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Salinization and alkalinization are themost important land degradation processes in central Iran. In this studywe
modelled the vertical and lateral variation of soil salinity (measured as electrical conductivity in saturation paste,
ECe) using a combination of regression tree analysis and equal-area smoothing splines in a 72,000 ha area located
in central Iran. Using the conditioned Latin hypercube samplingmethod, 173 soil profiles were sampled from the
study area, and then analysed for ECe and other soil properties. Auxiliary data used in this study to represent pre-
dictive soil forming factorswere terrain attributes (derived froma digital elevationmodel), Landsat 7 ETM+data,
apparent electrical conductivity (ECa)—measured using an electromagnetic induction instrument (EMI), and a
geomorphologic surfaces map. To derive the relationships between ECe (from soil surface to 1 m) and the aux-
iliary data, regression tree analysis was applied. In general, results showed that the ECa surfaces are the most
powerful predictors for ECe at three depth intervals (i.e. 0–15, 15–30 and 30–60 cm). In the 60–100 cm depth
interval, topographic wetness indexwas themost important parameter used in regression treemodel. Validation
of the predictive models at each depth interval resulted in R2 values ranging from 78% (0–15 cm) to 11% (60–
100 cm). Thus we can recommend similar applications of this technique could be used for mapping soil salinity
in other parts in Iran.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Salinization and alkalinization are themost important land degrada-
tion processes in central Iran. In these areas, soluble salts accumulate in
the soil, resulting into a gradual decline in crop production (Farifteh
et al., 2006). In recent years, the production of pistachio in Yazd prov-
ince, the second most important region for pistachio cultivation in cen-
tral of Iran, has decreased dramatically due to increasing soil salinity.
Therefore, to manage this problem, detailed knowledge about the spa-
tial distribution of soil salinity is needed.

There are various legacy soil maps in Iran that were produced based
on traditional approaches. This information is impractical for quantita-
tive studies due to its qualitative nature. Furthermore, the scale at
which the soil information is available is often too coarse and impracti-
cal for detailed understanding of soil variation, particularly for agricul-
tural soil management at the farm and field scales. To overcome some
of these limitations, the application of digital soil mapping (DSM) tech-
niques is seen as an efficient alternative approach (McBratney et al.,
2003). This is because the underlying principle in DSM is to use comput-
er assisted methods to derive comprehensive soil-landscape relation-
ships using sparsely observed soil data with detailed and readily
available auxiliary variables in an objective way. This study will use a
range of contemporary digital mapping techniques to map the vertical
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and lateral variation of soil salinity (90 m × 90 m × 0.1 m) in a
72,000 ha area in the Ardakan region in central Iran.

The first requirement in DSM is the compilation of auxiliary or
scorpan (McBratney et al., 2003) variables for the prediction of soil salin-
ity parameters. These include remote sensing data, topographical vari-
ables (derived from a digital elevation model), apparent electrical
conductivity and soil type information. For example, studies that have
exclusively used topographic variables include Metternicht and Zinck
(1997) and Sheng et al. (2010). Douaoui et al. (2006), Alavi-panah
and Goossens (2001), Dehni and Lounis (2012) and Bouaziz et al.
(2011) relied exclusively on remote sensing data for understanding
the spatial distribution of soil salinity. Mapping with a combination of
both topographical and remote sensing variables was investigated by
Evans and Caccetta (2000) and Bilgili (2013). In addition to this, some
researchers have considered the use of apparent electrical conductivity
(ECa) derived using proximal sensor platforms such as the Geonics elec-
tromagnetic induction (EMI), as an easy-to-obtain ancillary information
source to map soil properties (Michot et al., 2013; Sun et al., 2012,
2013). Good relationships between soil salinity and ECa values have
been reported by Lesch et al. (2005), Triantafilis et al. (2001), and
Triantafilis and Lesch (2005).

McBratney et al. (2003) described various modelling techniques
used in DSM studies. Some of these include multiple linear regression,
artificial neural networks (Akramkhanov and Vlek, 2012), andmachine
learning systems and data mining algorithms (Lacoste et al., 2011). Hy-
brid modelling approaches such as regression kriging (Hengl et al.,
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2004; Michot et al., 2013; Vanwalleghem et al., 2010; Vasques et al.,
2010) are also used frequently in the DSM community. Another form
of data mining is the regression or decision tree analysis and their vari-
ants (Florinsky et al., 2002; Ließ et al., 2012; Mendonça-Santos et al.,
2006; Ryan et al., 2000; Vasques et al., 2010). Decision trees are non-
parametric (i.e. no assumptions about variable distribution) nor are
they sensitive to missing data (Bui et al., 1999; Moran and Bui, 2002).
Also, they select the most relevant variable subsets for modelling. An-
other advantage of decision tree analysis is their ease of interpretation
and their ability to incorporate both continuous and categorical auxilia-
ry data (Grinand et al., 2008); which would make using this type of
modelling approach suitable in places such as Iran.

Most studies only producedigital soil salinitymaps for specific depth
intervals. However, as commonly accepted, soil salinity generally varies
continuously within a profile. This variation can bemodelled using con-
tinuous soil depth functions (Malone et al., 2009). Several researchers
have attempted to derive some functions of soil variation with depth,
for example Jenny (1941), Minasny et al. (2006), Mishra et al. (2009),
and Kempen et al. (2011). Added to this, Bishop et al. (1999) also com-
pareddifferent depth functions to predict some soil properties including
soil pH, electrical conductivity, clay content, organic carbon content and
water content and they found that equal-area splines were the most
flexible and practicable depth functions. An amalgam of fitting the
spline depth function and DSM was demonstrated by Malone et al.
(2009) whom mapped to 1 m, the vertical and lateral variation of car-
bon storage and available water capacity across an area in the north-
western NSW, Australia. Given the range of contemporary methods
used in mapping the vertical and lateral variation of soil properties, no
attempt has been presented to use the spline depth function and DSM
techniques, to predict andmap salinity level in an arid region. Therefore,
we attempt to investigate soil salinity variation in these spatial domains
for a study area within Iran.

