.vassarstats.net).
Kappa coefficient values were applied as a generalised measure
of agreement and overall model performance; however, other
factors such as linear weighting for ordinal data, and class
classification rates (e.g. user and producer accuracies), should
be considered (Fleiss et al. 2004).

Table 9 shows the agreement rates for the re-classified RT
soil drainage predictions. As with the DT approach, the re-
classified RT training classification rates were generally good,
with a user accuracy >80% for all classes other than ‘moderately

Table 7. Regression tree model covariate usage for tree partitions and
tree regression models (Meander)
See Table 3 for covariate information

Covariate Covariate usage (%)
Tree partition Model usage

Geology (25k) 40 0
Standardised height 40 57
SRTM DEM (m) 36 21
Radioactive potassium (%) 7 14
Terrain ruggedness index 2 85
Valley depth 0 72
Slope (%) 0 65
Normalised height 0 57
Slope height 0 48
SWI 0 45
Curvature 0 35
TWI 0 35
Mid-slope position 0 15
MrVBF 0 6
Profile curvature 0 6
Analytical hillshade 0 5

Table 8. Summary of Meander soil drainage-class spatial modelling metrics
x, not applicable

Method/metrics R2 Concordance
coefficient

Residual
standard error

Kappa Kappa
(linear weighting)

Overall classification
accuracy (%)

DT training x x x 0.79 0.86 98.5
DT validation x x x 0.22 0.32 49.6
RT training 0.79 0.86 0.27 x x x
RT validation 0.39 0.57 0.46 x x x
Classified RT training x x x 0.63 0.72 77.3
Classified RT validation x x x 0.27 0.37 54.6
RF-RK training 0.90 0.91 0.21 x x x
RF-RK validation 0.36 0.48 0.39 x x x
Classified RF-RK training x x x 0.79 0.84 86.9
Classified RF-RK validation x x x 0.15 0.29 48.7
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well-drained’; 42% of ‘poorly drained’ sites were classified
as ‘imperfectly drained’ and 47% of ‘well drained’ sites were
classified as ‘moderately well-drained’. Although not performing
as well for the training classification rates as the DT approach,
the re-classified RT performed better overall when tested
against the independent validation sites, with a linearly
weighted kappa of 0.37, compared with 0.32 for the DT
model (Table 8), a fair to moderate validation agreement
(Altman 1991). For validation of drainage classes 2, 3, 4 and
5, the DT approach had a user accuracy rate of 27, 64, 38 and
58%, respectively, whereas the RT approach classified at 23,
74, 58 and 25% for user accuracy. The overall accuracy for
training was slightly lower than the DT approach (77.3%),
while the validation overall accuracy was 54.6%, an
improvement over the DT validation.

Random forests

Table 10 highlights the agreement metrics for the classified
RF-RK for training and validation respectively. This approach
showed the highest kappa with linear weighting agreement
(0.84) for model training. As with the RT agreement matrix,
training classification rates were generally good for poorly and
well-drained classes (2 and 5, respectively) but tended to under-
classify moderately well-drained sites, with a 69.3% user
accuracy rate. However, as demonstrated with the RF-RK
drainage index that tended to over-fit the training data, the
lowest validation rate was obtained for the classified surface
with a weighted kappa of 0.29 (Table 8). Table 10 shows
generally poor user accuracy validation rates for all classes
other than class 5 (well-drained), and failed to correctly

classify any poorly drained (class 2) sites. Overall accuracy
was 86.9% for training and 48.7% for validation.

Table 8 summarises the training and validation rates for all
approaches. In comparing observed v. predicted values for soil
drainage, RF-RK showed the best training agreement in terms
of coefficient of determination and concordance (Lin 1989),
with 0.90 and 0.91, respectively. RT also showed good
concordance, with 0.79 and 0.86, respectively. Residual
standard error was close for both methods. However, the RT
methodology showed a better validation than the RF-RK
model, with an R2 of 0.39–0.36, and concordance of
0.57–0.48, respectively. This implies that the RF-RK
approach tended to ‘over-fit’ the training data, with the
more substantial discrepancy between the training and
validation rates than the RT approach. The discrepancy
between concordance and R2 also implies that both
approaches tended to under-predict drainage for better
drained sites. Residual standard error was again close for
validation of both approaches, with 0.46 for RT and 0.39
for RF-RK. This is less than half of a soil drainage class in
terms of an index, which is considered acceptable for the
regional-resolution suitability mapping requirements.