2. Materials and methods

2.1. Study area

The study area is the Ardakan region in Yazdprovince located in cen-
tral Iran (Fig. 1a). It covers an area of 72,000 ha (Fig. 1b). The predomi-
nant crops have been cultivated in the plain are pistachio nuts, followed
bywheat andmadder (Rubia tinctorum L.). The climate of the study area
is aridwith amean annual precipitation,mean annual temperature, and
annual potential evaporation of 75 mm, 18.5 °C, and 3483 mm, respec-
tively. Precipitation is very rare and received mainly during the winter
season. The soil moisture and temperature regimes are aridic and ther-
mic, respectively. Topography of the land is flat, and the maximum ele-
vation of the region is 1944 m.a.s.l. (metres above sea level) and the
minimum elevation is 944 m.a.s.l. (Fig. 1c). The major geological units
are composed of red gypsiferous marls and brown to grey limestone,
and themain landforms of the region from east to west direction are al-
luvial fans, coalescing alluvial fans (bajadas), salt plain and gypsiferous
hills, respectively (Fig. 1d). The soils in the study area have been classi-
fied using the US Soil Taxonomy (Soil Survey Staff, 2006) into two orders
(i.e. Aridisols and Entisols), five sub-orders (i.e. Calcids, Cambids, Gypsids,
Salids and Orthents), six great groups (i.e. Haplocalcids, Haplocambids,
Calcigypsids, Haplogypsids, Haplosalids and Torriorthents) and eight
sub-great groups (i.e. Typic Haplocalcids, Typic Haplocambids, Typic
Calcigypsids, Typic Haplogypsids, Typic Haplosalids, Petrogypsic
Haplosalids, Gypsic Haplosalids and Typic Torriorthents). In general,
soils found in the upper land (Fig. 1c) have coarse texture and low salin-
ity (loamy sandy to sandy clay loamy), while soils characterised with
more saline and fine texture are located in lower part of the area (clay
Fig. 1. (a) Location of the Yazd province, (b) the Ardakan region, and the study area in central I
tribution of soil samples draped over the ETM+ image (A: Mountain landscape with rock surfa
alescing alluvial fans (bajadas), E: gypsiferous hills, F: Pistachio orchard).
loam to clay). Soils have low amount of soil organic matter (ranges
from 0.01 to 0.9%) and high amount of CaCO3 (14 to 40%) and gypsum
(2 to 45%).

2.2. Procedures

The flowchart of this study, shown in Fig. 2, illustrates the proce-
dures employed in this research.

This work is conducted in a number of stages:

i) Collecting soil samples for calibration based on Latin hypercube
sampling;

ii) Fitting of equal-area smoothing spline functions to soil electrical
conductivity (ECe) at the point observations;

iii) Preparing of scorpan variables at a regular grid spacing, and
intersecting the variables with the point observations;

iv) Creating digital maps of apparent electrical conductivity (ECa)
based on electrical magnetic induction measurement and
scorpan variables;

v) Deriving empirical relationships of ECewith the available scorpan
variables using the regression rule model; and

vi) Applying themodels to the entire study area in order to produce
a soil salinity map with the intended purpose of it being used for
local agricultural soil management.

Michot et al. (2013) recentlymapped soil salinity in an 8 ha ricefield
in the Niger. The data collected were similar to this study (140 ECe ob-
servations, and 423 ECa measurements), but they applied a different
method. They first modelled ECe as a function of ECa using a regression
tree. Then they predicted ECe on the observed ECa locations, and
mapped ECe at a regular grid at 3 different depths using ordinary
kriging.

2.3. Acquisition of auxiliary data

Digital soilmapping relies on the empirical relationship between soil
properties and their environmental factors—that is, soil, climate, organ-
isms, relief, parent materials and spatial position (McBratney et al.,
2003). Upon both an understanding of the factors which may affect
soil salinity distribution and availability of such spatial environmental
information, four types of auxiliary data were available in this study
area (Table 1), and include:

2.3.1. Terrain attributes
The role of land surface parameters in soil mapping has been

reviewed by McKenzie et al. (2000). However, relief in flat areas could
well be explained by using terrain attributes such as those developed
by Gallant and Dowling (2003) that include Multi-resolution Valley
Bottom Flatness (MrVBF),which as the name implies, is amulti-scale al-
gorithm for identifying and classifying the degrees of valley bottom flat-
ness from a DEM, into a single index. Other attributes include valley
depth (Abdel-Kader, 2011), elevation, altitude above channel network,
modified catchment area and mid-slope position (Bohner and Antonic,
2009). Furthermore, topographic wetness index, indicating the degree
of wetness and hydrology of the landscape has previously been used
to classify areas with saline soils (Moore et al., 1991). Also, in order to
capture subsurface soil moisture flow, catchment slope has been found
to be useful (Scull et al., 2005).

All terrain attributes used in this study were derived from a DEM
with a 10 m grid resolution (National Cartographic Center, 2010).
From Fig. 1c, it is clear that most of the study area has low elevation
and, is dominantly flat. Since soils in flat areas are not dominantly
ran and (c) ECa site data locations draped over digital elevation model and (d) spatial dis-
ces, B: Alluvial fan, C: Playa, with fine and to some extent coarse alluvial sediment, D: co-



Fig. 2. Flowchart of methodology used for digital soil mapping in this study.
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influenced by local topographic characteristics, we did not consider
local terrain attributes such as slope and curvatures (Scull et al., 2005).