Tunbridge modelling

DT predictions

In the Tunbridge region, the DT approach used the existing
soil mapping for all trees and also relied on the broad-scale
geology and the topographic wetness index, but did not select
any of the radiometric surfaces. The model produced a ‘good’
training agreement of 0.77 for the weighted kappa coefficient,

Table 10. Random forests soil drainage class classification matrix: Meander training and validation

Site drainage Drainage class (no. of times classified), training, [validation] User
class 1 2 3 4 5 6 Totals accuracy %

1 0,[0] 2,[1] 0,[1] 0,[0] 0,[0] 0,[0] 2,[2] x,[x]
2 0,[0] 51,[0] 14,[22] 0,[0] 0,[0] 0,[0] 65,[22] 96.3,[0]
3 0,[0] 0,[0] 237,[45] 7,[12] 0,[1] 0,[0] 244,[58] 91.2,[54.2]
4 0,[0] 0,[0] 9,[13] 78,[11] 0,[0] 0,[0] 87,[24] 69.3,[34.4]
5 0,[0] 0,[0] 0,[2] 28,[8] 32,[2] 0,[0] 60,[12] 100.0,[66.7]
6 0,[0] 0,[0] 0,[0] 0,[1] 0,[0] 0,[0] 0,[1] x,[x]
Totals 0,[0] 53,[1] 260,[83] 113,[32] 32,[3] 0,[0] 458,[119]
Producer
accuracy (%)

0,[0] 78.5,
[0]

97.1,
[77.6]

69.0,
[45.8]

100.0,
[16.7]

x,[0]

Table 9. Regression tree soil drainage class classification matrix: Meander training and validation

Site drainage Drainage class (no. of times classified), training, [validation] User
class 1 2 3 4 5 6 Totals accuracy (%)

1 0,[0] 2,[1] 0,[1] 0,[0] 0,[0] 0,[0] 2,[2] x,[0]
2 0,[0] 38,[5] 27,[17] 0,[0] 0,[0] 0,[0] 65,[22] 88.4,[22.3]
3 0,[0] 3,[2] 221,[43] 19,[12] 1,[1] 0,[0] 244,[58] 82.2,[74.2]
4 0,[0] 0,[1] 21,[9] 63,[14] 3,[0] 0,[0] 87,[24] 57.3,[58.3]
5 0,[0] 0,[0] 0,[3] 28,[6] 32,[3] 0,[0] 60,[12] 88.9,[25.0]
6 0,[0] 0,[0] 0,[1] 0,[0] 0,[0] 0,[0] 0,[1] x,[0]
Totals 0,[0] 43,[9] 269,[74] 110,[32] 36,[4] 0,[0] 458,[119]
Producer
accuracy (%)

0,[0] 58.5,
[55.6]

90.6,
[58.1]

72.4,
[43.8]

53.3,
[75.0]

x,[x]
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but produced a poor weighted kappa validation agreement of
0.13 (Table 11), again indicating a model over-fit of training
data. Overall accuracy for training was 83.8% but only 39.5%
for validation.

RT soil drainage predictions

The RT approach used more available covariates, only
applying the existing soil mapping to partition the model
trees. Radiometric surfaces were used in conjunction with the
terrain and, to a lesser extent, satellite vegetation indices. The RT
model produced reasonable training metrics, with R2 and
concordance of 0.43 and 0.57, respectively. Independent
validation was also reasonable, with a concordance of 0.53
and standard error of 0.5 (Table 11). The re-classification of
the RT soil drainage index into discrete soil classes showed a
‘moderate’ validation, with a weighted kappa value of 0.47
(Table 11). Despite overall classification accuracy for training
of 53.3% (which was significantly lower than the DT agreement
rate), a validation accuracy of 52.6% was a substantial
improvement over the DT validation, implying a more
realistic model (Table 11).

Model comparisons

The strong relationship between soil drainage and landscape in
Tasmania explains the good spatial correlation with the
available covariates for all modelling approaches. Although
the DT discrete model worked reasonably well in Meander,
poor validation was attained in the Tunbridge area. Similarly,
the RF-RK model for Meander tended to over-fit the training
data at the expense of independent validation; that is, the model
developed spatial relationships that closely associated the
available predictors between the training points, but did not
necessarily reflect what is actually occurring in the landscape,
resulting in a higher rate of unexplained variability. Hence, the
RT approaches for soil drainage predictions in both areas were
chosen as suitability inputs, as good validation outputs were
achieved compared with the DT and RF-RK models for both the
generated soil drainage index, and re-classified, discrete soil
drainage-class mapping.