The DEMused in this studywas originally prepared fromRADAR im-
ages (National Cartographic Center, 2010). The raw DEM contains a
number of anomalies—and by all accounts, is a ‘noisy’ dataset—as a re-
sult of the data collection andmethod of preparation. This in turn affects
the derivation of the terrain attributes from the DEM. Therefore, in this
study, we used the wavelet analysis for removing noise and under-
standing the scale dependent behaviour of the terrain attributes. As
has been previously found, one of the best methods for decomposing
data into different scale components is wavelet functions (Graps,
1995).Wavelets are useful for analysing data with sharp discontinuities
(Lark and McBratney, 2002) and also effective in removing redundant
information from data layers (Mendonça-Santos et al., 2006). Wavelet
partitions data into different frequency components, this allows us to
study each of the components with a resolution matched to its scale.
Therefore, a two-dimensional discrete wavelet transform in MATLAB
software (MathWorks, 2010) was used to decompose the terrain attri-
bute layers (Lark and Webster, 2004) and remove the noises and arte-
facts. The terrain attribute data layers were decomposed into four
levels: L1, L2, L3 and L4. These levels corresponded to grid resolutions
of 20, 40, 80, and 160 m respectively.

2.3.2. Remote sensing data
Most of our study area is bare land; hence variation of soil proper-

ties/types at the terrain surface can be detected by remote sensing
data (Metternicht and Zinck, 2003). This is because different soils vari-
ably absorb and/or reflect electromagnetic radiation at different wave-
lengths (Andronikov and Dorbrolv'skiy, 1991). A Landsat 7 ETM+

image acquired on August 2002 was used in this study. It consists of
six spectral bands (B1 (0.45–0.52 μm), B2 (0.52–0.60 μm), B3 (0.63–
0.69 μm), B4 (0.76–0.90 μm), B5 (1.55–1.75 μm) and B7 (2.08–
2.35 μm)), and has a grid resolution of approximately 30 m. To reduce
the total number of data layers, a principal component analysis (PCA)
based on its correlation matrix was used. Metternicht and Zinck
(2003) and similarly, Dwivedi and Sreenivas (1998) demonstrated
that PCA based on correlationmatrix is an effective approach to discrim-
inate soils in arid regions. Also, according to pedogenesis of the soils at
the study area, other indices were also computed, which included
NormalizedDifference Vegetation Index (NDVI)—an indexof vegetation
distribution and density. In addition, clay index, carbonate index,
gypsum index, salinity index and brightness index were also derived
from the ETM+ bands in order to differentiate the geologic composition
of surficial materials (see the definition of the indices in Table 1).

2.3.3. Geomorphology map
A useful source of information for assessing soil parent material and

other factors of soil genesis, particularly in arid areas is the use of geo-
morphology maps (Jafari et al., 2012; Scull et al., 2005). For this study,
a geomorphology map was prepared based on a nested geomorphic hi-
erarchy approach defined by Toomanian et al. (2006). In this approach,
air photos (1:50,000) were used to delineate geomorphological entities
into four levels which included: landscape, landform, lithology and geo-
morphological surface. After ortho-photo geo-referencing of aerial
photos, delineated boundaries of geomorphological surfaces were
inserted in a GIS environment. This study area has 25 geomorphological
units (Fig. 3a and Table 2).

All data sources that have been described were registered to a com-
mon grid of 30 m cell size.

2.3.4. Apparent electrical conductivity
An additional analysis in this study was mapping the apparent elec-

trical conductivity (ECa) of the bulk soil as a means for predicting ECe
across the study area. ECa was measured using the electromagnetic in-
duction instrument (EMI, Geonics EM38). The device measures ECa in
twomodes: vertical (ECav) and horizontal (ECah)—working to effective
depths of 1.5 m and 0.75 m respectively (Sun et al., 2013). In order to
generate ECamaps efficiently for the study area,field ECa datawere col-
lected in different campaigns. The first of which were 173 ECa readings
taken at the sites used for the soil sampling. These data were also used
to investigate the calibration of ECa data with ECe measurements at
these sites. An additional 216 ECa readings were taken from 24 tran-
sects. These transect were selected randomly and in each, nine ECa
readings were taken with the mean distance 30 m. A further 311 read-
ings were gathered based on a grid sample with mean distance of
1500 m between sites in order to adequately cover the study area
(Fig. 1c). In total, 700 ECa data in both vertical and horizontal modes
were taken for this study.

Spatial prediction and mapping of the ECa data was performed
using local regression kriging. For each mode of ECa measurement,
regression trees, facilitated through the Cubist data mining software
(Quinlan, 2001), modelled the deterministic spatial trend. Auxiliary

image of Fig.�2


Table 1
Land surface parameters used for spatial prediction of soil ECe.

Auxiliary data Land surface parameters Definition Reference/source Soil forming factors

Apparent electrical conductivity ECa readings Calculated the ECa of soil volume down
to 1.5 m

Geonics Ltd.
EM38

S, PM

Terrain attributes Elevation Height above sea level (m) National Cartographic
Center (2010)

R

Altitude above channel network Relative height above depth SAGA GIS R
Modified catchment area Calculated the flow accumulation and

related parameters
SAGA GIS R

Mid-slope position Calculates the extent that each point
similar to a ridge or valley position as
values 0 through 100

Bohner and Antonic (2009) R

Multi-resolution Ridge-top Flatness Index
(MrRTF)

Measure of flatness and lowness Gallant and Dowling (2003) R

Multi-resolution Valley Bottom Flatness
Index (MrVBF)

Measure of flatness and upness Gallant and Dowling (2003) R

Valley depth Metres SAGA GIS R
Topographic wetness index Ln (FA/SG) SAGA GIS R, CL
Catchment slope (CS) Average gradient above flow path SAGA GIS R, CL

Remote sensing data Principal components of six ETM bands PC1, PC2, PC3 Nield et al. (2007) PM, S, T
Normalized Difference Vegetation Index (NDVI) (B4 − B3)/(B4 + B3) Boettinger et al. (2008) O
Clay index B5/B7 Boettinger et al. (2008) PM, S
Gypsum index (B5 − B4)/(B5 + B4) Nield et al. (2007) PM, S
Salinity ratio (B3 − B4)/(B2 + B4) Metternicht and Zinck (2003) PM, S
Brightness index ((B3)2 + (B4)2)0.5 Metternicht and Zinck (2003) PM, S
Carbonate index B3/B2 Boettinger et al. (2008) PM, S

Geomorphology Geomorphology map Geomorphology surfaces Toomanian et al. (2006) PM, S, T

R: Relief, CL: Climate, PM: Parent materials, S: Soil, and T: Time.
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data (i.e. ETM+ images, geomorphology, and terrain parameters)
were used as covariates to model this spatial trend. Kriging with
local variograms of the residuals (resulting from the regression
tree model) was performed to capture the stochastic variation of
the spatial model through the Vesper software (Minasny et al.,
1999). Calibration of the predictivemodels was based on using a ran-
dom sample of 80% of the available data. And the remaining 20% of
the data is used as validation.

2.4. Data collection and soil sample analysis

A sampling campaign was conducted in which 173 individual sites
were visited and soil was sampled. The configuration of the sampling
locations was based on the conditioned Latin hypercube method
(Minasny andMcBratney, 2006) using a number of environmental var-
iables that were found to have themost variationwithin the area. These
included: (from a DEM) LS factor, stream power index, slope length,
slope, and aspect. Geomorphologic units and data from the Landsat
ETM+ (2002), specifically the spectral bands 3, 4, 5 and 7 were also in-
cluded. Fig. 1d shows the location of the soil profiles draped over the
Landsat ETM+ image.

At each site, soil samples were collected based on their genetic hori-
zons. Overall, 598 soil samples were taken and then transported to lab-
oratory. The samples were air-dried at room temperature, ground to
pass through a 2-mm sieve prior to analysis (Sparks et al., 1996). Parti-
cle size distribution, electrical conductivity (ECe), pH, organic carbon,
soluble calcium, magnesium, chlorine, carbonate, bicarbonate, sodium,
potassium were measured according to standard methods (Nelson
and Sommers, 1982; Sparks et al., 1996). Also, sodium absorption ratio
(SAR) was calculated according to the equation defined by Suarez
(1981).

In order to describe the vertical variation of ECe, we standardise the
depth intervals of prediction: 0–15, 15–30, 30–60 and 60–100 cm.
Harmonisation (to the standard depths) of the raw soil profile ECe
data was performed using the equal-area quadratic spline model de-
scribed in Malone et al. (2009). We fitted the spline function to each
profile to a maximum depth of 1 m. Integration of the splines to the de-
fined depth intervals was performed to obtain values of ECe at the
standardised depths for each soil profile.
2.5. Spatial prediction of ECe and validation

A regression tree correlates several covariates with direct or indirect
relationships to a target variable with a tree structure, generated by
partitioning the data recursively into a number of groups. A constructed
regression tree consists of nodes (each representing an attribute),
branches (each representing the attribute value), and leaves (each
representing a soil property). In this study, we used an advanced ver-
sion of the regression tree called Cubist (Rulequest Research, Sydney).
It is essentially similar to regression tree, except that the leaves are in
the form of a linear regression of the covariates. A training dataset is
used to discover or exploit the unknown relationships between the pre-
dictor variables and the predicted variable. It is assumed that all the re-
quired information to establish soil predictions is contained in the data
and can be extracted if a sufficient amount of training data that cover
the whole covariate space can be collected (Dobos et al., 2006;
Elnaggar, 2007).

Here, using the 173 soil profile sites and the full suite of auxiliary
data—including the predicted maps of ECav and ECah—regression tree
models were built for each of the standard depths i.e. for 0–15, 15–30,
30–60 and 60–100 cm. Cubist models were used to model the deter-
ministic spatial trend of ECe at the grid spacing of 90 m.

A total of 138 (80%) point data was used for calibration of the
models, while the remaining data were used for validation. We used
three different criteria for evaluating the performance of the spatial pre-
dictionmodels of ECe, namely,mean error (ME), rootmean square error
(RMSE), and coefficient of determination (R2) and are equated below
as:

ME ¼ 1
n

Xn
i¼1

Oi−Pið Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Oi−Pið Þ2
vuut

R2 ¼
Xn

i¼1
Oi−Oaveð Þ Pi−Paveð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Oi−Oaveð Þ2 Pi−Paveð Þ2
s

2
66664

3
77775

2



Fig. 3. Selection of auxiliary data of the Ardakan plain which included: (a) Geomorphology map (geomorphology codes refer to Table 2), (b) wetness index, (c) MrVBF, and (d) second
principal component of the Landsat ETM+ image.
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where Pi denotes the predicted values,Oi is the observed value, Oave and
Pave shows the average of observed and predicted values, n is the num-
ber of data.

3. Results

3.1. Descriptive statistics of the ECe and ECa data

Summary statistics of soil salinity (ECe) at the different depths
(to 1 m) and also ECa readings in both modes are presented in Table 3.