The expert knowledge of the drainage at a particular
location was effectively captured and extrapolated to
surrounding landscapes based on the spatial correlation of
available predictors. However, this training might be
considered somewhat subjective and it relies on the
surveyor’s experience and local soil–landscape knowledge.
There may also be some uncertainty over the linearity of the

Australian Soil Drainage Class system. Despite this, the
covariates were spatially correlated with the site estimates,
and acceptable model validation was achieved through the
RT approach, despite training data being generated by two
different surveyors. Any subjectivity or discrepancies between
surveyors may have been moderated by the fact that estimated
classes encompass a range of slightly different drainage rates
within each category.

A definitive conclusion as to the best modelling approach
would not be possible without some form of quantitative
evaluation of the modelled surfaces. Quantitative soil
drainage analysis in the form of replicated hydraulic
conductivity measurements would provide a more rigorous
validation of the different modelling approaches. However,
most quantitative methods tend to provide a measure of soil
permeability only, without consideration or measurement of the
other environmental factors that contribute to the Australian
drainage class estimation. Such quantitative measurements
would therefore only provide a surrogate measure for
validation. The time and cost associated with these replicated
measurements was not within the resources of the present study.

An advantage of the RT approach is that both continuous
drainage indices and discrete drainage class mapping can be
produced. The drainage index is ‘visually appealing’ and
demonstrates how soil drainage spatially trends with
landscape position, rather than more polygonal (and spatially
unrealistic) drainage class cut-offs. Another advantage is that it
can be applied to any legacy soil data that have a drainage-class
estimate attached, to either derive new mapping, or improve
existing mapping as a continuous, statistically validated index.
It also reduces the need to apply complex hydrographical
modelling functions in areas where no groundwater data or
soil–landscape sequence drainage knowledge exists. The RT
outputs (specifically Cubist) are easier to interpret than the RF
approach, where rule-sets can be generated to show how each
covariate is used within predictions, partitioning of these data
into discrete spatial covariate zones, and the regression
relationships within.

The soil drainage index that was generated aligned well with
expert drainage knowledge, conceptual soil–landscape patterns
of area, and existing Soil Profile Class definitions (Spanswick
and Zund 1999; Spanswick and Kidd 2001; Kidd 2003).
Importantly, in addition to the acceptable statistical validation
of results, field validation was positive, where mapping
aligned with the visual road-side indicators described in the
methodology. Drainage map and suitability samples are shown
in Fig. 4.

Table 11. Summary of Tunbridge soil drainage-class spatial modelling metrics
x, not applicable

Method/metrics R2 Concordance
coefficient

Residual
standard error

Kappa Kappa
(linear weighting)

Overall classification
accuracy (%)

DT training x x x 0.76 0.77 83.8
DT validation x x x 0.09 0.13 39.5
RT training 0.43 0.57 0.48 x x x
RT validation 0.34 0.53 0.50 x x x
Classified RT training x x x 0.33 0.48 53.3
Classified RT validation x x x 0.31 0.47 52.6
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The index was used for the suitability predictions with
drainage class cut-offs applied for each suitability class.
Twenty enterprise suitability surfaces (at 30-m resolution)
were generated using all digital soil surfaces, with the
limiting factors for each pixel attached as potential
management constraints. In the example of blueberries, soil
drainage was a limitation to suitability in substantial areas,
demonstrating the importance of this mapping (Fig. 4). All
surfaces are available on the Tasmanian Government spatial
web-based portal for public access (www.theLIST.tas.gov.au).

Conclusions

The drainage surfaces generated using the regression-tree (RT)
approach aligned well with expected landscape drainage
patterns, known soil profile classes, and visual field
indicators, and produced acceptable statistical agreement with
independent qualitative validation data. Compared with the
decision-tree and random-forests modelling, RT produced
better results when validated both as a drainage index, and as
a discrete reclassified surface within this study. In summary, the
RT approach had some limitations but was generally acceptable
for the purposes of this project, the positives including:

* Expert soil drainage knowledge is extrapolated across the
landscape.

* The surfaces are consistent with Australian standards and
industry terminology.

* It is relatively rapid to implement (compared with replicated
soil physical drainage measurements).

* Drainage Class codes can be used to derive a drainage
index, which is visually appealing and a good indication
of how drainage gradually changes with respect to landscape.

* The approach can be applied to legacy data, potentially
improving existing mapping, and generating new soil
drainage indices.

Negatives of this approach include:

* The mapping requires recruitment of experienced soil
surveyors to implement field work.

* Drainage estimates are somewhat subjective, which could
introduce some inconsistency between datasets from
multiple surveyors, and potential modelling errors.

The generated drainage index surfaces were found to be an
important input parameter for the operational government-
enterprise suitability mapping. The approach proved a viable
technique for spatial drainage class predictions within available
project resources, for regional-resolution operational digital soil
assessment.
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