In general, 86% of soil samples have ECe above 4 dS m−1 and this
suggests that soils in the study area are severely affected by salt. As
the statistical results show, the median ECe levels in all four depth
ranges are quite high, with values between 30 and 40 dS m−1 indicat-
ing that soils are considered as extremely saline. The soil salinity
variationswere similar in all four depth layers. The variations for soil sa-
linity levels are very high with interquartile range between 48 and
108 dS m−1, which indicate a broad range of values across the study
area. Notably, ECe varied from 1 to 245 dS m−1 from top to the bottom
of soil profiles. The high values of ECe are consistent with the values re-
ported for samples taken from the Yazd province, which ranges from
0.48 to 171.3 dS m−1. The soils here also contain a high concentration
of gypsum (0–42.4 Cmol kg−1) (Khorsandi and Yazdi, 2011). Likewise,
the variation of ECa readings (1–340 mS m−1) was also high in the ver-
tical (ECav) and horizontal (ECah) modes. But to some extent, they are
higher than the ECe measurements. It might be due to the device mea-
sured apparent electrical conductivity in larger volume soil, while elec-
trical conductivity wasmeasured in smaller soil samples taken from the
genetic horizons only (Table 3).

Generally, soil samples found in the upper land have coarser texture
(loamy sandy to sandy clay loamy) and low salinity, while soils in the
lower part of the area are saline with finer textures (clay loam to
clay). The sampleswith highest salinity level were located in themiddle
and northern of the study area.

3.2. Spatial distribution of auxiliary data

3.2.1. Terrain parameters
For prediction of soil salinity at the four depths, first we calculated

terrain parameters from original DEM (i.e. 10 m pixel size) and its
four levels of decomposed (i.e. 20, 40, 80, and 160 m pixel sizes). Then
we compared the original DEMand its four levels of decomposed terrain

image of Fig.�3


Table 2
Geomorphology map hierarchy and the major soil sub-great group per geomorphological surface.

Major sub-great
group soil observed

Code Geomorphological surface Lithology Landform Landscape

Typic Torriorthents Mo111 Rock outcrop Dolomite-limestone Dissected ridge Mountain
Typic Torriorthents Mo121 Rock outcrop Grey to green andesitic, and limestone Rock outcrop
Typic Torriorthents Mo211 Eroded surface Eroded calcareous and dark shale Rock pediment
Typic Haplogypsids Hi111 Dendrite drainage system with high topography Sandstone-gypsum Eroded rock

outcrop
Hill land

Typic Haplocalcids Pl111 Soft clay flat, salty and cultivated Fine and coarse alluvial sediments Ardakan basin Playa
Gypsic Haplosalids Pl112 Clay flat, dense stream, salty
Gypsic Haplosalids Pl113 Clay flat, highly salty and wetness
Gypsic Haplosalids Pi111 Active fan, upper section, Alluvium of limestone Alluvial fan Piedmont
Gypsic Haplosalids Pi112 Active fan, lower section, salty
Petrogypsic
Haplosalids

Pi113 Active fan, upper section with more drainage system, desert
pavement

Petrogypsic
Haplosalids

Pi114 Active fan, lower section with more drainage system, desert
pavement

Typic Calcigypsids Pi121 Active fan, lower section Alluvium of grey limestone with red sandstone
at the base

Typic Haplogypsids Pi131 Active fan, lower section Alluvium sandstone, shale and limestone
Gypsic Haplosalids Pi211 Upper section, high slope, dense drainage system Alluvium of grey limestone with red sandstone at

the base
Bajada

Gypsic Haplosalids Pi212 Lower section, high slop
Typic Calcigypsids Pi213 Upper section, coarse, salty
Gypsic Haplosalids Pi214 Upper section, parallel streams
Typic Haplocalcids Pi215 Lower section, new deposits
Gypsic Haplosalids Pi216 Cultivated bajada, salty
Gypsic Haplosalids Pi221 Upper section, coarse, salty Alluvium of gypsum hill lands
Typic Haplocalcids Pi231 Coarse, calcareous Alluvium of dolomite-limestone
Typic Haplocalcids Pi241 Coarse, with dense drainage network Alluvium of dolomite-limestone
Gypsic Haplosalids Pi311 Flat and lower topography Alluvium of siltstone, shale, sandstone, gypsum Old bajada
Gypsic Haplosalids Pi312 Higher topography and deep streams
Typic Haplogypsids Pi321 Higher topography and deep streams, coarse Alluvium of gypsum
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attribute layers to predict ECe. Our results showed that for prediction of
the target variable (ECe), the decomposed data layer L4 (nominal reso-
lution of 160 m) produced the bestmodel and could enhanceprediction
accuracy by about 23%, 21%, 19%, and 17% for the 0–15 cm, 15–30 cm,
30–60 cm, and 60–100 cm depth intervals, respectively.

Fig. 3b shows the spatial distribution of wetness index. The small
values (b7) are generally associated with the mountainous area, the in-
termediate values (7–14) are associated with parts of the bajada land-
forms, and the larger values of wetness index (N14) is corresponded
to playa landforms. This area showed high potential of accumulation
of salty materials. In fact this part of the area is located at the outlet of
Ardakan basin and, hence has received a significant amount of soluble
materials washed out from the entire watershed. According to sources
such asMoore et al. (1991) and Jafari et al. (2012), there is a high corre-
lation between soil salinity and topographic wetness index. Spatial dis-
tribution ofMrVBF (Fig. 3c) shows a similar spatial trend to topographic
wetness index. For example, the lowest value of MrVBF is highly associ-
ated with some parts of the area having high to moderate elevation and
low topographic wetness. The highest value was corresponded in mid-
dle part and this part of area could be potential zones of transport for
soil material in excess water flow.
Table 3
Descriptive statistics of soil ECe and ECa measurements.

Layer (cm) Min Max Average Std. Dev. Q25a Q50a Q75a

ECe (0–15 cm) (dS m−1) 1 245.4 55.9 66.0 5.7 30.2 82.7
ECe (15–30 cm) (dS m−1) 1.3 238.6 64.2 66.8 7.4 33.8 115.3
ECe (30–60 cm) (dS m−1) 1 210.0 57.3 55.9 7.8 40.0 95.8
ECe (60–100 cm) (dS m−1) 1 231.9 40.7 41.1 9.7 30.4 57.4
ECa horizontal (mS m−1) 1 254 56.2 51.7 19.0 36.5 81.0
ECa vertical (mS m−1) 3 340 80.1 68.7 28.5 56.5 121.6

a Q25, Q50, and Q75 refer to the 25% quartile, median, and 75% quartile.
3.2.2. Remote sensing data
Principal component analysis on the Landsat ETM+ images showed

that the first three components (PC1, PC2 and PC3) represent 99% of
the variation of the spectral band data. The first component defined
90% of image variation and the highest eigenvalue belonged to Band 2
covering the green range of spectrum. Fig. 3d shows the spatial distribu-
tion of the second principal components (PC2) of the Landsat ETM+

images. According to Fig. 3d, the largest values coincide with the irrigat-
ed areas and some of the vegetated areas in the central part of the study
area, while the lowest values are associated with mountainous
landform.

3.2.3. Apparent electrical conductivity
The ECa map for both vertical and horizontal mode was produced

using the regression kriging approach. The evaluation of the prediction
based on the training (80% of the data) and independent validation data
set (20% of all data) is presented in Table 4. Both models show reason-
able prediction with R2 values around 0.49 on the validation dataset.
The main predictors used in the model are wetness index (59%), geo-
morphology (48%), PC1 (31%), catchment aspect (17%), and valley
depth (16%).

A map of the ECa in vertical mode is shown on Fig. 4a, and the hori-
zontal mode in Fig. 4b. These maps clearly illustrate that there are two
Table 4
Results of model evaluation criteria based on prediction and validation data sets for ECa
readings in both vertical and horizontal modes.

ME (mS/m) RMSE (mS/m) R2

Prediction (n = 560)
ECa horizontal −0.12 24.95 0.69
ECa vertical −1.03 30.78 0.75
Validation (n = 140)
ECa horizontal −2.23 29.64 0.48
ECa vertical −1.07 37.74 0.49



Fig. 4. (a) ECa in vertical mode and (b) ECa in horizontal mode.
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distinct areas of high ECa values located in centre of region where the
soil texture ranged from clays to loams,whereas areas of low ECa values
were in east and west parts of the study area where the soil texture is
coarser.
Table 6
Results of model evaluation criteria for ECe for the four standard depths based on a
validation data set (n = 32) with all inputs (i.e. remote sensing, ECa, terrain parameters,
3.3. Relationship between ECe and ECa data

First we fitted linear regressionmodels between ECa as independent
variables and ECe as dependent variables for each depth. Consequently,
four equations for the whole soil profile were derived (Table 5). This
table shows that both vertical and horizontal measurements of ECa
have a significant linear correlation with ECe for soils between 0 and
30 cm, whereas a lower correlation was found in 60–100 cm.

However the best model for soil surfaces only has an R2 = 0.67,
which is much lower when compared to other researchers' findings
(Lesch et al., 2005; Slavich, 1990; Yao and Yang, 2010) who reported
R2 around 0.9. Therefore, we concluded that we cannot use the equa-
tions in Table 5 directly for the reconstruction the soil salinity profile
across the study area. This might be attributed to the fact that ECa read-
ings are influenced not only by soil salinity values but also by other fac-
tors such as texture, temperature and moisture content (Rhoades et al.,
1990). Clay content in soils in somepart of the study area particularly, in
middle part and the north, exceeds 50% and, hence this might be one
reason for lower correlation between apparent electrical conductivity
and soil salinity levels in specified depths (Table 5). Another reason is
the aridic condition, where the water content was below 5%. Low
water content of the surface soil led lowering correlation between ECe
and ECa readings (Bennett and George, 1995; McFarlane and Ryder,
1990). However, temperature has a smaller effect on our ECa values be-
cause the survey was conducted during summer period when average
Table 5
Regression relationships between ECa and measured ECe (n = 173).

ECe = a + b.ECav + c.ECah

Layer (cm) a b c R2

ECe(0–15 cm) dS m−1 1.5 0.43 0.49 0.67
ECe (15–30 cm) dS m−1 10.3 0.39 0.50 0.61
ECe (30–60 cm) dS m−1 22.8 0.62 −0.18 0.31
ECe (60–100 cm) dS m−1 22.7 0.82 −0.75 0.14
soil temperatures of the 1 metre profile are around 25 °C (Hendrickx
et al., 1992).

3.4. Prediction of spatial distribution of ECe

We used digital maps of ECa (horizontal and vertical modes) along
with other environmental variables to predict the spatial distribution
of ECe at 4 depths. Validation results for the spatial prediction of ECe
at each standard depth are shown in Table 6. According to this table,
the evaluation of validation data sets resulted in R2 values ranged
from 0.78 to 0.11. These indicate much stronger predictions for the
first layer of the soil profile in comparison to the last layer. The best pre-
diction models were between 0–30 cm where the RMSE value ranged
between 37.5 and 38.4 dS m−1. The ME results showed that there was
a very small positive bias (or underestimation) for predicted values in
first standard depth (0–15 cm), whereas in the last depth (60–
100 cm) there was a high positive bias. This could be the caused by
the dry condition of the soil and low water content of the soil profiles.
Added to this, variation of clay content (%) at the depth of 60–100 cm
was very high (N57%).

We also run the Cubist model without including the ECa surfaces as
predictors. Results showed that the prediction is worse with RMSE
values that are 1.7 times higher for the 0–15 and 15–30 layers. The R2

values are lower ranged from 0.36 to 0.08 for soil surface to the lowest
depth (Table 6). So, these results convinced us (Tables 5 and 6) that al-
though the ECa layers were predicted, they are a good representation of
the ECa values, not just a combination of the other covariates. We
and geomorphology), and without ECa covariates.

Layer (cm) ME (dS/m) RMSE (dS/m) R2

Models with all inputs including ECa
ECe(0–15 cm) dS m−1 0.99 37.52 0.78
ECe (15–30 cm) dS m−1 −2.64 38.38 0.72
ECe (30–60 cm) dS m−1 3.29 42.55 0.45
ECe (60–100 cm) dS m−1 11.38 42.10 0.11

Models excluding ECa
ECe(0–15 cm) dS m−1 −1.64 64.08 0.36
ECe (15–30 cm) dS m−1 −9.70 66.28 0.19
ECe (30–60 cm) dS m−1 −1.92 56.79 0.02
ECe (60–100 cm) dS m−1 7.13 42.93 0.08
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Fig. 6. The significance of each category of auxiliary data used in regression models in the
four standarddepths. Percentage represents the frequency of the auxiliary data used in the
models.

23R. Taghizadeh-Mehrjardi et al. / Geoderma 213 (2014) 15–28
should use ECa data combined with other environmental variables to
map ECe.

The results also showed that some auxiliary data have more influ-
ence on the prediction of soil salinity in each depth. Themost important
auxiliary data used in the predictive models are presented in Fig. 5,
showing the percentage of auxiliary data usage in each of the models.
Generally ECav is a common variable for all standard depths as shown
in Figs. 5a, b, and c. Meanwhile for 60–100 cm, topographic wetness
index was the most important variable used in regression tree model
(Fig. 5d).

We also calculated the contribution of each dominant factors used in
the models and is illustrated in Fig. 6. For the 0–15 cm depth interval,
remote sensing data had the highest influence on the model prediction
followed by ECa, terrain attributes and geomorphology, whereas for the
60–100 cm depth interval, terrain attributes were the most predictive
of ECe. Thus, we can imply that with increasing soil depth, the remote
sensing data becomes less relevant, whereas the terrain parameters be-
come more important.

The scatter plots of the measured against predicted ECe for each
depth interval for the validation data sets are given in Fig. 7. These
plots also indicate that the highest accuracy of estimation is for the
top two standard depth intervals (Figs. 7a and b), whereas the lowest
Fig. 5. The significance of each auxiliary data for prediction of ECe for the four standard depths:
frequency of the auxiliary data used in the models. (WI:Wetness index, GEO: Geomorphology
Vegetation Index, VD: Valley depth, SR: Salinity ratio, BR: Brightness index, DEM: Elevation, M
Electromagnetic induction, MrRTF: Multi-resolution Ridge-top Flatness index, CA: Catchment a
accuracy of estimation is for the 60–100 cm depth interval (Fig. 7d).
This result implies that the sub-surface predictive models were non-
optimal in defining a strong relationship between auxiliary data and
(a) 0–15 cm, (b) 15–30 cm, (c) 30–60 cm, and (d) 60–100 cm. Percentage represents the
surfaces, PC: Principal component, MSP: Mid-slope position, NDVI: Normalized Difference
CA: Modified catchment area, MrVBF: Multi-resolution Valley Bottom Flatness Index, EM:
spect).
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Fig. 7. Scatter plots of the measured versus predicted ECe: (a) 0–15 cm, (b) 15–30 cm, (c) 30–60 cm, and (d) 60–100 cm using regression trees through digital soil mapping approach
based on validation data set.
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ECe even with the help of EMI instrumentation. As an additional visual
analysis of the validation, splines of the actual and predicted ECe values
were fitted to four selected soil profiles and shown in Fig. 8. From these
plots it is possible to get a sense that the vertical modelling of the ECe
distribution with splines is feasible, in that the general vertical distribu-
tion of ECe is observed.

The regression rules defined by the Cubist models were applied to
predict ECe across the study area at each depth interval (Fig. 9). As
can be seen from these maps, the highest ECe can be found particularly
at the 0–15 cm and 15–30 cm depth intervals and are located in the
north and to the east of the study area. Areas of low salinity can be
found in the north-west and north-east of the region.

Maps of the residuals (the difference between measured and pre-
dicted values) were also calculated to assess the uncertainty of the
models. Results indicated that the error (residuals) is increasing with
depth. The residual in the first layer (0–15 cm, Fig. 10a) is from −3 to
2,while the second layer (Fig. 10b) is from−15 to 10. The spatial distri-
bution of soil salinity in of the third layer (30–60 cm, Fig. 9c)was similar
to the first and second layers (Figs. 9a, b). The smallest values of soil sa-
linity in this layer are generally associated in the west and the highest
values of salinity are located in the north. The third layer showed the
highest variation of error ranged from−31 to 48 (Fig. 10c). The spatial
distribution in the bottom of soil profile (Fig. 9d) shows different trend
and the regions with the highest salinity levels located in the west and
fairly in the east of the study area.
4. Discussion

4.1. Auxiliary data used in predictive models

Our results (i.e. Fig. 5) demonstrated that one of themost important
auxiliary data for prediction of electrical conductivity in the first three
depth intervals (i.e. 0–15 cm, 15–30 cm and 30–60 cm), was the ECav
layer. In contrast, the most important auxiliary data for prediction of
soil salinity in 60–100 cmwas topographic wetness index (Fig. 5d). Al-
though the ECa surfaces were predicted, they were calibrated from a
high number of ECa measurements and the accuracy of the prediction
is quite good. Therefore they are a good representation of ECa values.

Akramkhanov et al. (2011) found thatmost terrain indices showed a
low correlationwith topsoil and bulk salinity, as their study area is quite
flat. However, Moore et al. (1991) indicated a strong relationship be-
tween soil salinity and topographic wetness index. The results also sug-
gested that the geomorphology map is another useful predictor for
mapping soil salinity which might be due to the geomorphological sur-
face that have formed recently and they have a good relationship with
soil processes in the arid regions. This result is in line with other
works, for example Scull et al. (2005) and Jafari et al. (2012) established
that geomorphology is the best predictor for soil distribution in the de-
sert ecosystem. In addition, remote sensing images are also useful pre-
dictors especially in the top soils (0–15 cm and 15–30 cm). Since
most of the area was bare (Fig. 1d), hence the presence of salts at the
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Fig. 8.Whole-profile representations of ECe distribution of observed values and corresponding predicted values. These profiles were selected from the validation dataset.
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surface can easily be detected by principal components derived from
the data (i.e. Landsat ETM+). Metternicht and Zinck (2003) and similar-
ly, Dwivedi and Sreenivas (1998) demonstrated that PCA of remotely
sensed images is a useful approach to discriminate saline soils. Dehni
and Lounis (2012) indicated that ETM images are helpful predictors
for monitoring soil salinity.

4.2. Accuracy of the prediction models

With application of these auxiliary data, regression tree analysis pre-
dicted soil salinity values with ranging accuracy, dependent on the
depth of spatialmodelling—models performed better for the soil surface
than at depth. These results agreed with findings of Ryan et al. (2000),
Florinsky et al. (2002), Minasny et al. (2006) and Malone et al. (2009)
who reported a decreasing accuracy of prediction with depth. These ex-
amples show that the covariates used cannot capture the subsurface
variation. Nevertheless, for digital soil mapping, these results indicate
a good accuracy, R2 values over 70% are not very common and values
of 50% or less are more common (Malone et al., 2009). In contrast, at
deeper depth (60–100 cm), the accuracy is worse (R2 = 0.11) even
though the EMI instrument was supposed to have an effective depth
of 0.75 and 1.5 m. This could be the caused by the dry condition of the
soil and low water content of the soil profiles. Bennett and George
(1995) andMcFarlane and Ryder (1990) reported thatmoisture content
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Fig. 9. Predicted maps of ECe (dS m−1) to 1 m across the study area: (a) 0–15 cm, (b) 15–30 cm, (c) 30–60 cm, and (d) 60–100 cm.
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has an important role in electromagnetic induction measurements. In
addition, variation of clay content (%) at the depth of 60–100 cm was
very high (N57%) and this could be another reason for lowering correla-
tion. The low relief landscape in this study area made it difficult to
model the topographic effect on soil salinity (Florinsky et al., 2002).
4.3. Spatial distribution of soil salinity

The salinitymap (Fig. 9) shows thatmost of the saline soils are locat-
ed in the lower part of the region, the playa landform. This is likely due
to the playa having received more soluble salts washed out from upper
areas. Added to this, the concavely shaped plain could help move
ground water toward the north of the area in which the soils with
highest ECe are found. In the north, the soil has a heavy texture and
this might help the capillary movement of groundwater to the surface
and, hence accumulation of salt in the surfaces. Although soils having
a high ECe are not limited to the playa, Fig. 9 depicts some saline soils
are also located in the east of the study area. In this area, there are
salic and petrogypsic horizons with ECe levels more than 12 dS m−1.
Furthermore, Fig. 1c shows the poor vegetation cover in this landform
which could be an indication of the presence of salic horizons.

Soil suitability assessment for the most arable crops needs this de-
tailed information about the vertical and lateral variation of ECe. Conse-
quently, a practicable and useful way to predict the lateral and vertical
variation of soil salinity is from using combination of soil depth func-
tions and digital soil mapping. Our results demonstrated that regression
tree, and equal-area smoothing splines, as a composite DSM technique
can be used to adequately model the lateral and vertical variations of
soil salinity in central Iran.
5. Conclusions

We attempt in this study to investigate soil salinity variation
(vertical and lateral) for a study area within Iran. Here, using soil
data base and the full suite of auxiliary data— including the predicted
maps of ECav and ECah, ETM+ images, geomorphology map, and
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Fig. 10. Spatial distribution of residuals across the study area in four depths which included: (a) 0–15 cm, (b) 15–30 cm, (c) 30–60 cm, and (d) 60–100 cm. The prediction maps were
generated by using local kriging.
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terrain parameters—regression treemodels were built for each of the
standard depths i.e. for 0–15, 15–30, 30–60 and 60–100 cm depth in-
tervals, respectively. The main conclusions that can be derived are:

• Our results confirmed that regression rule analysis (using Cubist) was
a reliable approach that could be successfully used to prepare contin-
uous soil salinity map.

• Remote sensing data (derived from such platforms as the Landsat
ETM+), apparent electrical conductivity, terrain parameters, and geo-
morphology units are the most useful predictors used for mapping of
soil salinity in the study area. Results also confirmed that for the 0–
15 cm depth interval, remote sensing data had the highest influence
on the model prediction followed by ECa, terrain attributes and geo-
morphology, whereas for the 60–100 cm depth interval, terrain attri-
butes were the most predictive of ECe. With increasing soil depth, the
remote sensing data becomes less relevant, whereas the terrain pa-
rameters become more important.

• As a practicable and useful approach, spline functions are able to be
used successfully in combination with regression rule models to
predict continuous variation of soil salinity across the study area.
However, the spatial prediction performed better for the soil surface
than at depth,which shows that the current ancillary variables cannot
capture subsurface variation.

• Fine-resolution electrical conductivity maps are useful for the many
soil and environmental scientists and land managers in Iran (i.e.
land degradation studies, mapping risk areas for wind erosion, soil
quality assessments and soil erosion modelling). Therefore, we rec-
ommend the use of the approach applied at the study area to map
the soil salinity in other parts of Iran.
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